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1 Introduction

Multiclass queueing networks are widely used as mathematical models of many real-world complex

systems, e.g., communications networks, manufacturing system, and service operations. That said,

most relevant queueing network models are rather intractable for purposes of exact performance

analysis. Consequently, considerable research efforts have been placed on deriving performance

bounds for these networks, the typical goal being to bound moments of the steady-state queue

lengths or workload [see, e.g., Kumar and Kumar [29], Sigman and Yao [30], Bertsimas, Gamarnik

and Tsitsiklis [28], Gamarnik and Zeevi [2], as well as references therein].

An alternative path is to approximate the queueing network model with a more simplified

structure. The idea then is to use the stationary distribution of the approximating model, whose

dynamics are “close” to the ones of the original network as a proxy for the original model.Perhaps

the most prevalent approach in this context has focused on the study of diffusion approximations

that arise under the so-called heavy-traffic operating regimes. The main objective of this paper is

to provide a method to approximate the steady-state distribution of these diffusion approximations.

Consider a diffusion process X = {X(t), t ≥ 0} with state-space S ⊂ Rk that arises as a heavy-

traffic limit for some queueing network, and assume that X admits a unique stationary distribution

π. In most cases, π it is impossible to compute π in closed form, and a plausible alternative is

to compute it numerically. To this end, let A denote the generator of the process X, and let DA
denote its domain. Under suitable technical conditions on A and S, we have that

∫

S
(Af) π(dx) = 0 for allf ∈ DA (1)

is necessary and sufficient to characterize π. The equation above is known as the basic adjoint

relationship (BAR). In the context of queueing and heavy-traffic theory, it was first used by Harrison

and Williams [9] to characterize the stationary distribution of a reflected Brownian motion in the

nonnegative orthant. Since (1) characterizes π as the solution to an infinite dimensional system

of linear equations, it is impractical to try to solve this directly. An alternative involves solving

approximating S and DA by suitable chosen sequences {Sn} and {Dm} of finite subsets of S and

finite subspaces of DA respectively, such that Sn ↑ S and Dm ↑ D = DA in a precise sense. For fixed

values of n and m, (1) can be stated as a finite-dimensional linear program (LP), that can be solve

efficiently. The hope is then, that π arises as a limit of a suitable sequence of optimal solutions to the

aforementioned LP’s. The main contribution of this papers is to articulate mathematical conditions

under which this holds true, for the classes of diffusions processes arising in common heavy-traffic

approximations, and to investigate the performance of the algorithm numerically, contrasting it

with existing methods.

Related literature. A related algorithm was proposed by Dai and Harrison [6] for solving sta-
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tionary distribution of Semimartingale Reflected Brownian Motions (SRBM). In there, the authors

view the BAR as an orthogonality condition between a infinite dimensional functional space and the

stationary distribution. By consider an increasing sequence of finite dimensional approximations

of the infinite dimensional functional space, they obtain a sequence of approximating densities by

means of orthogonal projections into a sequence of finite dimensional spaces. They prove that this

sequence of densities converges to the stationary density of the SRBM, but their proof relies on

a certain conjecture that concerns the behavior of solutions to the BAR. Later, Shen et al. [24]

considered a variant of the Dai-Harrison algorithm for the case of a SRBM on a hypercube using

a finite element method (or piecewise polynomials) to form the finite dimensional approximations

of the functional space of “test” functions. Shen and Chen [25] extend this algorithm for SRBM

on the positive orthan. Our work differs from these previous algorithms along three dimensions:

First, it allows for one to impose further constraints on the structure of the underlying stationary

distribution, which results in reasonable estimates not only for stationary moments but also for the

distribution itself. Since the tails of the queue-length/work-load distribution play important roles

as performance indicators, obtaining good approximations to the distribution itself is of obvious

value. Second, the convergence of our algorithm does not rely on the structural conjecture that

appears in the Dai-Harrison and follow-up papers. Finally, our method can be easily extended

to derive approximations to the stationary distribution under parameter uncertainty using robust

optimization (see section 5).

Harrison and Nguyen [CITE] were among the first to propose the use of the stationary dis-

tribution of the diffusion model as a mean to approximate the one corresponding to the original

network, mostly on the context of moment calculation. It should be noted, however that even if

the approximating diffusion model is arrived at rigourously (i.e., as a formal heavy-traffic limit), its

stationary distribution may not provide a rigorous approximation of that of the underlying model.

To date, the validity of this interchange-of-limits has not been established in full generality (see

Gamarnik and Zeevi [2] and Gurvich and Zeevi [3] to some analysis supporting this interchange

argument).

The linear programming approach pursued in the present paper originates with the work of

Manne [26] in the context of discrete time and finite space Markov processes. Hernandez and

Lasserre [1] extend this to analyze the convergence of linear-programming approximations for dis-

crete time controlled Markov processes in metric spaces. In [1], the authors approximate a discrete

time analogous of the BAR using a discrete probability distribution and a finite subspace of test

functions. The main objective there is not to characterize the steady-state distribution but rather

to minimize a steady-state cost function. Mendiondo and Stockbridge [27] extends this work to the

continuous time setting in the context of long-term average and discounted control problems, when

the state space and control space are assumed to be compact. The key features that distinguish
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our approach relative to these papers are: (i) Our focus is on computing the steady-state distribu-

tion rather than a long-run average cost;(ii) Since our focus is on diffusions arising as heavy-traffic

limits, the state space is not necessarily compact, which creates a potential problem with the se-

quence of approximating measures; (iii) we explicitly show our algorithm’s application in the case

of diffusions with reflecting boundaries, and (iv) feasibility of each linear program in our sequence

of approximating problems is guaranteed, while the work cited above assumes feasibility in the

respective measure-control space.

The remainder of the paper. Section 2 formulates our algorithm in general form, and

its convergence is established under general conditions. Section 3 presents the application of the

algorithm to the SRBM, which arises as an approximating diffusion model under the classical heavy-

traffic scaling, and Section 4 illustrates its application to a Ornstein-Uhlenbeck type diffusion that

arises in the so-called many server heavy-traffic regime. Extensive computational experiences are

reported for both applications. Finally, Section 5 extends the algorithm for the case of uncertain

parameters on the underlying queueing system, by formulating the “robust” counterpart of the LP

approximation. Computational experiences are reported for the SRBM case.

