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We study the problem of how to optimally time the sequential execution of N stages of a project when

payoffs are triggered at the beginning of the execution of each stage and depend on a market price that

evolves stochastically over time. At any point in time, except for when a stage is under execution, the

decision-maker might choose to start execution of the next stage, wait for market conditions to evolve, or

abandon the project altogether. This setting arises in various industries, including real estate and mining.

We use a dynamic programming formulation of the problem to find upper and lower bounds on the optimal

expected net return and develop a family of approximations for which the optimal policy is shown to be of the

threshold-type. We also derive approximating policies whose performance is tested numerically. Finally, the

methodology is applied to a real case in the context of mid-term planning of operations at an underground

copper mine.
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1. Introduction

We consider the problem faced by a decision-maker who must decide the timing at which to

execute a project consisting of N sequential stages. Execution of a stage takes time, cannot

be interrupted until completion, and incurs on a instantaneous cost. Initiating execution

of a stage triggers the collection of a payoff, which is assumed to depend on the value of a

stochastically evolving market indicator or price. Specifically, we assume that said profit is

a linear function of the market price at the time the stage begins execution, although this

also accommodates settings where payoffs are collected continuously over time (see Section

5). At any point in time, except for when a stage is being executed, the decision-maker can

opt to start the execution of the next stage, wait for the market to evolve, or shut down

the project altogether. Waiting for the market to evolve while maintaining the capacity to
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execute the project is costly; we consider a constant marginal maintenance cost (per unit of

time). Shutting the project down involves incurring on a fixed cost, which might represent

either a penalty due to non-completion of commitments or a residual benefit associated

with liquidating the project’s assets. The problem thus consists in adaptively timing the

execution of the project so as to maximize its expected economic value.

This problem arises in numerous real-world application areas. Take, for example, the

case of a large-scale real-estate development project that must follow a given geographically

ordered sequence of lots. The project manager develops the project one lot at the time:

after completing one such a lot, depending on the state of the real-estate market, the

manager either continues developing a new lot or waits until conditions improve; if prices

are very low and not expected to rise in the near future, the project manager may abandon

further development and sell off the undeveloped lots for a residual benefit.

Another example is the mid-term planning of mining operations. Long-term plans typ-

ically divide a mine into various phases that ought to be extracted in a given sequence.

The payoff derived from extracting one such a phase depends on the metal’s market price,

which is typically modeled as a stochastic process. Assuming that both the extraction cost

and the metal content of the phases are known, the mine planner may suspend operations

if the market price of the metal is too low and wait until it improves, while in the meantime

incurring a cost for maintaining the mine’s production capacity. If the operator decides to

shut down the mine permanently, it will incur environmental mitigation costs but will also

have the option of attaining a residual benefit by selling the property.

In our analysis we assume that the underlying market price follows geometric Brownian

motions (GBM), which is commonly used, both in academia and practice, to model the

stochastic evolution of commodities and capital stock. There exists extensive research on

the modeling of commodity prices. In this regard, we note that while more sophisticated

models are widely used for specific assets (e.g. models that exhibit regression to the mean,

for the case of commodities such as gold and copper), the GBM assumption usually cannot

be statistically discarded, or remains true after a change of measure argument (usually

involving assumptions on the market price of risk and/or convenience yields; see (Shreve

2004, Chapter 5)).

We formulate the problem of optimally timing the execution of a project as a dynamic

program where periods are given by each of the project stages and the state variable is
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the underlying market price, thus solving each stage is equivalent to solving an optimal

stopping problem. We construct upper and lower bounds to solve the problem approxi-

mately, develop a family of approximations based on these bounds that can be solved by

a threshold-type policy, and specify a procedure for calculating such thresholds.

The principal contributions of this paper are the identification and formalization of a

type of decision-making problem under uncertainty that is frequently encountered in many

industries, and the proposal of a family of efficient easy-to-compute heuristic policies based

on an approximate dynamic programming approach (Powell 2011). In this regard, we note

that the problem under study is a complex one and while we have not found an analytic

solution, by exploiting the structure and properties of our formulation we are able to devise

an algorithm that can find high quality approximate solutions.

The remainder of this paper is organized as follows. In Section 1.1 we discuss the related

literature. In Section 2 we describe our model and formulate the problem as a sequential

optimal stopping problem. In Section 3 we use optimal stopping theory to propose a

solution. We also derive some properties for the value function and compute upper and

lower bounds for the optimal value. In Section 4 we generalize these bounds to a family of

approximations that share the bounds’ structure. For these approximations we provide a

result ensuring that the optimal policies are of the threshold type. We also discuss how to

compute the thresholds and develop a procedure to efficiently compute optimal policies. In

Section 5 we use a test instance to demonstrate the quality of our proposed approximations

and then apply our methodology to the mid-term planning of a real-world mining project.

Our conclusions and suggestions for future research are presented in Section 6. Proofs are

relegated to an appendix.

1.1. Related Literature

Our approach to solving the optimal timing of a project can be viewed as an application

of real options theory (see Dixit and Pindyck (1994), Trigeoris (1996)) when the under-

lying market price is correlated to some tradable security (e.g., a futures market for the

output of a mining project). Previous work in this area analyze settings similar to ours

in various application areas: valuing investments in natural resources (see McDonald and

Siegel (1985) and Brennan and Schwartz (1985) for early work on the subject), flexibility

in manufacturing systems (e.g. Triantis and Hodder (1990)), inventory management (e.g.
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Ritchken and Tapiero (1986)), technology licensing (e.g. Ziedonis (2007)), just to name a

few examples. (See Brennan and Trigeorgis (2000), Lumley and Zervos (2001), Pyndick

(1978, 1981) for further applications of the methodology.)

There exists ample work on the application of the real options approach to valuating

investment projects. For example, Dixit (1989) examines a firm’s entry and exit decisions

when the output price follows a GBM, and shows that the optimal investment policy is

characterized by a pair of trigger prices for entry and exit. McDonald and Siegel (1985)

develop and study a methodology for valuing risky investment projects where there is an

option of temporarily and costlessly shutting down production whenever variable costs

exceed operating revenues. In McDonald and Siegel (1986) the same authors consider

the optimal timing of investment in a project whose benefits and investment cost behave

stochastically over time. They obtain the optimal investment policy and the value of the

investment option in closed-form, and also analyze the scrapping decision. Closer to our

setting, Schwartz et al. (2001) develop a real options model for valuing a multiple-stage

exploration phase of a natural resource, followed by investment and extraction phases.

The authors consider a timing option for the investment phase and closure, opening and

abandonment options for the extraction phase.

The application of the approach to the development of real estate projects is rather scant.

Titman (1985) provides a model for pricing vacant lots and provides intuition regarding the

conditions under which it is rational to defer construction to a later date. Guthrie (2009),

who uses a real options approach and a binomial tree to evaluate a real-estate project

consisting of five separate stages with the options of continuing, suspending or abandoning

development.

