
1 Proposed Algorithm

Consider a positive recurrent continuous-time Markov chain (CTMC) with infinite state space S
and infinitesimal generator matrix Q. A vector π is a stationary distribution for this CTMC if and
only if πtQ = 0 and etπ = 1, where e is a column vector with all entries being 1. One way of finding
π is to solve the following infinite-dimensional linear program (LP),

{
minu |πtQ ≤ etu ; −πtQ ≤ etu ; etπ = 1 ; π ≥ 0

}
(1)

Solving (1) exactly is virtually impossible. One possible approach is trying to ”approximate” π by
solving a finite-dimensional LP that approximate in some sense the original LP.

When S is a locally compact separable metric space, the Banach space C0(S) contains a countable
dense subspace (is separable)

H ≡ {h1, h2, . . .} ⊂ C0(S)

By the denseness of H in C0(S), for any two probability measures µ, ν we have

µ = ν ⇐⇒ 〈µ, h〉 = 〈ν, h〉 ∀h ∈ C0(S)
⇐⇒ 〈µ, h〉 = 〈ν, h〉 ∀h ∈ H

Hence, solving (1) is equivalent to solving
{
minu | 〈πtQ,h

〉 ≤ etu∀h ∈ H ; − 〈
πtQ,h

〉 ≤ etu∀h ∈ H ; etπ = 1 ; π ≥ 0
}

(2)

Notice that (2) has a countable set of constraints. The condition
〈
πtQ, h

〉
= 0∀h ∈ C0(S); etπ = 1

corresponds to the basic adjoint relationship (BAR), introduced by Harrison and Williams [?] to
characterize the stationary distribution of a reflected Brownian motion in the nonnegative orthant.

Under the same assumptions, there exists a countable subset Ŝ dense in S.

Ŝ ≡ {x1, x2, . . .}

The key feature here is that, for any probability measure π on S, there exist a sequence of measures
with finite support, that converges weakly to π. We can try to approximate π by solving a sequence
of finite dimensional LPs.

Pnm ≡
{

minu |
∣∣∣∣∣

n∑

i=1

λi[Q(h(xi))]

∣∣∣∣∣ ≤ u∀h ∈ Hm ; etλ = 1 ; λ ≥ 0

}
(3)

where Hm = {h1, . . . , hm}. The intuition here is that, as n grows large we are able to give better a
approximation of an arbitrary probability distribution in S. On the other hand, as k grows large,
we are giving a better approximation to the BAR condition. Hernandez and Lasserre [1] proved the
validity of the approach when approximating the moment of an inf-compact nonnegative function
under the stationary distribution. The approach remains valid when estimating π, provided that a
tightness condition is imposed on each LP.

In what follows, we will adapt this idea to approximate stationary distributions for diffusions
for which the equivalent BAR condition is known to be necessary and sufficient, and will prove the
validity of the approach under certain assumptions.

1



Suppose the k-dimensional process
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
arises as a heavy-traffic limit for a

stochastic process describing some queueing system. In generality Xt could be decomposed as the
sum of a “free” time-homogeneous diffusion process plus some finite-variational process, reflecting
the behavior of X on the boundary of S, ∂S. We will assume that Xt is a diffusion process,
ignoring the boundary behavior, although our results are easily extended to the general case, as we
will illustrate in section ??, when dealing with the semimartingale reflected Brownian motion case.

Assume
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
solves the following stochastic differential equation

dXt = b(Xt)dt + σ(xt)dBt t ≥ 0, X0 = x (4)

where b(x) ∈ Rk, σ(x) ∈ Rk×l are continuous functions , and Bt is a l-dimensional Brownian motion.
The infinitesimal generator A of Xt is defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)
t

x ∈ S (5)

The set of functions f : S → R such that the limit exits at x is denoted by DA(x), while DA denotes
the set of functions for which the limit exists for all x ∈ S. We will assume there exits a further
set of functions H ⊂ C2(S) such that f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi
+

1
2

∑

i,j

(σσt)i,j(x)
∂2f

∂xi∂xj
(6)

For example, if σ is bounded, then we can take H ≡ C2
0 . Suppose that Xt is a positive recurrent

process and π is its unique stationary distribution, then
∫

S
Af(x)π(dx) = 0 ∀ f ∈ H (7)

Unfortunately, for the diffusion case the BAR condition (7) is not always both necessary and
sufficient to characterize the stationary distribution π, and further assumptions are required. For
the purpose of this paper, we will just assume that the BAR condition is both necessary and
sufficient, and we will elaborate from it.