2 Proposed Algorithm

Consider a positive recurrent continuous-time Markov chain (CTMC) with infinite state space S

and infinitesimal generator matrix Q. A vector π is a stationary distribution for this CTMC if and

only if πtQ = 0 and etπ = 1, where e (abusing notation) is a column vector with all entries being

1. One way of finding π is to solve the following infinite-dimensional linear program (LP),

{
minu |πtQ ≤ etu ; −πtQ ≤ etu ; etπ = 1 ; π ≥ 0

}
(2)

Solving (2) exactly is virtually impossible. One possible approach is trying to ”approximate” π by

solving a finite-dimensional LP that approximate in some sense the original LP.

When S is a locally compact separable metric space, the Banach space C0(S) contains a countable

dense subspace (is separable)

H ≡ {h1, h2, . . .} ⊂ C0(S)

By the denseness of H in C0(S), for any two probability measures µ, ν we have

µ = ν ⇐⇒ 〈µ, h〉 = 〈ν, h〉 ∀h ∈ C0(S)

⇐⇒ 〈µ, h〉 = 〈ν, h〉 ∀h ∈ H
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Hence, solving (2) is equivalent to solving
{
minu | 〈πtQ,h

〉 ≤ etu∀h ∈ H ; − 〈
πtQ,h

〉 ≤ etu∀h ∈ H ; etπ = 1 ; π ≥ 0
}

(3)

Notice that (3) has a countable set of constraints. The condition
〈
πtQ, h

〉
= 0∀h ∈ C0(S); etπ = 1

corresponds to the basic adjoint relationship (BAR), introduced by Harrison and Williams [9] to

characterize the stationary distribution of a reflected Brownian motion in the nonnegative orthant.

Under the same assumptions, there exists a countable subset Ŝ dense in S.

Ŝ ≡ {x1, x2, . . .}

The key feature here is that, for any probability measure π on S, there exist a sequence of measures

with finite support, that converges weakly to π. We can try to approximate π by solving a sequence

of finite dimensional LPs.

Pnm ≡
{

minu |
∣∣∣∣∣

n∑

i=1

λi[Q(h(xi))]

∣∣∣∣∣ ≤ u∀h ∈ Hm ; etλ = 1 ; λ ≥ 0

}
(4)

where Hm = {h1, . . . , hm}. The intuition here is that, as n grows large we are able to give better a

approximation of an arbitrary probability distribution in S. On the other hand, as k grows large,

we are giving a better approximation to the BAR condition. Hernandez and Lasserre [1] proved the

validity of the approach when approximating the moment of an inf-compact nonnegative function

under the stationary distribution. The approach remains valid when estimating π, provided that a

tightness condition is imposed on each LP.

In what follows, we will adapt this idea to approximate stationary distributions for diffusions

for which the equivalent BAR condition is known to be necessary and sufficient, and will prove the

validity of the approach under certain assumptions.

Suppose the k-dimensional process
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
arises as a heavy-traffic limit for a

stochastic process describing some queueing system. In generality Xt could be decomposed as the

sum of a “free” time-homogeneous diffusion process plus some finite-variational process, reflecting

the behavior of X on the boundary of S, ∂S. We will assume that Xt is a diffusion process,

ignoring the boundary behavior, although our results are easily extended to the general case, as we

will illustrate in section 3, when dealing with the semimartingale reflected Brownian motion case.

Assume
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
solves the following stochastic differential equation

dXt = b(Xt)dt + σ(xt)dBt t ≥ 0, X0 = x (5)

where b(x) ∈ Rk, σ(x) ∈ Rk×l are continuous functions , and Bt is a l-dimensional Brownian motion.

The infinitesimal generator A of Xt is defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)
t

x ∈ S (6)
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The set of functions f : S → R such that the limit exits at x is denoted by DA(x), while DA denotes

the set of functions for which the limit exists for all x ∈ S. We will assume there exits a further

set of functions H ⊂ C2(S) such that f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi
+

1
2

∑

i,j

(σσt)i,j(x)
∂2f

∂xi∂xj
(7)

For example, if σ is bounded, then we can take H ≡ C2
0 . Suppose that Xt is a positive recurrent

process and π is its unique stationary distribution, then
∫

S
Af(x)π(dx) = 0 ∀ f ∈ H (8)

Unfortunately, for the diffusion case the BAR condition (8) is not always both necessary and

sufficient to characterize the stationary distribution π, and further assumptions are required. For

the purpose of this paper, we will just assume that the BAR condition is both necessary and

sufficient, and we will elaborate from it.

Suppose that
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
solves (5), that exists a countable subset Ŝ dense in S,

and that H ⊂ C2
0 (S) contains a countable dense subspace Ĥ ≡ {h1, h2, . . .} ⊂ H. Using the

aggregation-relaxation-inner approximation procedure described by Hernandez and Lasserre [1] we

can set the following LP

Pnm ≡
{

minu|
n∑

i=1

λiAh(xi) ≤ u∀h ∈ Ĥm ; −
n∑

i=1

λiAh(xi) ≤ u∀h ∈ Ĥm ; λ ∈ Λn

}
(9)

where Ĥm = {h1, . . . , hm}, and Λn ≡
{
λ ∈ Rn|∑n

i=1 λig(xi) ≤ M ; etλ = 1 ; λ ≥ 0
}

with g : S → R
nonnegative and continuous and M > 0 such that ∃K > 0, r > 0 for which g(x) ≥ K ∀ |x| > r,

x ∈ S, and Eπ[g(x)] < M . The idea here is to ensure tightness for a sequence of solutions to Pnm.

Let Θnm denote the set of optimal solutions to Pnm.

Theorem 1 Let
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
be a positive recurrent process that solves (5) and let π be

its unique stationary distribution. Suppose that (8) is both necessary and sufficient, and that both

Ŝ and Ĥ exists. Then, there exist sequences of integers n(i) and m(i) such that πn(i)m(i) → π as

i ↑ ∞, with πmn ∈ Θnm.

Proof We know there exists a sequence {µn} of distribution functions on S such that

(a) For every n = 1, . . ., µn has finite support {x1, . . . , xn}, that is, µn is of the form µn =
∑n

i=1 βn
i δxi , with βn

i ≥ 0∀ i = 1 . . . , n, and
∑n

i=1 βn
i = 1.