The model we this paper can be seen as an extension of that in Caldentey et al. (2017),

which studies the optimal timing of a natural resource’s extraction. Because such a

model does not consider the option to shut down operations, the structure of an optimal

policy (an its analysis) is greatly simplified, which allows the development of a set of

tractable policies. Our work leverages the ideas in that work to incorporate the shutdown

option. While the structure of the optimal policies changes significantly, we are still able

to characterize its structure, and to extend the policies to the case when shut down is

possible.
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2. Model Formulation

Consider a sequential project consisting of N stages, where for notational convenience we

let N denote the first stage in the project, and 1 the last one. The decision-maker ought

to decide when to start executing each stage of the project, considering that stage i must

be completed before beginning execution of stage i− 1, and that it takes Ti units of time

to execute stage i. We also assume that once started, execution of a stage can not be

interrupted. Letting τi denote the time at which stage i starts its execution, the above

implies that the execution times of the project must satisfy

τi ≥ τi+1 +Ti+1 and τN ≥ 0. (1)

When execution of stage i begins, the decision-maker incurs on a cost of Ci, and generates

a payoff that is proportional to the current market price. In this respect, we let {St}t≥0
denote the market price process, where St is the market price at time t. We assume that

{St}t≥0 evolves as a GBM and, therefore, it solves the following stochastic differential

equation

dSt = µStdt+σStdBt, S0 = S, (2)

where µ> 0 is the drift coefficient, σ > 0 is the process volatility, S0 is the (known) market

price at time t= 0, and Bt is a one-dimensional Brownian motion with respect to an under-

lying probability space (Ω,F ,P). We let {Ft}t≥0 denote the natural filtration generated by

the {St} process and consider timing policies satisfying (1), where each τi is an Ft-stopping

time. We let

Wi(S),RiS−Ci

denote the payoff triggered by starting execution of stage i when the market price is S,

where the positive constant Ri denotes a marginal return associated with stage i. (Later

in Section 5 we derive the functions Wi(·) from first principles in the context of mid-term

planning of a mining project.)

At any point in time, if no stage is undergoing execution, the decision-maker might

choose to start execution of the next stage of the project, to wait for market conditions to

evolve, or to abandon the project altogether. If further processing is temporarily suspended,

a waiting cost M is incurred for each time unit of waiting (which reflects the expense of
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maintaining production capacity). If the project is to be abandoned, a shutdown cost C0

is incurred (which if negative might represent a residual benefit).

We assume that profits are discounted at a exogenous and fixed rate r > 0. The decision-

maker’s goal is to maximize the expected net present value of the cumulative payoff by

timing the execution of the stages of the project, considering suspension (waiting) and

shutdown (abandonment) decisions. In the sequel we assume that µ < r, i.e. payoffs are

discounted at a faster rate than the expected grow of the market price (otherwise a policy

that waits indefinitely to execute stage N is optimal).

We formulate the problem faced by the decision-maker via dynamic programming. In

our formulation, periods correspond to the various stages of the project, and the state

variable is the current market price. That is, we let Vi(S) denote the expected maximum

net present value when stage i+ 1 has already been completed but stage i has not, and

the market price is currently S. The value of the project is therefore VN(S0). The Bellman

equation for our formulation is

(P) Vi(S) = sup
τ>0

E

[
e−rτ max

{
Wi(Sτ ) + e−rTiE[Vi−1(Sτ+Ti)|Fτ ],−C0

}
− 1− e−rτ

r
M
∣∣∣S0 = S

]
s.t. dSt = µStdt+σStdBt (3a)

τ is a valid Ft− stopping time (3b)

and V0(S) =−C0 for all S. (3c)

The optimal strategy takes into account the options to wait, continue executing the project

(i.e., continuing to the next stage) or abandon the project. If the option to continue is

chosen, the profit is given by

Wi(Sτ ) + e−rTiE[Vi−1(Sτ+Ti)|Fτ ],

which includes the profit obtained from the execution of stage i plus that associated with

the decisions relating to the following stages, Ti time units later. If the decision-maker

opts for abandonment, shutdown cost C0 is incurred. The last term in the decision-maker’s

objective represents the cost of maintaining execution capacity until τ , at which point

either stage i begins execution or the project is abandoned.
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3. Properties of the Value Function and Bounds

Next, we use optimal stopping theory to identify properties of the solution for problem

(P), and develop lower and upper bounds for Vi(S), which we exploit to solve the problem

approximately.

3.1. Value Function Analysis

Solving for Vi(S) is equivalent to solving an optimal stopping problem. Furthermore, it

can be shown that a solution to this class of problems is of the threshold type (see, e.g.

Øksendal (2007)), with optimal stopping time given by

τ ∗ = inf{t≥ 0 : St /∈ (Sai , S
b
i )}.

We will see below that this structure implies that it is optimal to shut down the project if

the market price falls below Sai , and to start executing stage i if the market price rises above

Sbi ; on the other hand, if the market price lies in the interval (Sai , S
b
i ), then it is optimal to

wait until either the price drops below Sai or rises above Sbi . (The interval (Sai , S
b
i ) is called

the continuation region.)

The verification theorem (Øksendal 2007) tells us that for (P) to have a solution, one

must have that

− rVi(S) +µS
∂

∂S
Vi(S) +

1

2
σ2S2 ∂

2

∂S2
Vi(S) =M, Sai <S <S

b
i , (4)

where Sai and Sbi satisfy the following boundary conditions:

Vi(S
a
i ) =−C0, (5a)

Vi(S
b
i ) =Wi(S

b
i ) + e−rTiE[Vi−1(STi)|S0 = Sbi ], (5b)

∂

∂S
Vi(S

a
i ) = 0, (5c)

∂

∂S
Vi(S

b
i ) =Ri + e−rTi

∂

∂S
E[Vi−1(STi)|S0 = S]

∣∣∣
S=Sbi

. (5d)

Conditions in (5), known as value matching and smooth pasting, are smoothness and

continuity conditions. The solution of partial differential equation (4) is known and given

by

Vi(S) =BiS
λ1 +DiS

λ2 −M/r, Sai <S <S
b
i ,
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where

λ1,2 ,
1

σ2

[1

2
σ2−µ±

√
(µ− 1

2
σ2)2 + 2rσ2

]
, and λ2 < 0< 1<λ1.

Finally, Vi(S) satisfies

Vi(S) =


−C0 if S ≤ Sai

BiS
λ1 +DiS

λ2 −M/r if Sai <S <S
b
i

Wi(S) + e−rTiE[Vi−1(STi)|S0 = S] if Sbi ≤ S.

(6)

The above corroborates the structure of the optimal policy. The project must be abandoned

and the shutdown cost paid when the market price falls below some threshold. Stage i

should start execution as soon as the market price rises above some other threshold, which

triggers immediate collection of the payoff Wi(S) and posterior collection of the optimal

discounted payoffs from future execution of the project’s remaining stages.

The terms BiS
λ1 and DiS

λ2 in (6) associated to the interval (Sai , S
b
i ) are related to the

expected discount for the time taken by the market price process to exit that interval

(see Ross (1996) Proposition 8.4.1). Finally, the −M/r term can be interpreted as the

discounted cost of maintaining capacity for an indefinite period without either abandoning

the project or executing any further stage.

Constants Sai , S
b
i ,Bi and Di are the solution to the non-linear system (5)-(6). Unfortu-

nately, there is no closed formula for these constants, even for the simplest case of i= 1.

3.2. Properties of Vi(S)

In order to simplify the exposition, we introduce the following notation. For two vectors

X and α define

X+
k,i ,

i∑
h=k+1

Xh, α×k,i ,
i∏

h=k+1

αh and (α×X)+k,i ,
i∑

h=k+1

α×h,iXh.

The following proposition characterizes the asymptotic behavior of Vi(S).

Proposition 1. For all i≥ 1 and S > 0,

(RiS−Ci)≤ Vi(S)≤Gi(S) + (RiS−Ci),
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where

Gi(S),
i(i+ 1)

2
·Smi ·Rm

i · exp

(
− 1

σ2
min
1≤k≤i

1

T+
k,i

[
ln
( S

Smi

)
+ {r− ρ+

σ2

2
}T+

k,i

]2)
,

Ri ,
i∑

h=1

e−(r−µ)T
+
h,iRh, Ci ,

i∑
h=0

e−rT
+
h,iCh, Smi , max

1≤k≤i
Sbk and Rm

i , max
1≤k≤i

Rk.

Clearly, Gi(S)> 0 and Gi(S)→ 0 when S→∞.

This proposition implies that, roughly speaking, when S is sufficiently high the decision-

maker executes all remaining stages of the project without suspensions or abandonment.