Suppose that
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
solves (4), that exists a countable subset Ŝ dense in S,

and that H ⊂ C2
0 (S) contains a countable dense subspace Ĥ ≡ {h1, h2, . . .} ⊂ H. Using the

aggregation-relaxation-inner approximation procedure described by Hernandez and Lasserre [1] we
can set the following LP

Pnm ≡
{

minu|
n∑

i=1

λiAh(xi) ≤ u∀h ∈ Ĥm ; −
n∑

i=1

λiAh(xi) ≤ u∀h ∈ Ĥm ; λ ∈ Λn

}
(8)

where Ĥm = {h1, . . . , hm}, and Λn ≡
{
λ ∈ Rn|∑n

i=1 λig(xi) ≤ M ; etλ = 1 ; λ ≥ 0
}

with g : S → R
nonnegative and continuous and M > 0 such that ∃K > 0, r > 0 for which g(x) ≥ K ∀ |x| > r,
x ∈ S, and Eπ[g(x)] < M . The idea here is to ensure tightness for a sequence of solutions to Pnm.
Let Θnm denote the set of optimal solutions to Pnm.

Theorem 1 Let
{
Xt ∈ S ⊂ Rk : t ≥ 0

}
be a positive recurrent process that solves (4) and let π be

its unique stationary distribution. Suppose that (7) is both necessary and sufficient, and that both
Ŝ and Ĥ exists. Then, there exist sequences of integers n(i) and m(i) such that πn(i)m(i) → π as
i ↑ ∞, with πmn ∈ Θnm.
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Proof We know there exists a sequence {µn} of distribution functions on S such that

(a) For every n = 1, . . ., µn has finite support {x1, . . . , xn}, that is, µn is of the form µn =∑n
i=1 βn

i δxi , with βn
i ≥ 0∀ i = 1 . . . , n, and

∑n
i=1 βn

i = 1.

(b) The sequence {µn} converges weakly to π.

From the definition of weak convergence (plus a truncation argument) we know that Eµn [g(x)] →
Eπ[g(x)], therefore there exists a n∗ for which βn ∈ Λn ∀n ≥ n∗. Fix m > 0. Consider πmn ≡
{λmni i = 1 . . . n}. For h ∈ Ĥm we have that

lim
n↑∞

|
n∑

i=1

λmniAh(xi)| ≤ lim
n↑∞

|
n∑

i=1

βn
i Ah(xi)| = lim

n↑∞
|
∫

S
Ah(x)µn(dx)| → |

∫

S
Ah(x)π(dx)| = 0 (9)

The first inequality comes from the optimality of πmn and the feasibility of µn for n ≥ n∗. The
limit holds since Ah(x) is bounded on the support of h by its continuity. Due to the tightness
condition we have that there exists a subsequence {nm(i)} of integers such that πnm ⇒ πm, with
πm a proper distribution function. From the reasons above we can also conclude that

lim
n↑∞

|
n∑

i=1

λmniAh(xi)| =
∫

S
Ah(x)πm(dx) = 0 (10)

Now consider the sequence {πm}. Again, this sequence is tight, and therefore πm ⇒ π̂ along a
further subsequence. Finally we have that, for an arbitrary function h ∈ Ĥ ∃m∗ such that h ∈ Ĥm

∀m ≥ m∗ and we have that |∫S Ah(x)πm(dx)| = 0. Therefore

|
∫

S
Ah(x) ˆπ(dx)| = lim

m↑∞
|
∫

S
Ah(x)πm(dx)| = 0 (11)

Since h was arbitrary, we conclude that π̂ = π by the necessity and sufficiency of (7), and the
uniqueness of the stationary distribution.
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