(b) The sequence {µn} converges weakly to π.
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From the definition of weak convergence (plus a truncation argument) we know that Eµn [g(x)] →
Eπ[g(x)], therefore there exists a n∗ for which βn ∈ Λn ∀n ≥ n∗. Fix m > 0. Consider πmn ≡
{λmni i = 1 . . . n}. For h ∈ Ĥm we have that

lim
n↑∞

|
n∑

i=1

λmniAh(xi)| ≤ lim
n↑∞

|
n∑

i=1

βn
i Ah(xi)| = lim

n↑∞
|
∫

S
Ah(x)µn(dx)| → |

∫

S
Ah(x)π(dx)| = 0 (10)

The first inequality comes from the optimality of πmn and the feasibility of µn for n ≥ n∗. The

limit holds since Ah(x) is bounded on the support of h by its continuity. Due to the tightness

condition we have that there exists a subsequence {nm(i)} of integers such that πnm ⇒ πm, with

πm a proper distribution function. From the reasons above we can also conclude that

lim
n↑∞

|
n∑

i=1

λmniAh(xi)| =
∫

S
Ah(x)πm(dx) = 0 (11)

Now consider the sequence {πm}. Again, this sequence is tight, and therefore πm ⇒ π̂ along a

further subsequence. Finally we have that, for an arbitrary function h ∈ Ĥ ∃m∗ such that h ∈ Ĥm

∀m ≥ m∗ and we have that |∫S Ah(x)πm(dx)| = 0. Therefore

|
∫

S
Ah(x) ˆπ(dx)| = lim

m↑∞
|
∫

S
Ah(x)πm(dx)| = 0 (12)

Since h was arbitrary, we conclude that π̂ = π by the necessity and sufficiency of (8), and the

uniqueness of the stationary distribution.

3 Applications: Semimartingale Reflected Brownian Motions

This section illustrates the application of the algorithm to a class of diffusion processes that plays

a central role in queuing theory: The Semimartingale Reflected Brownian Motions (abbreviated as

SRBM). These processes have been shown to arise as diffusion limits of open multiclass queueing

networks operating under “conventional” Heavy-Traffic conditions: Consider a sequence of queueing

networks indexed by n. The key idea of conventional Heavy-Traffic theory is to scale amounts to

express time in multiples of n and space in multiples of n1/2 so that functional central limit theorem

applies to a properly normalized queue length process while the sequence of traffic intensities

converges to 1 as n increases. A formal for the SRBM definition is the following:

Definition 1 Let S ≡ Rd
+ (the positive d-dimensional orthant). Let µ be a constant vector in Rd,

σ a d × d non-degenerate covariance matrix (symmetric and strictly positive definite), and R a

d × d matrix. For each x ∈ S, a SRBM associated with the data (S, µ, σ,R, x) is a Ft-adapted,

d-dimensional process Z = (Z(t) : t ≥ 0) defined on some filtered probability space (Ω,F .Ft,P) such

that:
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(i) Z = X + RY , Px-a.s.,

(ii) Px-a.s., Z has continuous paths and Z(t) ∈ S for all t ≥ 0,

(iii) X is a d-dimensional Brownian motion with drift vector µ, covariance matrix σ and X(0) = x.

In addition X(t)− µt is a Ft-martingale,

(iv) Y is an Ft-adapted d-dimensional process such that under P it satisfies for each j = 1, . . . , d :

a). Y (0) = 0

b). (Yi(t) : t ≥ 0) is continuous and non-decreasing,

c). Yi(t) can increase only when Z hits the face Fi = {x ∈ S : xi = 0}.

Loosely speaking, SRBM behaves like Brownian motion in the interior of S, and is confined to the

orthant by instantaneous “reflection” at the boundary faces, where the direction of reflection is

dictated by the matrix R. The most general condition currently known to ensure existence and

uniqueness (in law) of SRBM in the orthant is the matrix R to be completely S.

Definition 2 A d × d matrix R is said to be S if there exits a d-dimensional vector u ≥ 0 such

that Ru > 0, and to be a completely S matrix if each of its principal submatrices is an S matrix.

This completely S condition is in fact necessary (Reiman and Williams [16]) and sufficient

(Taylor and Williams [12]). Regarding its stationary distribution it has been shown (Dupuis and

Williams [17]) that a sufficient condition for its existence and uniqueness is that all solutions of

an associated deterministic Skorohod problem are attracted to the origin in finite time. Define

γ = R−1µ. A more tractable condition, γ < 0 is known to be necessary when R−1 ≥ 0 (Harrison

and Williams [9], Dai [6]) but not sufficient (Dai and Harrison [18]).

If we want to apply our algorithm to this class of processes we need to check that (i) The BAR

condition is sufficient and necessary, and that (ii) we can provide a tightness bound for the interior

distribution and tightness and finiteness bounds for boundary measures.

3.1 Bar Condition

For f ∈ C2
b (S), define

Lf ≡ 1
2

d∑

i=1

d∑

j=1

σij
∂2f

∂xi∂xj
+

d∑

i=1

µi
∂f

∂xi
(13)

Dif ≡ R·i∇f for x ∈ Fi (i = 1, . . . , d) (14)
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For these processes, BAR takes the following form:
∫

π
Lfdπ +

d∑

i=1

∫

Fi

Difdνi = 0 ∀ f ∈ C2
b (S) (15)

where π is the stationary distribution for Z associated with boundary measures νi (i = 1, . . . , d).

Necessity of BAR was first derived by Harrison and Williams [9] when the matrix R is Minkowski

(I −R ≥ 0 and I −R is transient), and later by Dai [6] for the completely S case. Sufficiency was

proven by Dai and Kurtz [8] through the following theorem:

Theorem 2 Assume R is a completely S matrix. Suppose that π0 is a probability measure on

S with support in the interior of S, and π1, . . . , πd are positive finite measures with supports on

F1, . . . , Fd respectively. If they jointly satisfies (15), then π0 is the stationary distribution for a

(σ, µ,R)-SRBM Z.