In this case the value is approximately RiS − Ci, where RiS and Ci correspond to the

net present value and cost of uninterruptedly executing all remaining stages, respectively,

starting at a price S. The next proposition provides further insight on the value function.

Proposition 2. For all i≥ 1, the function Vi(S) is convex and increasing.

The growth of Vi(S) reflects the intuitive notion that the higher the asset’s market price,

the higher the project’s expected value. Next, we approximate Vi(S) by constructing two

functions V U
i (S) and V L

i (S), which we show are upper- and lower-bounds for the value

function. Interestingly, in Section 4.1 we show that they satisfy a similar set of optimality

conditions as those in (5) but without the conditional expectation, which is a property

that significantly simplify their analysis.

3.3. Bounds on the Value Function

Given the convexity of Vi(S) and recalling Jensen’s inequality, we can construct a lower

bound by replacing the stochastic evolution of the price process by a deterministic coun-

terpart. In particular, we replace the evolution of the market price while a stage is being

executed by its expected trajectory. This lower-bound function, which we denote by V L
i (S),

is defined as follows.

V L
i (S), sup

τ≥0
E
[
e−rτ max

{
Wi(Sτ ) + e−rTiV L

i−1(e
µTiSτ ),−C0

}
− 1− e−rτ

r
M
∣∣∣S0 = S

]
s.t. conditions in (3).

Below, in Proposition 3, we show that this approximation indeed constitutes a valid lower

bound to the value function.
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To define an upper bound function we rely on the following observation. Consider stage

i− 1 and suppose that at time τ the price is Sτ . Then, waiting for a period of time T as

part of a strategy is no better than the optimal strategy. That is,

e−rTVi−1(Sτ+T )−
∫ T

0

e−rsMds≤ Vi−1(Sτ ).

We provide formal verification of this inequality in the proof of Proposition 3. Given this

result, we define the following upper bound function

V U
i (S), sup

τ≥0
E
[
e−rτ max{Wi(Sτ ) +V U

i−1(Sτ ) +

∫ Ti

0

e−rtMdt,−C0}−
1− e−rτ

r
M
∣∣∣S0 = S

]
s.t. conditions in (3).

The following proposition establishes that the above are valid lower- and upper- bounds

to the value function.

Proposition 3. Assume that C0 <M/r. Then, for all i≥ 1,

V L
i (S)≤ Vi(S)≤ V U

i (S).

Note that condition C0 < M/r implies that it is economically convenient to shut down

the project rather than simply suspending operations indefinitely. In the sequel we assume

that this is always the case, so that the shutdown option has economic sense.

4. Approximations and Algorithm

In this section we present a new family of functions Vi(S) that generalizes the lower and

upper bounds V L
i (S) and V U

i (S). We also set out an algorithm for computing this family

of approximations and analyze their asymptotic behavior when the market price tends to

infinity.

4.1. (α,η, γ)-Approximations

For a given set of non-negative constants (α,η, γ) we recursively define the function

Vi(S), sup
τ≥0

E
[
e−rτ max{Wi(Sτ ) + γi +αiVi−1(ηiSτ ),−C0}−

1− e−rτ

r
M
∣∣∣S0 = S

]
(7a)

s.t. conditions in (3). (7b)
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Note this function generalizes the bounds V L
i and V U

i : if αi and ηi are equal to 1 and γi is

equal to
∫ Ti
0
e−rtMdt, then we obtain V U

i (S); similarly, if αi is equal to e−rTi , ηi is equal to

eµTi and γi is equal to 0, then we get V L
i (S).

As with (P), the problem associated with Vi(S) is also a sequential optimal stopping

problem. Making use once again of the verification theorem, we propose the following

solution for (7):

Vi(S) =


−C0 if S ≤Sai

BiSλ1 +DiSλ2 −M/r if Sai <S < Sbi

RiS− (Ci− γi) +αiVi−1(ηiS) if Sbi ≤ S,

(8)

where the thresholds Sai ,Sbi and the constants Bi,Di are solutions of the following non-linear

system

BiSa
λ1

i +DiSa
λ2

i −M/r=−C0 (9a)

BiSb
λ1

i +DiSb
λ2

i −M/r= (RiSbi − (Ci− γi)) +αiVi−1(ηiSbi ) (9b)

λ1BiSa
λ1−1

i +λ2DiSa
λ2−1

i = 0 (9c)

λ1BiSb
λ1−1

i +λ2DiSb
λ2−1

i =Ri +αiηiV ′i−1(ηiSbi ). (9d)

To prove the validity of (8) we must find the conditions under which (9) has a solution.

Next, we first characterize such conditions for the case when i= 1, and then analyze the

case when i= 2. We then use the insight gained to propose an efficient algorithm for the

general case of i > 2.

The case of i= 1. In the following theorem we fully characterize V1, the simplest case of

a project with just one stage.

Theorem 1. Consider a project with a single stage. The system (9) has a solution such

that 0< Sa1 < Sb1 and B1,D1 > 0. Furthermore, τ ∗ = inf{t≥ 0 : St 6∈ (Sa1 ,Sb1)} is an optimal

stopping time for V1(S) and its solution is given by (8).

The case of i= 2. In order to compute Vi for i ≥ 1 we have to know Vi−1 evaluated at

ηiSbi . Since Sbi is unknown, we must iterate (8) using Vi−1(ηiSbi ) to identify what interval
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ηiSbi belongs to. Next, we show how to solve the case for two stages, which can be directly

generalized to the case of i stages. Consider the solution to the single-stage project

V1(S) =


−C0 if S ≤Sa1

B1Sλ1 +D1S
λ2 −M/r if Sa1 <S < Sb1

R1S− (C1− γ1)−α1C0 if Sb1 ≤ S.

For computing V2(S) we propose the following candidate function:

V2(S) =


−C0 if S ≤Sa2

B2Sλ1 +D2S
λ2 −M/r if Sa2 <S < Sb2

R2S− (C2− γ2) +α2V1(η2S) if Sb2 ≤ S.

To calculate Sa2 , S
b
2,B2,D2 it is sufficient to know V1(η2Sb2). We therefore propose a method

that iterates assuming η2Sb2 belongs to one of the three intervals defined for V1(S), after

which we solve the system defined by (9) and then check whether the assumption is satis-

fied; if that is not the case, then we repeat the procedure and check for a second interval

and, if need be, for the third. For example, if we assume that η2Sb2 ≤ Sa1 , we then solve

the problem of the second stage using the fact that V1(η2Sb2) is equal to −C0. Here we can

apply Theorem 1 using (9) evaluated for this situation and calculate B2,D2,Sa2 and Sb2.

The value function V2(S) is then given by

V2(S) =



−C0 if S ≤Sa2

B2Sλ1 +D2S
λ2 − M

r
if Sa2 <S < Sb2

(R2S− (C2− γ2)−α2C0 if Sb2 ≤ S ≤Sa1/η2

(R2S− (C2− γ2) +α2(B1(η2S)λ1 +D1(η2S)λ2 − M
r

) if Sa1/η2 <S < Sb1/η2

(R2S− (C2− γ2)) +α2(R1η2S− (C1− γ1)−α1C0) if Sb1/η2 ≤ S.

(10)

If solution (10) contradicts the initial assumption that η2Sb2 ≤ Sa1 , we assume that Sa1 <

η2Sb2 < Sb1. In this case, V1(η2Sb2) =B1(η2Sb2)λ1 +D1(η2S
b
2)
λ2−M/r and the solution obtained

is the same as (10) except that Sb2 > Sa1/η2, meaning that the third interval disappears. If

this solution also contradicts the initial assumption that Sa1 < η2Sb2 < Sb1, we assume that

η2Sb2 ≥ Sb1. In this case, V1(η2Sb2) = R1(η2S
b
2) − (C1 − γ1) − α1C0 and the solution is the
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same as (10) with the exception that Sb1/η2 < Sb2 and, thus, the third and fourth intervals

disappear.