3.2 Tightness condition

The use of Lyapunov functions to bound expectations of Markov processes is a widely used technique

(for a clear exposition see Glynn and Zeevi [19] ). Given a function f for which one is interested in

computing stationary moments, the key idea is to find a Lyapunov-like function g that satisfies a

certain “mean” drift inequality with respect to f , which in turn leads to bounds on the stationary

expectation of the later. This idea has been used to prove the existence of exponential moments

of the interior stationary distribution for the SRBM: Glynn and Zeevi [19] provided an explicit

construction for the case of R being symmetric and positive definite. Budhiraja and Lee [15] have

proven the existence of such function for the completely S case. We prove that same result holds

for the boundary measures. In what follows we will use the following proposition, proven by Dai

[6]

Proposition 1 If π is the stationary distribution, associated with boundary measures νi (i =

1, . . . , d), then

Eπ

[∫ t

0
f(Z(s))dYi(s)

]
= t

∫

Fi

fνi, (i = 1, . . . , d) (16)

where σi denote the (d−1)-dimensional Lebesgue measure on the face Fi.

Theorem 3 Assume R is a completely S matrix, and suppose π is the stationary distribution for

Z associated with boundary measures νi (i = 1, . . . , d) . There exits a vector υ > 0 such that∫

Fi

eυtx νi(dx) < ∞ , i = 1, . . . , d

These results indicates that moment bounds exists, but we still need practical bounds to be used

in the setting of the algorithm, for tightness and finiteness of the boundary measures.

9



3.3 Practical Bounds

Finiteness of boundary measures

We will use a Lyapunov-function argument. Consider a d-dimensional vector v > 0 such that

Rtv > 0 and set f(x) = xtv. Proceeding as in proof of Theorem 3 (see appendix) we have:

Ex[f(Z(t))]−Ex[f(x)] + α = Ex[
d∑

i=1

βi

∫ t

0
dYi(s)]

where α ≡ vtµ > 0 and βi ≡ vtR·i > 0 i = 1, . . . , d. Taking expectations with respect to π, and

using Proposition 1 we have ∫

Fi

νi(ds) ≤ α

βi
i = 1 . . . , d

Tightness of stationary distribution

Here we will assume that R is symmetric to facilitate the explicit construction of a simple Lyapunov

function. This can be relaxed by means of a more clever choice of such function. Consider f(x) =

xtR−1x. Proceeding as in the proof of Theorem 3, we have

−f(x) + Ex[
∫ t

0
Z(s)tγds] ≤ C + Ex[

d∑

i=1

∫ t

0
Zi(s)dYi(s)]

where C =
∑

ij σijRij . Notice that Ex[
∑d

i=1

∫ t
0 Zi(s)dYi(s)] = 0 by definition of the SRBM. Taking

expectations with respect to π we have
∫

S
〈e, s〉π(ds) ≤ C

minj {γj}

For the Minkowski case, a bound can be derived directly from lemma 8.4 in Harrison-Williams

[9].

Tightness of boundary measures

Take a d-dimensional vector v > 0 such that Rtv > 0 and set the d× d symmetric matrix V such

that Vij = vjvi > 0. Notice that V > 0 and V R > 0. Let f(x) = xtV x. Proceeding as in the proof

of Theorem 3, we have

Ex[f(Z(t))] + Ex[
∫ t

0
Z(s)tV Rγds] ≥ Ex[

d∑

i=1

∫ t

0
Z(s)tV R·idYi(s)]
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Taking expectations with respect to π, and using Proposition 1 we have
∫

Fi

〈e, s〉νi(ds) ≤ α

βi

∫

S
〈e, s〉π(ds), i = 1, . . . , d

where α ≡ maxj {(V Rγ)j} > 0 and βi ≡ minj {(V R·i)j} > 0, i = 1, . . . , d. We have implicitly used

the finiteness of second moments for the stationary distribution.

3.4 Algorithm setting

To apply the algorithm we still need to specify (i) {Sn}, the sequence of grid for which we will

approximate (15), and (ii) Hm, the sequence of finite dimensional subspaces approximating C2
b (S).

Grid choice

Harrison and Williams [10] proved that the stationary distribution for a “standard” SRBM has a

separable density function (in the usual Cartesian coordinates) if and only if the covariance matrix

σ satisfies the “skew symmetric” condition

2σij = Rij + Rji for i 6= j (17)

In this case, the marginal distribution for coordinate i is exponential with rate 2γi. More over, the

boundary measures are the restriction of the join distribution to the corresponding faces of S. In

practice the matrix R does not fulfill this condition, but the closer it is to fulfill it, the closer the

marginal distributions should be to be exponentials.

Recently, Budhiraja and Lee [15] established the finiteness of the moment generating function

of the steady state distribution in a neighborhood of zero, proving the exponential decay of it.

With this in mind we choose the grid to have an “exponential spacing on the marginal”:

Sn = {x ∈ S|xi ∈ {[log(n)− log(j)]/λi j = 1, . . . , n} i = 1, . . . , d} (18)

For the boundary, we just project this grind on the corresponding face

Fn
i = {x ∈ Sn|xi = 0} i = 1, . . . , n (19)

This is somehow related to the choice of a reference density on Harrison and Dai’s algorithm [7].

Remark. In practice, the values for λ were selected as follows: First we perform a first run

with the algorithm using low values for λ. Then these values were adjusted according to the first

moments on the marginal distributions.
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m 3 4 5 6 7 8 9 10

Eπ[x] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Eπ[y] 0.793 0.821 0.764 0.768 0.762 0.758 0.760 0.750

Table 1: Moment estimates Two-dimensional SRBM (n = 100)

Subspace choice

For each m ≥ 1, we choose Hm = {f polynomial of degree ≤ m}. The convergence of Hm → C2
b (S)

is a well known result (Proper citation).

3.5 Numerical Results

In this section we will compare numerical results from our algorithm with some known analyti-

cal results of particular instances of SRBM. Also, we will compare our algorithm with previous

algorithms using instances for which either simulation or good approximation results are known.

A Two-Dimensional SRBM

Consider a two-dimensional SRBM associated to the following data:

R =

(
1 0

−1 1

)
σ =

(
1 0

0 1

)
µ =

(
µ1

0

)

For this SRBM the stationary condition γ < 0 reduces to µ1 < 0. Harrison [14] computed a closed

form solution for the stationary distribution density in polar coordinates:

p(x, y) = (2|µ|)3/2/(π1/2)r−1/2 exp(µ1r(1 + cos(θ))) cos(θ/2) (20)

where (x, y) = (r cos(θ), r sin(θ))

Without loss of generality consider µ1 = −1. It can be shown (Greenberg [13]) that

Eπ[x] = 0.5 Eπ[y] = 0.75 (21)

Taking n = 100 we used our algorithm to get estimates for these moments. The results are shown

on Table 1. We see that our algorithm provides good estimates even for low values of m. Each

one of the instances shown on Table 1 ran in less than 3 minutes (on a regular Desktop PC) on

a MATLAB implementation of the algorithm. This type of SRBM is the only one (beside the

skew symmetric type) for which the actual distribution is know, so we can use this knowledge to

test our algorithm. Figure 1 shows our marginal distribution estimates for n = 100 and m = 6,

12
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Figure 1: Marginal distribution estimates Two-dimensional SRBM (n = 100, m = 6)

compared with the actual marginal distributions (doted line). It is proven (Harrison [14]) that the

one dimensional marginal distribution for x is exponential, however the same result does not hold

for y. We see that our algorithm provides good estimates for the marginal distributions.

Symmetric SRBM’s

A standard SRBM is said to be symmetric if its data has the following properties: σij = ρ for

1 ≤ i < j ≤ d, µi = −1 for i = 1, . . . , d and Rij = Rji = −r ≤ 0 for 1 ≤ i < j ≤ d. Positiveness of

σ implies −1/(d− 1) < ρ < 1 and the completely S condition reduces to r(d− 1) < 1. This type of

SRBM arises as a Heavy-Traffic limit of a symmetric generalized Jackson network. Manipulating

the BAR condition, Dai [6] showed that

m1 = . . . = md =
1− (d− 2)r + (d− 1)rρ

2(r + 1)
(22)

where mi = Eπ[xi] i = 1, . . . , d. We use our algorithm to compute estimates for these moments for

the case d = 2. Imitating Dai’s work, we let ρ range through {−0.9,−0.5, 0.0, 0.5, 0.9} and r range

through {0.2, 0.4, 0.6, 0.8, 0.9, 0.95}. Table 2 shows the relative errors between our estimates and

the exact values for m = 6 and n = 100. We see that in each case the relative error is lower that

1%.
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r/ρ -0.9 -0.5 0.0 0.5 0.9

0.2 1.98e-4 1.65e-4 1.26e-3 2.32e-3 6.66e-4

0.4 3.90e-4 4.88e-5 2.52e-5 2.92e-3 2.00e-4

0.6 1.76e-5 5.97e-4 2.05e-4 1.06e-6 5.70e-4

0.8 1.53e-5 4.27e-5 2.22e-5 1.17e-3 2.16e-3

0.9 1.65e-5 4.26e-5 5.43e-4 1.00e-3 3.24e-3

0.95 4.57e-6 3.42e-5 2.46e-4 5.98e-4 4.82e-3

Table 2: Relative errors for Symmetric SRBM

m 3 4 5 6 7 8 9 10

Eπ[x1] 0.4942 0.4943 0.4968 0.5014 0.5005 0.5011 0.4996 0.5002

Eπ[x2] 2.0095 2.0094 2.0053 1.9976 1.9990 1.9981 2.0005 1.9996

Table 3: Moment estimates Skew-symmetric SRBM

Skew-symmetric SRBM

Harrison and Williams [10] proved that a standard SRBM has a product form stationary distribution

if and only if γ < 0 and condition 17 holds. In this, case we know that the marginal distribution for

xi is exponential with mean 1/(2γi). Consider a two-dimensional SRBM associated to the following

data:

R =

(
1 −0.6

−0.25 1

)
σ =

(
1 −0.425

−0.425 1

)
µ =

(
−0.85

0

)

One can check that condition 17 holds, and that γt = (−1,−0.25). This implies that Eπ[x1] = 0.5

and Eπ[x2] = 2. Taking n = 100 we used our algorithm to get estimates for these moments. The

results are shown on Table 3. We see that our algorithm provides good estimates even for low

values of m. Each one of the instances shown on Table 3 ran in less than 3 minutes (on a regular

desktop PC) on a MATLAB implementation of the algorithm. Since we know that each marginal

distribution is exponential, we can compare our estimated marginal distribution against the actual

marginal distribution for each coordinate. Figure 2 shows our marginal distribution estimate for

n = 100 and m = 6, compared with the actual marginal distributions (doted line). We see that our

algorithm provides good estimates for the marginal distributions.

Suresh and Whitt’s Experiments

This section follows closely the analysis presented in Chapter 4 of Dai’s dissertation [6]. Consider

a network of d queues in tandem. Let ρi denote the mean service time at station i, C2
si

denote

the squared coefficient of variation of the service time distribution at station i, and C2
a denote the

14
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Figure 2: Marginal distribution estimates Skew-symmetric SRBM

squared coefficient of variation for the interarrival time distribution. Using the method proposed

by Harrison and Nguyen [11], Dai [6] shows that the d-dimensional current workload process can

be approximated by a d-dimensional SBRM associated with the data (σ,R, µ). When d = 2 we

have

R =

(
1 0

−ρ2/ρ1 1

)
σ =

(
ρ2
1(C

2
a + C2

s1
) −rho1ρ2C

2
s1

ρ2
2(C

2
s1

+ C2
s2

) −rho1ρ2C
2
s1

)
µ =

(
ρ1 − 1

ρ2/ρ1 − 1

)

The arrival rate is assumed to be 1, so that ρi represents the traffic intensity at station i.

Suresh and Whitt [20] studied a system of two queues in tandem with the purpose of finding

the best order for the queues to minimize the average total waiting time. They consider various

variability parameter triples (C2
a , C2

s1
, C2

s2
) for all combinations of the traffic intensities ρ1 and ρ2 in

a representative range. For C2
s1
6= C2

s2
they considered five variability triples, namely, (0.5,0.5,2.0),

(1.0,0.5,8.0), (1.0,2.0,4.0), (4.5,0.5,1.0) and ,(4.0,1.0,4.0). We will refer them as Case 1 to Case

5, respectively. For C2
s1

= C2
s2

they consider two variability triples, namely, (1.0,0.5,0.5) and

(1.0,4.0,4.0). We will refer them as Case 6 and Case 7 respectively. When C2
s1
6= C2

s2
, for each

queue they consider four values of ρi : 0.3, 0.6, 0.8, 0.9. When C2
s1
6= C2

s2
, for each queue they

consider five values of ρi : 0.1, 0.2, 0.3, 0.6, 0.9.