The case of i > 2. As mentioned above, in order to solve for Vi we need to know where

ηiSbi lies. Because we do not know this upfront, we need to iterate the procedure above

conjecturing where ηiSbi lies. The number of iterations is then at most that of the number of

intervals use to define the function Vi. The following proposition characterizes the number

of intervals in the characterization of function Vi (as in (10)).

Proposition 4. Let mi be the number of intervals defining the function Vi and li be the

index of the corresponding interval if the price equals ηi+1Sbi+1. Then

mi = 2 + (mi−1− li−1 + 1).

Note that mi is at least 3 and at most 2i+ 1.

To facilitate the notation we introduce a family of matrices Y i, each one associated with

the intervals used in defining function Vi(S). The rows of Y i represent the pieces of Vi
while the columns are the 6 constants that define each function: Ri, Ci, Bi, Di, M/r and

C0. As an example, for the function V2 given by (10), the matrix is

Y 2 =



0 0 0 0 0 C0

0 0 B2 D2 M/r 0

R2 (C2− γ2) 0 0 0 α2C0

R2 (C2− γ2) α2η
λ1
1 B1 α2η

λ2
1 D1 α2M/r 0

(R2 +α2η2R1) ((C2− γ2) +α2(C1− γ1 +α1C0)) 0 0 0 0


.

We also introduce the family of matrices P i and the family of vectors vi(S) and I i(S).

The P i rows represent the Vi thresholds, the vi(S) rows represent the values at which Vi is

evaluated and each I i(S) column indicates the piece of Vi that S belongs to. For the case

of (10),

P 2 =



−∞ Sa2
Sa2 Sb2
Sb2 Sa1/η2
Sa1/η2 Sb1/η2
Sb1/η2 ∞


, v2(S) =



S

−1

Sλ1

Sλ2

−1

−1


and I2(S) =



1{(P 2
1,1,P

2
1,2)}

1{(P 2
2,1,P

2
2,2)}

1{(P 2
3,1,P

2
3,2)}

1{(P 2
4,1,P

2
4,2)}

1{(P 2
5,1,P

2
5,2)}


,
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so that

V2(S) = I2(S)>Y 2v2(S).

Using this notation we can write (9) in compact form. Generalizing the results of Theorem

1 we propose the V -approx algorithm (Algorithm 1 below) for computing the value of

Bi,Di,Sai and Sbi , thus giving the value of the approximation function Vi.

Algorithm 1 V -approx

Require: {(Rk), (Ck), (αk, ηk, γk)}ik=1,M/r,C0

1: Create Y 1, P 1 and solve the System (9) for k= 1. Set k= 2.

2: Compute m= number of rows of Y k−1.

3: for l= 1 . . .m do

4: Create Ỹ l, P̃ l, both of which are zero matrices with 2 + (m− l+ 1) rows, and 6 and

2 columns, respectively.

5: Set Ỹ l
1,· = (0 0 0 0 0 C0), Ỹ l

2,· = (0 0 Bk Dk M/r 0), P̃ l
1,· = (−∞ Sak ) and P̃ l

2,· =(
Sak Sbk

)
.

6: for j = 1 . . . (m− l+ 1) do

7: Set

Ỹ l
(2+j),1 =Rk +αk · ηk ·Y k−1

(l−1+j),1 Ỹ
l
(2+j),2 =Ck +αk ·Y k−1

(l−1+j),2

Ỹ l
(2+j),3 = αk · ηλ1k ·Y

k−1
(l−1+j),3 Ỹ l

(2+j),4 = αk · ηλ2k ·Y
k−1
(l−1+j),4

Ỹ l
(2+j),5 = αk ·Y k−1

(l−1+j),5 Ỹ l
(2+j),6 = αk ·Y k−1

(l−1+j),6

P̃ l
(2+j),2 = P k−1

(l−1+j),2/ηk.

8: If j = 1 then P̃ l
(2+j),1 = Sbk, Else P̃ l

(2+j),1 = P k−1
(l−1+j),1/ηk.

9: end for

10: Solve System (9) using Y l. If ηkSbk ∈ (P k−1
l,1 , P k−1

l,2 ) then Break and define l∗ = l.

11: end for

12: Set Y k = Ỹ l∗ and P k = P̃ l∗ . If k= i Stop, Else k= k+ 1 and go to step 2.

Ensure: {Y k, P k}ik=1.

The following corollary bounds the number of calculations required by the algorithm.



Caldentey, Castro, Esptein and Sauré: Optimal Timing of a Multi-Stage Project Under Market Uncertainty 15

Corollary 1. Consider a project consisting of i stages. The V -approx algorithm termi-

nates in no more than (3i−2) iterations each of which solves exactly one non-linear system

of the same type as (9).

4.2. Asymptotic Approximations

Following the ideas behind Proposition 1, one can shown that if S is sufficiently large,

then Vi(S) is a linear function. More precisely, when the market price is above S̄i ,
max1≤k≤i{Sbk/η×k,i}, we have that

Vi(S) = ((αη)×R)+i S− (α×(C − γ))+i −α×0,iC0, for all S ≥ S̄i.

Specializing this result for the case αi = ηi = 1, we have that

V U
i (S) =R+

i S− (C − γ)+i −C0, for all S ≥ S̄i.

In similar fashion, if we specialize for the case αi = e−rTi , ηi = eµTi and γi = 0, we have that

V L
i (S) =RiS−Ci, for all S ≥ S̄i.

This asymptotic behavior of V L
i is the same as that presented by Vi described in Proposition

1. With this result we can now calculate a new function for the asymptotic behavior

of Vi(S). First, we know that for a sufficiently large S, Vi−1(S) ≈ V L
i−1(S) and therefore

E[Vi−1(STi)|S0 = S]≈E[V L
i−1(S)|S0 = S].

Using the observation above and (6) we find a new asymptotic approximation for Vi,

which we refer to as V̂ L
i , defined by

V̂ L
i (S),


−C0 if S ≤ Ŝai

B̂iS
λ1 + D̂iS

λ2 −M/r if Ŝai <S < Ŝ
b
i

(Ri + e−(r−µ)TiRi−1)S− (Ci + e−rTiCi−1) if Ŝbi ≤ S,

where B̂i, D̂i and Ŝai and Ŝbi are calculated by imposing the smooth pasting and value

matching conditions as in (9). The convergence of Vi and V L
i , as S becomes large, suggests

that V̂ L
i is a good quality approximation. Similarly, we can construct an approximation

V̂ U
i based on the asymptotic behavior of V U

i . In such a case, however, there is no result

suggesting that this approximation is of good quality. As we will see later, numerical

examples confirm these hypotheses.
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5. Numerical Experiments

We first illustrate the approximations and algorithms in the previous sections by means of

numerical examples. In the next section, we apply our methods to a case study.

5.1. Synthetic examples.

Let us now consider a project with 5 stages, where C0 = 5, M = 3.8, µ= 0.057, σ = 0.233

and r= 0.12. The parameters of each stage are summarized in Table 1.

Stage Ri Ci Ti

1 0.25 14 1.2

2 0.3 9 1.6

3 0.4 16 1

4 0.32 10 2

5 0.35 12.25 0.7

Table 1 Parameters for the 5-stage project example.

Using the V -approx algorithm, we compute V U
5 (S) and V L

5 (S). In Figure 1 the resulting

approximations are compared with V5(S), which is computed numerically. We observe that

all three functions are asymptotically linear and that V L
5 (S) converges to V5(S).

Figure 2 compares V̂ U
5 (S) and V̂ L

5 (S) with V5(S). As can be seen, V̂ L
5 (S) provides a

reasonable approximation of V5(S) for most values of S, and converges to it. V̂ U
5 also

provides a reasonable approximation for low values for S but degrades as the market price

increases.