Extensive simulation experiments were conducted in order to obtain estimates for the expected

steady-state waiting times. When C2 = 0.5, the E2 distribution was used. When C2 = 1.0, the

exponential distribution was used. When C2 > 1.0, the H2 distribution with balanced means was

used.
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Order I Order II

Case ρ1 ρ2 QNET-D QNA-D LP-D QNET-D QNA-D LP-D

1 0.9 0.9 0.01 0.01 0.00 0.02 0.13 0.01

0.8 0.8 0.08 0.08 0.08 0.06 0.08 0.07

2 0.9 0.9 0.03 0.06 0.03 0.01 0.21 0.01

0.8 0.8 0.04 0.01 0.02 0.08 0.07 0.07

3 0.9 0.9 0.04 0.02 0.04 0.04 0.19 0.05

0.8 0.8 0.00 0.04 0.01 0.02 0.02 0.01

4 0.9 0.9 0.13 0.30 0.14 0.19 0.29 0.19

0.8 0.8 0.14 0.08 0.11 0.09 0.00 0.07

5 0.9 0.9 0.01 0.12 0.01 0.01 0.01 0.00

0.8 0.8 0.09 0.14 0.08 0.05 0.05 0.05

6 0.9 0.9 0.01 0.08 0.02 0.01 0.10 0.01

0.8 0.8 0.01 0.04 0.01 0.01 0.04 0.01

7 0.9 0.9 0.04 0.18 0.05 0.06 0.07 0.04

0.8 0.8 0.02 0.05 0.03 0.01 0.06 0.01

Average 0.05 0.09 0.04 0.05 0.09 0.04

Table 4: Overall Comparisons with QNA and QNET Approximations in Heavy Traffic

They also compare their simulation results with QNA approximations. Dai [6] use this set

of experiments to test the QNET method. There, simulation and approximation results for the

expected waiting time at the second station are compared. We used these results to compare our

algorithm against the QNA and QNET methods. Table X-Y (appendix) give simulation estimates,

QNET estimates, QNA estimates, and our “LP” estimates. Table 4 summarizes all balanced heavy

traffic cases and gives an overall comparison of QNA estimates, QNET estimates and LP estimates

under heavy traffic. There, quantities shown represent the minimum between absolute relative

difference and absolute difference, with respect to simulation estimates.

We used n = 100 and m = 6 for all experiments. Each run took less than 3 minutes on regular

Desktop PC. As expected, QNET and LP methods give “better” estimates than the ones from

QNA method, under balanced heavy traffic conditions. Also, LP method performs as good as the

QNET method, most of the time better.
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4 Applications: Two Class Queue

Consider a single queue system with m classes, with class 1 denoting a guaranteed-rate or high-

priority class, and classes 2, . . . ,m being different best-effort classes that are labeled according to

their priority level i.e., class i has higher priority than all classes j > i. The guaranteed-rate class,

assumed to arrive according to a Poisson process with rate λ1, engage one unit of capacity each for

i.i.d. exponentially distributed amounts of time with rate µ1, provided that the total number of

guaranteed users connected is less than the system capacity C; otherwise they are denied service.

The best-effort users of class i (i = 2, . . . , m), assumed to arrive according to a Poisson process

with rate λi (independent of everything else), are always admitted into the system, requiring a total

processing time exponentially distributed with rate µi. When there is enough capacity not used

up by users from classes j < i, class i users are allocated a nominal processing rate corresponding

to one unit of capacity, and when capacity is not sufficient, they share the available capacity in an

egalitarian manner:

Class i service rate at time t =
(C −∑

j<i Qj(t))+

Qi(t)
∧ 1

where Qi(t) denotes the number of class i users in the system.

We see that Q1 evolves according to the state of an M/M/C/C system, while Qi (i = 2, . . . , m)

evolve as a M/M/C(t), where the available capacity, C(t), is stochastically modulated by the

number of higher priority users present in the system. Despite its simple structure, exact analysis

of this multiclass system is not straightforward and relies either on simulation or on numerical

methods that offer little insight as to its structural behavior.

Maglaras and Zeevi [21] studied this system and derived a diffusion approximation under the

Halfin and Whitt [22] asymptotic heavy traffic regime. This regime is defined by letting capacity

grow large and concurrently letting the system utilization approach 1 at an appropriate rate.

Specifically, Maglaras and Zeevi considered a sequence of systems with capacity Cn = n and

arrival rates λn
i = nκiµi − γi

√
nµi for some constants κi > 0 and γi ∈ R for i = 1, . . . , m such that

∑
i κi = 1. There κ denotes the vector of relative workload contributions

κi = lim
n→∞

λn
i /µi∑

j=1m λn
j /µj

i = 1, . . . , m (23)

Defining the normalized state processes

Xn
i (t) ≡ Qn

i (t)− κin√
n

i = 1, . . . , m

they proved the following theorem:
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Theorem 4 Suppose that for some ξ ∈ Rm, Qn
i (0) = bnκi +

√
nξic for i = 1, . . . ,m. Then,

Xn → X in Dm[0,∞) as n → ∞, where X is a diffusion process. Specifically, X is the unique

strong solution of the following stochastic differential equation:

dX(t) = b(X(t)dt + ΣdW (t), X(0) = ξ, (24)

where W = (W (t) : t ≥ 0) is a standard Brownian motion in Rm, the infinitesimal drift function

bi(·) for the ith component is

bi(x) = −µiγi − µixi i = 1, . . . , m− 1

bm(x) =

{
−µmγm − µmxm

∑m
i=1 xi ≤ 0

−mumγm +
∑m−1

i=1 xi
∑m

i=1 xi > 0

and Σ ≡ diag(σ1, σ2, . . . , σm), with σ2
i = 2µiκi.

The first m − 1 components of X are simple O-U processes and clearly admits a steady-state,

however the last component has more complicated structure, and thus is not clear a priori under

what conditions a steady-state will exist for X. Maglaras and Zeevi proved X is positive recurrent

and that it admits a unique stationary distribution if and only if γ =
∑m

i=1 γi > 0, which is also

the steady-state distribution.