Let E(Vi) denote the average relative error of the approximation function Vi with respect

to function Vi over the range [Smin, Smax]. That is,

E(Vi),
100

Smax−Smin

∫ Smax

Smin

|Vi(S)−Vi(S)|
Vi(S)

dS.

The average relative error of our approximations for the interval [0,100] is shown in Table

2. The expression V EL
5 is the value of V5 under the optimal policy generated by V L

5 . These

results suggest that V̂ L
i and V L

i are the best approximations of Vi. Note also that V EL
5 has

an error close to 0, which highlights the quality of our methodology.
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Figure 1 Left panel: Value of the functions V5 (circle),V U
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5 (square) as the market price varies.

Right panel: Relative error of V U
5 (triangle) and V L

5 (square) with respect to V5. The dashed lines mark

the maximum relative error of the two approximations.
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Right panel: Relative error of V̂ U
5 (triangle) and V̂ L

5 (square) with respect to V5. The dashed lines mark

the maximum relative error of the two approximations.

5.2. Case Study: Mid-term Mine Planning

We apply the methodology developed so far to evaluate a real project at Chuquicamata,

the iconic copper mine in northern Chile owned by Codelco—the world’s largest copper

producer. While still the biggest and longest-running open pit operation in the world,

declining economic viability will force its closure towards the end of the present decade,



18 Caldentey, Castro, Esptein and Sauré: Optimal Timing of a Multi-Stage Project Under Market Uncertainty

Approximation V E(V)

V L
5 1.33%

V U
5 18.66%

V̂ L
5 1.34%

V̂ U
5 3.54%

V EL
5 0.32%

Table 2 Mean relative error.

by which time a replacement underground mine will begin operating. According to plans

for the massive new operation, the underground mine is to be divided into four sectors

which are projected to yield up to 1,700 million tonnes of ore averaging 0.71% Cu. The

undertaking represents an investment totalling about US$5 billion.

Instance setup. The instance we present is one of the four sectors of the new Chuquica-

mata mine, which we will call S1. It consists of 20 phases containing a total of 440 million

tonnes of ore with an average grade of 0.68%. Its spatial distribution is shown in Figure 3.

N

13141516171819

20

10

11975

86432112

S

Figure 3 S1 spatial distribution.

In order to evaluate S1 using our methodology we first need to outline the key com-

ponents of our dynamic programming formulation (see Section 2). Long-term planning of

mining operations usually identifies a series of possible extraction sequences for the sector’s

phases. In this case, the phases in the north section of S1 can be processed (i.e. their ore

extracted) in any of the 6 different sequences set out in Table 5.2.

Phases in the south section, on the other hand, can be processed in a unique sequence:

12, 13, 14, 15, 16, 17, 18, 19 and 20. We apply our methodology to find the economic value
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Sequence Phases order

N1 1-2-3-4-5-6-7-8-9-10-11

N2 1-2-3-5-4-6-7-9-8-10-11

N3 1-2-5-3-4-6-7-9-8-10-11

N4 1-2-5-3-4-6-7-8-9-10-11

N5 1-2-3-4-5-7-6-8-9-11-10

N6 1-2-5-3-4-6-7-9-8-11-10

Table 3 Extraction sequences, North section.

of a predetermined set of feasible extraction sequences. We let π= (π1, . . . , πN) denote one

such a sequence (which corresponds to a permutation of {1, . . . ,N}), understanding that

πN is the first phase to be extracted in the sequence, and π1 the last. In terms of our

formulation, phases correspond to stages.

Next, for each phase, we show how to compute Ri,Ci and Ti. Phase i in the sector is

characterized by a tonnage Qi and an ore content Li. The specific parameters for each

phase are detailed in Table 4.

Phase Qi[Ton] Li[%]

1 4333285 0.742

2 7646668 0.674

3 10451116 0.844

4 11801936 0.766

5 14495435 0.761

6 29220025 0.753

7 16695793 0.706

8 33268812 0.707

9 15297264 0.736

10 43069997 0.696

Phase Qi[Ton] Li[%]

11 22640604 0.699

12 3708814 0.805

13 8882645 0.803

14 12883028 0.796

15 21390450 0.753

16 26742924 0.676

17 35356325 0.589

18 44094300 0.586

19 40080765 0.611

20 34275177 0.562

Table 4 S1’s tonnage and ore content, by phase.

The marginal cost of processing a phase depends on which other phases have already been

extracted, implying that each sequence has its own marginal cost. For a given sequence π
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we assume this cost increases linearly with the distance from the first phase in the sequence

(πN) to the phase currently being extracted (πi) according to

Aπ
i = 9.514 + 0.0008 · dπNπi ,

where dπNπi is the distance between πN and πi. The parameters in the formula above

represent the projected production costs of the underground mine. The distances between

phases are displayed in Table 5.

The north and south sections of S1 were extracted simultaneously following the sequences

indicated above. We consider that each section has an installed production capacity K of

7.3 [million Tonnes/year], a shutdown cost C0 is 10 [million $] and a production capacity

maintenance cost of M is 30 [million $/year]. In addition, we model the spot price of

copper as a GBM with µ= r−ρ, where r= 12% is the discount factor and ρ= 6.3% is the

convenience yield1 and σ = 0.233 is the price volatility. 2 From this, we can compute the

dij 1 2 3 4 5 6 7 8 9 10 11

1 0 159 318 476 595 633 731 791 870 949 1014

2 159 0 159 317 465 474 588 632 721 790 861

3 318 159 0 158 358 315 457 474 576 632 710

4 476 317 158 0 312 158 358 316 449 474 569

5 595 465 358 312 0 350 157 443 314 564 472

6 633 474 315 158 350 0 322 158 356 316 447

7 731 588 457 358 157 322 0 357 158 448 316

8 791 632 474 316 443 158 357 0 318 158 352

9 870 721 576 449 314 356 158 318 0 353 158

10 949 790 632 474 564 316 448 158 353 0 312

11 1014 861 710 569 472 447 316 352 158 312 0

dij 12 13 14 15 16 17 18 19 20 - -

12 0 158 323 485 647 813 970 1129 1290 - -

Table 5 Distance between S1’s phases, in metres.

parameters Ri, Ci and Ti associated with each phase in S1 as follows

Ri = E
[∫ Ti

0

e−rtLiKSτi+tdt|Fτi
]
/Sτi =LiK

{
1− e−(r−µ)Ti

r−µ

}
,

Ci =

∫ Ti

0

e−rtAiKdt=AiK

{
1− e−rTi

r

}
,

Ti = Qi/K.
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In computing the parameters above we assumed that ore is extracted from the phase at

a constant rate, given by the production capacity K, and the ore percentage content Li.

Note that the expected present value (at the moment extraction begins) of the payoff

from extraction is indeed linear in the prevailing market price. Similarly, we assumed that

extraction costs are also incurred at a constant rate.

Discussion. The value functions V S
9 (S) and V N

11 (S) were used to represent the project

value of the north and south sections, respectively. Total project value is given by V20(S) =

V S
9 (S) + V N

11 (S). The results of the project evaluation for the six sequences considered

(recall that the south section has only one possible sequence) when the initial price S0

varies from 50[¢/lb] to 600[¢/lb] are summarized in Tables 6 and 7.

Price N1 N2 N3

S V20 V̂ L
20 Err(%) V20 V̂ L

20 Err(%) V20 V̂ L
20 Err(%)

50 207.38 189.45 8.65 207.17 189.32 8.62 207.37 189.57 8.58

100 1,401.65 1,393.39 0.59 1,401.34 1,393.15 0.58 1,401.82 1,393.79 0.57

150 2,679.38 2,688.49 0.34 2,679.15 2,688.24 0.34 2,679.84 2,689.18 0.35

200 3,960.11 3,983.58 0.59 3,959.96 3,983.34 0.59 3,960.86 3,984.57 0.60

250 5,240.84 5,278.68 0.72 5,240.77 5,278.43 0.72 5,241.87 5,279.96 0.73

300 6,521.57 6,573.77 0.80 6,521.58 6,573.53 0.80 6,522.88 6,575.35 0.80

350 7,802.29 7,868.87 0.85 7,802.39 7,868.63 0.85 7,803.9 7,870.74 0.86

400 9,083.02 9,163.97 0.89 9,083.19 9,163.72 0.89 9,084.91 9,166.13 0.89

450 10,363.75 10,459.06 0.92 10,364 10,458.82 0.91 10,365.92 10,461.52 0.92

500 1,1644.48 11,754.16 0.94 11,644.81 11,753.91 0.94 11,646.94 11,756.91 0.94

550 12,925.2 13,049.26 0.96 12,925.62 13,049.01 0.95 12,927.95 13,052.3 0.96

600 14,205.93 14,344.35 0.97 14,206.43 14,344.11 0.97 14,208.96 14,347.69 0.98

Table 6 Exact value of value function V20 in millions of US$, approximate value of V̂ L
20 and relative error Err(%)

for north section sequences N1, N2 and N3, for the price range 50 to 600 U.S. cents.

In Tables 6 and 7 we compare Vi with V̂ L
i . These results show that, as price S increases,

value Vi(S) converges to a linear function similar to the linear segment of V̂ L
i and the

relative error remains low. Moreover, for a plausible range of values of S (e.g., between

200[¢/lb] and 400[¢/lb]) V̂ L
i produces a good-quality approximation across all execution

sequences. Since V̂ L
i and V L

i behave similarly, we expect that V L
i will also have low relative

error. In turn, this suggests that we can use the execution policy derived from V L
i to time

the execution of S1 and achieve good performance.
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Price N4 N5 N6

S V20 V̂ L
20 Err(%) V20 V̂ L

20 Err(%) V20 V̂ L
20 Err(%)

50 207.57 189.7 8.61 204.85 189.07 7.70 204.89 189.24 7.64

100 1,402.12 1,394.05 0.58 1,400.88 1,392.66 0.59 1,401.14 1,393.17 0.57

150 2,680.05 2,689.44 0.35 2,678.61 2,687.76 0.34 2,679.11 2,688.56 0.35

200 3,960.98 3,984.83 0.60 3,959.43 3,982.86 0.59 3,960.18 3,983.95 0.60

250 5,241.9 5,280.22 0.73 5,240.26 5,277.95 0.72 5,241.26 5,279.34 0.73

300 6,522.82 6,575.61 0.81 6,521.09 6,573.05 0.80 6,522.33 6,574.73 0.80

350 7,803.74 7,871 0.86 7,801.92 7,868.15 0.85 7,803.4 7,870.12 0.85

400 9,084.66 9,166.39 0.90 9,082.75 9,163.24 0.89 9,084.47 9,165.51 0.89

450 10,365.58 10,461.78 0.93 10,363.58 10,458.34 0.91 10,365.55 10,460.89 0.92

500 11,646.5 11,757.17 0.95 11,644.41 11,753.43 0.94 11,646.62 11,756.28 0.94

550 12,927.42 13,052.56 0.97 12,925.24 13,048.53 0.95 12,927.69 13,051.67 0.96

600 14,208.35 14,347.94 0.98 14,206.06 14,343.63 0.97 14,208.77 14,347.06 0.97

Table 7 Continuation of 6 for north section sequences N4, N5 and N6.

As a final remark we note that finding the optimal sequence of extraction can boost

revenues. Observe that some of the analyzed sequences yield larger values for the project

than others. In particular, N3 revenue dominates most of the sequences for intermediate

values of S. In turn, a decision-maker may choose to execute the project in this order. We

comment on this and the challenges it raises in the next section.

6. Conclusions and Future Research

In this paper, we present a solution approach to the problem of timing the execution

of a project consisting of N stages with the objective of maximizing expected present

value of the cumulative payoff, that depends on a market price which we assume follows

a GBM. The proposed solution involves a dynamic program in which, at each stage, the

decision-maker has the options of executing the next stage of the project, wait, or abandon

the project altogether. Although the proposed approach does not solve the problem in

closed-form, we have identified the value function’s asymptotic behavior. Also, we have

proven properties of the value function such as its convexity and growth, which enabled us

to construct upper- or lower-bound functions of the value function. In addition, we have

developed an efficient algorithm for computing these approximations.

Our results demonstrate that some of the proposed approximations have good perfor-

mance (close to optimality) and have threshold-type structures. They also show that the
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best approximations are given by the lower bounds, a conclusion corroborated by the

empirical evidence drawn from the application of the proposed approach to a real-world

case of a major mining investment project.

As for extensions of our work, there are a number of interesting extensions that could

be investigated both for their application to real problems and the theoretical challenges

they pose. One example is the option of dynamically adjusting the execution sequence of

the project’s stages as new information on the asset price is obtained. We observed in

our case study that several such sequences needed to be evaluated. Ideally, the algorithm

should help find the best one, which we argue should be adaptive in nature. This adds

a combinatorial aspect to the basic problem. For a given state (S,N) where N is the set

of stages already executed with ||N||=M , the expected optimal profit would have to be

computed
(
N
M

)
times, which in practice would be impossible for realistic values of M and

N .
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Appendix A: Proof of main results

Proof of Proposition 1. We must prove both inequalities in the statement of the result. First,

for the lower bound we demonstrate that

i∑
k=1

e−rT
+
k,iE[Wk(ST+

k,i
)|S0 = S]− e−rT

+
0,iC0 ≤ Vi(S), (A-1)

and then, noting that

i∑
k=1

e−rT
+
k,iE[Wk(ST+

k,i
)|S0 = S]− e−rT

+
0,iC0 =RiS−Ci,

we have the desired inequality. Proceeding by induction on i, for i equal to 1 the result is immediate.

If (A-1) is satisfied for i− 1, we have

Vi(S) = sup
τ≥0

E[e−rτ max
{
Wi(Sτ ) + e−rTiESτ [Vi−1(STi)],−C0

}
−
∫ τ

0

e−rtMdt|S0 = S]

≥max
{
Wi(S) + e−rTiES[Vi−1(STi)],−C0

}
≥max

{
Wi(S) + e−rTiES

[ i−1∑
k=1

e−rT
+
k,i−1E[Wk(ST+

k,i−1
)|S0 = STi ]

]
− e−rT

+
0,i−1C0,−C0

}

= max

{
i∑

k=1

e−rT
+
k,iES[Wk(ST+

k,i
)]− e−rT

+
0,iC0,−C0

}

≥
i∑

k=1

e−rT
+
k,iES[Wk(ST+

k,i
)]− e−rT

+
0,iC0,

where in the first equality we use the strong Markov property (Karatzas and Shreve 1991, Theorem

5.4.20), in the first inequality we define τ ≡ 0 and in the second inequality we apply the inductive

hypothesis.

For the upper bound we consider a modified price process Zt defined by

Zt , St +
∑

k:T+
k,i
≤t

(Sbk−ZT+
k,i
−)+, Z0− = S0.