Our objective in this section is to apply our algorithm to approximate the stationary distribution

of these type of processes. For this we need first to check the sufficiency and necessity of the BAR

condition, and second, to provide tightness bounds for the steady-state distribution.

4.1 Bar Condition

Necessity of the BAR condition comes from the following proposition.

Proposition 2 Suppose π is the stationary distribution for X. Then for each f ∈ C2
b (Rm),

∫

Rm

(
m∑

i=1

bi(x)
∂f(x)
∂xi

+
σ2

i

2
∂2f(x)

∂x2
i

)
π(dx) = 0 (25)

Proof First we need to prove that P
[∫ t

0 |bi(x)|dx < ∞ ∀ t ≥ 0
]

= 1. If this is the case, then we

can apply Ito’s lemma, and take expectation Ex to obtain

Ex[f(X(t))]−f(x) = Ex

[∫ t

0

(
m∑

i=1

bi(X(s))
∂f(x)
∂xi

+
σ2

i

2
∂2f(x)

∂x2
i

)
ds)

]
+Ex

[∫ t

0
〈∇f(X(s))Σ, dW (s)〉

]
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Since f ∈ C2
b (Rm) the last term is a martingale, so its expectation is 0. Integrating both sides with

respect to the stationary distribution π, we obtain (25) when applying Fubini’s lemma.

Sufficiency of the BAR condition comes from the following proposition (see appendix for a

proof).

Proposition 3 Suppose that π is a probability measure on Rm. If π satisfies (25), then π is the

stationary distribution for X.

4.2 Tightness condition

Since X lives on Rm, this application does not involve any boundary measure associated to the

stationary distribution. This leaves us with just one ”tightness” constraint, the one for the ”interior”

distribution. In exchange the simple sum of first moments of each coordinate under the stationary

distribution does not imply tightness.

For i = 1, . . . , m− 1 consider fi(x) = µ−1
1 (xi− γi). Applying Ito, taking expectation w.r.t to π,

dividing by t, and taking t →∞ we have that Eπ[x2
i ] = γ2

i +κi (i = 1, . . . , m−1). Taking fi(x) = xi

and repeating the same reasoning we have that Eπ[xi] = −γi (i = 1, . . . , m− 1). Therefore we can

conclude that Xi(∞) ∼ N(−γi, κi). In order to state the tightness constraint, we still need to

analyze the last component of X. Consider:

f(x) =
∑

i<m

(1/2)C1,ix
2
i +

∑

i<m

(1/2)C2,ixi + C3

√
1 + x2

m + C4

where C4 is set so that f is nonnegative, c > 0 is a constant that ensures that Af(x) < −ε for

x ∈ Kc, where K is a compact set, and

C3 =
c +

∑
i<m γ2

i

γµm
C2,i = (C3µm − γi)/µi C1,i = 1/µi

Maglaras and Zeevi [21] shown that this function is a valid Lyapunov function for X. This

function can be used, for example, to establish the finiteness of the moment generating function of

the steady state distribution. In particular it can be shown (see Glynn and Zeevi [19]) that

E[
m∑

i=1

|xi|] ≤ max
x∈K

{|Af(x)|}

which the tightness constraint that we will use.

4.3 Algorithm setting

To apply the algorithm we still need to specify (i) {Sn}, the sequence of grid for which we will

approximate (15), and (ii) Hm, the sequence of finite dimensional subspaces approximating C2
b (S).
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Grid choice

We know that Xi(∞) ∼ N(−γi, κi)(i = 1, . . . , m − 1), but we don’t have any prior information

about the distribution Xm(∞), but that it has an exponential decay. With this in mind we choose

the grid to have an “Normal” spacing on the marginal distribution for Xi i = 1, . . . ,m− 1, and an

”Uniform” spacing on the marginal distribution for Xm:

Sn = {x ∈ S|{xi = (Φ−1(1/2 + j/(2n)) + γi)/
√

κi j = 0,±1 . . . ,±n− 1 (26)

i = 1, . . . , m− 1} × {xm = αj/n j = −n, . . . , n}} (27)

Subspace choice

For each m ≥ 1, we choose Hm = {f polynomial of degree ≤ m}.

4.4 Numerical Results

The following example was studied by Maglaras and Zeevi [21], and restrict attention to a two-class

system with a single guaranteed and best-effort class. Consider a system with capacity C = 100,

µ1 = 1, µ2 = 2, λ1 = 47.5 and λ2 = 95 (here ρ = 0.95). The idea is to approximate this system

using the two dimensional diffusion described in this section. For that purpose we can solve for κi

and γi (i = 1, . . . , m) using (23). In this example:

κi =
λi/µi

λ1/µ1 + λ2/µ2
⇒ κ1 = 47.5/(47.5 + 95/2) = 0.5 and κ1 = 1− κ2 = 0.5

and

γi =
κiµiC − λi

µi

√
C

⇒ γ1 =
0.5 · 1 · 100− 47.5√

100
= 0.25 and γ2 =

0.5 · 2 · 100− 95
2 · √100

= 0.25

Queue length steady state distribution can be approximated as follows

QC
i (∞) = κiC +

√
CXi(∞) i = 1, . . . , m

Figure 3 compares the approximated marginal distributions resulting from the algorithm (in

what follows we will use m = 100, n = 4) with the actual marginal distribution computed via

Monte Carlo simulation (doted line).

This does not look like good approximation to the marginal distributions. However, when

comparing moments for the second coordinate, we have that the approximation does a good job.

See table 5.
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Figure 3: Marginal distribution estimates Two Class Queue (n = 100, m = 6)

E[x1
2] E[x2

2] E[x3
2] E[x4

2]

Simulation 1.19 8.31 70.67 854

Algorithm 1.22 9.14 68.2 592

Relative error 0.03 0.10 0.03 0.30

Table 5: Moment approximation for second coordinate Two Class Queue
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E[x1
2] E[x2

2] E[x3
2] E[x4

2]

Simulation 1.19 8.31 70.67 854

Algorithm 1.22 9.14 68.2 592

Smooth Alg. 1.23 8.92 68.7 618

Relative error 0.03 0.07 0.03 0.28

Table 6: Smooth moment approximation for second coordinate Two Class Queue

We would expect for the actual steady state distribution to have ”smooth” marginal distribu-

tions, but this condition is not explicitly imposed on the LP formulation. It turns out that the

approximated BAR condition can not rule out such erratic behavior on the marginal distributions,

at least not for such low values of m and n. Also, we would expect for a discretization of the

stationary distribution to be both feasible and to achieve an objective vale close to the optimal one,

and to have an ”smooth” behavior. With this in mind we decided to impose ”smoothness” on the

algorithm’s output. Consider a neighborhood parameter r > 0, and a ”smoothness” parameter δ.