The idea behind the use of this process is that the moment stage i is completed, process St moves

to the price Sbi−1, which imply that the next stage should start its execution. In this way, the entire

sequence of stages can be processed consecutively with no suspensions.
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Let Hi(S) be the expected value of a project with i stages under process Zt. Since St ≤Zt for

every realization of these processes, it is clear that Vi(S)≤Hi(S). Therefore,

Vi(S)≤Hi(S) =
i∑

k=1

e−rT
+
k,iE[Wk(ZT+

k,i
)|S0 = S]− e−rT

+
0,iC0

=
i∑

k=1

e−rT
+
k,i(RkE[ZT+

k,i
|S0 = S]−Ck)− e−rT

+
0,iC0

=
i∑

k=1

e−rT
+
k,iRkE[ZT+

k,i
−ST+

k,i
|S0 = S] +

i∑
k=1

e−rT
+
k,i(RkE[ST+

k,i
|S0 = S]−Ck)− e−rT

+
0,iC0

=
i∑

k=1

e−rT
+
k,iRkE[ZT+

k,i
−ST+

k,i
|S0 = S] + (RiS−Ci). (A-2)

We now bound the term E[ZT+
k,i
−ST+

k,i
|S0 = S] on the right-hand side of the last expression. Since

St = S0 exp((µ− σ2

2
)t+σBt), we have

P({Sbk ≥ ST+
k,i
}|S0 = S) = P(

1

σ

[
ln
( S
S∗k

)
+ {µ+

σ2

2
}T+

k,i

]
≤BT+

k,i
). (A-3)

By a theorem of (Asmussen 2003, Theorem XIII-2.1), for S > Smi · exp(− min
1≤k≤i

{(µ+
σ2

2
)T+

k,i}) we

can bound the left-hand side of (A-3) by an exponential term as follows:

P(
1

σ

[
ln
( S
S∗k

)
+ {µ+

σ2

2
}T+

k,i

]
≤ B̃T+

k,i
)≤ exp

(
− 1

T+
k,iσ

2

[
ln
( S
S∗k

)
+ {µ+

σ2

2
}T+

k,i

]2)
.

Putting it all together, we get

E[ZT+
k,i
−ST+

k,i
|S0 = S] =

i∑
n=k

E[(Sbk−ZT+
k,i
−)1{{Sb

k
≥Z

T+
k,i

−
}}|S0 = S]

≤
i∑

n=k

SbkP({Sbk ≥ZT+
k,i
−}|S0 = S)

≤
i∑

n=k

SbkP({Sbk ≥ ST+
k,i
}|S0 = S)

=
i∑

n=k

SbkP(
1

σ

[
ln
( S
Sbk

)
+ {µ+

σ2

2
}T+

k,i

]
≤BT+

k,i
)

≤ (i+ 1− k) ·Smi · exp

(
− 1

σ2
min
1≤k≤i

1

T+
k,i

[
ln
( S

Smi

)
+ {µ+

σ2

2
}T+

k,i

]2)
.
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Finally, using the bound in (A-2), we deduce that

Vi(S)≤ i(i+ 1)

2
·Smi ·Rm

i · exp

(
− 1

σ2
min
1≤k≤i

1

T+
k,i

[
ln
( S

Smi

)
+ {µ+

σ2

2
}T+

k,i

]2)
+ (RiS−Ci).

�

Proof of Proposition 2. We first prove the convexity result. Define Xt , exp((µ− σ2

2
)t+ σBt)

so St is equal to S0Xt and, therefore, we can write V1(S) as

V1(S) = sup
τ≥0

E

[
e−rτ max{W1(SXτ )− e−rT1C0,−C0}−

∫ τ

0

e−rtMdt

]
.

Because the maximum of convex functions is itself a convex function, so is V1(S). The result

follows immediately for i > 1 by induction. The monotonicity of Vi(S) simply follows from the

monotonicity of W1(S) and induction. �

Proof of Proposition 3. We prove the results by induction. Let us begin with the lower bound

result. For i equal to 1, the lower bound is satisfied because V L
1 (S) is equal to V1(S) by definition.

If the lower bound is valid for i− 1, then

V L
i (S) = sup

τ≥0
E
[
e−rτ max

{
Wi(Sτ ) + e−rTiV L

i−1(e
µTiSτ ),−C0

}
−
∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
Ind. Hyp

≤ sup
τ≥0

E
[
e−rτ max{Wi(Sτ ) + e−rTiVi−1(e

µTiSτ ),−C0}−
∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
(a)
= sup

τ≥0
E
[
e−rτ max{Wi(Sτ ) + e−rTiVi−1(E[Sτ+Ti |Fτ ]),−C0}−

∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
Jensen

≤ sup
τ≥0

E
[
e−rτ max

{
Wi(Sτ ) + e−rTiE[Vi−1(Sτ+Ti)|Fτ ],−C0

}
−
∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
= Vi(S).

In (a) we have made use of the fact that e−µtSt is a P-martingale. Note that we can make use of

Jensen’s inequality since by Proposition 2, Vi(S) is a convex function.

Let us now prove the upper bound result. First, note that the validity of the upper bound for i

equal to 1 immediately follows from the condition that C0 <
M
r

. To prove this bound is valid for

i > 1 we will use the following lemma, whose proof can be found at the end of this appendix.
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Lemma 1. For all i≥ 1 and t≥ 0, Vi(·) satisfies the following inequality:

e−rTi+1Vi(Sτ+Ti+1
(ω))−

∫ Ti+1

0

e−rsMds≤ Vi(Sτ (ω)), for all ω ∈Ω.

We note that Lemma 1 simply estates that, in any situation, waiting for a period of time Ti+1 as

part of an strategy is no better than the optimal strategy.

Let us now consider the case of i > 1, so assume that the upper bound result is valid for i− 1.

Then,

Vi(S) = sup
τ≥0

E
[
e−rτ max

{
Wi(Sτ ) + e−rTiE[Vi−1(Sτ+Ti)|Fτ ],−C0

}
−
∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
(a)

≤ sup
τ≥0

E
[
e−rτ max{Wi(Sτ ) + e−rTi(erTiVi−1(Sτ ) + erTi

∫ Ti

0

e−rtMdt),−C0}

−
∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
Ind. Hyp

≤ sup
τ≥0

E
[
e−rτ max{Wi(Sτ ) +V U

i−1(Sτ ) +

∫ Ti

0

e−rtMdt,−C0}−
∫ τ

0

e−rtMdt
∣∣∣S0 = S

]
= V U

i (S),

where the inequality proved in Lemma 1 is used in (a). �

Proof of Theorem 1. This proof is divided into two parts. In the first part we find a solution for

the system of equations (9) for the case i= 1. Then, in the second part, we use this solution and

the condition on the statement of the result to check the hypotheses in (Øksendal 2007, Theorem

10.4.1), from which we can conclude the desired result. Throughout the proof we assume that

(C1− γ1 +α1C0)≤M/r. The the case where (C1− γ1 +α1C0)>M/r is analogous and we omit it.

In order to avoid degenerate cases in which the thresholds collapse or the abandonment option is

never taken, throughout the proof we assume that C0(1−α1)<C1− γ1.
To simplify notation we let

x1 , Sa1 and x2 , Sb1.

System (9) with i equals to 1 then becomes

B1x
λ1
1 +D1x

λ2
1 −M/r=−C0, (A-4)

B1x
λ1
2 +D1x

λ2
2 −M/r=R1x2− (C1− γ1)−α1C0, (A-5)

λ1B1x
λ1−1
1 +λ2D1x

λ2−1
1 = 0, (A-6)

λ1B1x
λ1−1
2 +λ2D1x

λ2−1
2 =R1. (A-7)
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Because M/r >C0, by combining (A-4) and (A-6) it can be seen that it cannot be the case that

D1 equals 0. Also, since λ2 < 0 it must be the case that x1 > 0. By a similar argument we conclude

that B1 is not equal to 0. If we combine equations (A-4) and (A-6), we can solve for B1 and D1 as

functions of x1, thereby obtaining

B1 =−(M/r−C0)λ2

(λ1−λ2)x
λ1
1

, D1 =
(M/r−C0)λ1

(λ1−λ2)x
λ2
1

.