We will impose that the probability assigned to two points on Sn whose distance (euclidian norm)

from each other is less or equal to r should not be greater in absolute value to δ

|πn
m(x)− πn

m(y)| ≤ δ ∀ (x, y) ∈ Sn s.t. ||x− y|| < r (28)

Remark The choice of r and δ will be case dependent. The greater the value of r is, the greater

is the number of constraints added. This will affect the complexity of the LP. On the other hand,

low values for δ will reduce the space of feasible solutions, and at some point it could even discard

a true steady-state distribution discretization.

In practice we introduce these constraints on each marginal distribution separately. We choose

r in order to include just one neighbor in each marginal, and δ low enough to rule out peaks as in

figure 3. For δ1 = 0.0026 ( smoothness parameter for the first coordinate marginal) and δ2 = 0.0011

( smoothness parameter for the first coordinate marginal) we obtain the moment approximation

shown on Table 6. Figure 4 shows the marginal obtained including the smoothing constraints.

5 Robust Steady State Estimates (?)
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Figure 4: Smooth marginal distribution estimates Two Class Queue (n = 100, m = 6)

A Proofs

A.1 Proof of Theorem 3

Define γ = −R−1µ > 0. Now, take a d-dimensional vector v > 0 such that Rtv > 0 (the completely

S is close under the transpose and inverse operations). Fix a > 0 and let f(x) = exp(axtv). Now let

fn ∈ C2
b (S) be a positive function that agrees with f for x ∈ BS(n) ≡ {x ∈ S, |x| ≤ n}. Applying

Itô’s formula, we have that

fn(Z(t))− fn(z(0))−
∫ t

0
Lfn(Z(s))ds−

d∑

i=1

∫ t

0
Difn(Z(s))dYi(s)

is a Px martingale. Let Tn ≡ inf {t ≥ 0, |Z(t)| ≥ n}. Since fn > 0 we have

Ex[f(Z(t ∧ Tn))] ≥ Ex[
∫ t∧TN

0
Lf(Z(s))ds] + Ex[

d∑

i=1

∫ t∧TN

0
Dif(Z(s))dYi(s)]

For this particular function we have Lf(x) = f(x)
[
−avtR · γ + a2

2

∑d
i=1

∑d
j=1 Γijvivj

]
and Dif(x) =

af(x)[vtR·i]. Taking a < 2vtR·γ∑d
i=1

∑d
j=1 Γijvivj

we have
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Ex[f(Z(t ∧ Tn))] + αEx[
∫ t∧TN

0
f(Z(s))ds] ≥ Ex[

d∑

i=1

βi

∫ t∧TN

0
f(Z(s))dYi(s)]

where α ≡ avtR · γ − a2

2

∑d
i=1

∑d
j=1 Γijvivj > 0 and βi ≡ vtR·i > 0 i = 1, . . . , d. Since f > 0 and

taking {fn}n∈N increasing, the Monotone convergence theorem implies the following:

Ex[f(Z(t))] + αEx[
∫ t

0
f(Z(s))ds] ≥ Ex[

d∑

i=1

βi

∫ t

0
f(Z(s))dYi(s)]

Taking expectations with respect to π (and considering a > 0 small enough for Eπ[eavtx] to

exist) we have that

Eπ[f ] + αtEπ[f ] ≥ t
d∑

i=1

βi

∫

Fi

fνi(ds)

where we have used proposition 1, the definition of the stationary distribution and Tonelli’s theorem.

Dividing by t and taking t →∞ we conclude the following
∫

Fi

eavtxνi(ds) ≤ α

βi
Eπ[eavtx] < ∞, i = 1 . . . , d

A.2 Proof of Proposition 3

First we will need some side results. For f ∈ C2(Rm) define the operator A as follows

Af ≡
m∑

i=1

bi(x)
∂f(x)
∂xi

+
σ2

i

2
∂2f(x)

∂x2
i

Lemma 1 The operator (A, C2
b (Rm) satisfies the positive maximum principle, i.e., whenever f ∈

C2
b (Rm), x0 ∈ Rm, and supx∈Rm f(x) = f(x0) ≥ 0, we have Af(x0) ≤ 0.

Proof Consider f ∈ C2
b (Rm). Applying Ito

f(X(t))−
∫ t

0
Af(X(s))ds = f(x0) +

∫ t

0
〈∇f(X(s))Σ, dW (s)〉 (29)

Now take expectations w.r.t. Px0 , we have

Ex0 [f(X(t))]− f(x0) = Ex0

[∫ t

0
Af(X(s))ds

]
(30)

Dividing by t and taking t → 0 by the continuity of Af and the continuity of X, we get Af(x0) ≤ 0,

since the left hand side above is non-positive.
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Proposition 4 For any probability measure π on Rm, the measure Pπ ≡
∫
Rm Pxπ(dx) is a solution

for the martingale problem for (A, π).

Proof It is enough to show that for f ∈ C2
b (Rm) and each x ∈ Rm,

f(X(t))−
∫ t

0
Af(X(s))ds (31)

is a Px-martingale. However, this is direct a consequence of (29).

Proof of Proposition 3. Clearly C2
b (Rm) is an algebra, and also it is dense in C(Rm) (CITE).

By Lemma 1, the operator (A, C2
b (Rm) satisfies the positive maximum principle, and therefore

Echeverria’s theorem (see [23], Theorem 9.14 of Chapter 4) applies to assert that π is a stationary

distribution for a solution of the martingale problem for (A, π). By proposition 4 we know that Pπ

is a solution of the martingale problem for (A, π), and this solution is unique (since (24) admits a

unique strong solution, see [21]. This implies that π is a stationary distribution for X.The results

follows from the uniqueness of the stationary distribution.

B Numerical Results

7 Pages of numerical results for the SRBM?????

Acknowledgements. We are indebted to...
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