Then, exploiting the fact that M/r−C0 > 0 and λ2 < 0< 1< λ1, we may conclude that B1 > 0

and D1 > 0. All that remains is to show that x1 <x2 and that a solution of the system (A-4) -(A-7)

exists. From equations (A-5) and (A-7), we can also solve for B1,D1 but this time as functions of

x2. Therefore,

B1 =
(C1− γ1 +α1C0−M/r)λ2−R1x2(λ2− 1)

(λ1−λ2)x
λ1
2

, D1 =−(C1− γ1 +α1C0−M/r)λ1−R1x2(λ1− 1)

(λ1−λ2)x
λ2
2

.

At this point it is convenient to define the following functions for x> 0:

I1(x),
λ2(C0−M/r)

xλ1
,

I2(x),
λ1(C0−M/r)

xλ2
,

J1(x),
(C1− γ1 +α1C0−M/r)λ2−R1x(λ2− 1)

xλ1
,

J2(x),
(C1− γ1 +α1C0−M/r)λ1−R1x(λ1− 1)

xλ2
.

The derivatives of these functions are:

I ′1(x) =
−λ1λ2(C0−M/r)

xλ1+1
,

I ′2(x) =−λ1λ2(C0−M/r)

xλ2+1
,

J ′1(x) =
R1x(λ1− 1)(λ2− 1)− (C1− γ1 +α1C0−M/r)λ1λ2

xλ1+1
,

J ′2(x) =
R1x(λ1− 1)(λ2− 1)− (C1− γ1 +α1C0−M/r)λ1λ2

xλ2+1
.

With these definitions, what we have to prove is the existence of a pair (x1, x2), with x1 <x2 such

that

I1(x1) = J1(x2) y I2(x1) = J2(x2). (A-8)

Note that I1(x) is positive and decreasing over its domain, with I1(x)
x→∞→ 0 and I1(x)

x→0+→ ∞, while

I2(x) is negative and decreasing over its domain with I2(x)
x→∞→ −∞ and I2(x)

x→0+→ 0. Also, J1(x)
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takes positive values and is decreasing over its entire domain, with J1(x)
x→∞→ 0 and J1(x)

x→0+→ ∞,

while J2(x) is negative and decreasing over its domain with J2(x)
x→∞→ −∞ and J2(x)

x→0+→ 0. Note

that at the points

x=
(C1− γ1 +α1C0−C0)λ2

R1(λ2− 1)
, x=

(C1− γ1 +α1C0−C0)λ1

R1(λ1− 1)
,

it is the case that I1(x) = J1(x) and I2(x) = J2(x), and x< x.

From the analysis above we can conclude as follows regarding the solution of (A-8). First, x1, x2 ∈
(x,x) and x1 < x2. This is so because for x≥ x, it is the case that I2(x)≥ J2(x) and therefore all

pairs of points (x1, x2) greater than x such that I2(x1) = J2(x2) satisfy x1 ≥ x2. At the same time,

since J1(x)> I1(x) for x≥ x, all pairs of points (x1, x2) greater than x such that I1(x1) = J1(x2)

satisfy x1 <x2. Therefore, it must also be the case that x1, x2 <x. Similarly, for x≤ x it is the case

that I1(x)≥ J1(x) and therefore the pairs of points (x1, x2) less than x such that I1(x1) = J1(x2)

satisfy x1 ≥ x2. At the same time, since J2(x)> I2(x) for x≤ x, all pairs of points (x1, x2) less than

x such that I2(x1) = J2(x2) satisfy x1 <x2. From the foregoing we may conclude that x1, x2 >x and

therefore that x1, x2 ∈ (x,x). Also, on this interval all possible solutions of (A-8) satisfy x1 <x2.

Second, consider x2 ∈ (x,x) and let x1
1(x2) be the only solution of I1(x

1
1) = J1(x2) with x1

1 <

x2, and x2
1(x2) the only solution of I2(x

2
1) = J2(x2) with x2

1 < x2. Clearly, x1
1(x2) and x2

1(x2) are

continuous functions defined in (x,x). We must prove that there exists an x2 ∈ (x,x) such that

x1
1(x2) = x2

1(x2). For x2 close to x, x2−x2
1(x2)> 0, but since x2−x1

1(x2)≈ 0 there must exist an x2

such that x2−x1
1(x2) = x2−x2

1(x2), that is, x1
1(x2) = x2

1(x2).

A graphical description of the above points is given in Figure 4. Briefly, it was demonstrated

that assuming M/r > (C1 − γ1 + α1C0) > C0, system (A-4)-(A-7) has a solution in the variables

x1, x2,B1,D1.

To conclude our proof we continue with the verification of the conditions required by (Øksendal

2007, Theorem 10.4.1), which allow us to establish that our optimal stopping problem has a solu-

tion. We propose the following continuation region

D= {S : Sak <S < Sbk},

and the following candidate solution

φ(S) =


−C0 if S ≤Sa1

B1S
λ1 +D1S

λ2 −M/r if Sa1 <S < Sb1

R1S− (C1− γ1 +α1C0) if Sb1 ≤ S,
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Figure 4 The curves are the functions I1, I2, J1 and J2 defined in Theorem 1. The last point in the demonstration

of this proposition is that close to x, the value of x2−x1
1(x2) is close to 0 while the value of x2−x2

1(x2)

is greater than 0. Therefore, as x2 grows towards x, the value of x2 − x1
1(x2) rises while the value of

x2 − x2
1(x2) falls to 0. This implies that there must exist some x2 ∈ (x,x) such that x2 − x1

1(x2) =

x2−x2
1(x2), that is, x1

1(x2) = x2
1(x2).

where Sa1 ,Sb1 are found by imposing the value matching and smooth pasting conditions. Conditions

iii), iv), v), viii) and ix) of (Øksendal 2007, Theorem 10.4.1) are easily verified. Because we have

already demonstrated that (9) has a solution, condition i) of the theorem is proved and condition

vii) is verified by construction of φ(S) (see Equation (4) and the related discussion). This leaves only

conditions ii) and vi) to be verified. In the case of ii), it must be proven that φ(S)≥max{R1S−

(C1− γ1 +α1C0),−C0} for all S ≥ 0. This holds because the definition of ψ(S) and system (A-4)-

(A-7) imply that φ(S) is convex. As for vi), we must show that

−rφ(S) +µSφ′(S) +
1

2
σ2S2φ′′(S)≤M, in Dc.

For S ≤Sa1 , since φ(S) is equal to −C0 the inequality is equivalent to C0 ≤M/r, which also holds

true. For S ≥Sb1, φ(S) is equal to R1S− (C1− γ1 +α1C0) and the inequality is equivalent to

r(C1− γ1 +α1C0)−M
(r−µ)R1

≤ S.
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Given that S ≥Sb1 and that the numerator on the left-hand side of the above inequality is negative,

the inequality is true (note that r > µ). This proves the result. �

Proof of Proposition 4. Let I ij be the jth piece defining Vi. By (8) we know that Vi always

has two invariable pieces, I i1 = (−∞,Sai ] and I i2 = (Sai ,Sbi ). The third and last piece I i3 = [Sbi ,∞)

divides depending on the quantity mi−1 of pieces in Vi−1. Because we only need to know Vi−1 for

the values of S such that ηiS > ηiSbi , and ηiSbi ∈ (a∗, b∗), I i−1li−1
, then for S > Sbi , Vi(S) will have a

different definition for each interval: (Sbi , b∗/ηi), I i−1li−1+1/ηi, . . . , I
i−1
mi−1

/ηi. Therefore,

mi = 2 + (mi−1− li−1 + 1). (A-9)

If mi−1 equals li−1 then mi is at least 3, and by summing both sides of (A-9) from 2 to i and

setting li−1 equal to 1 we get that mi is at most 2i+ 1. �

Proof of Corollary 1. When i equals 1, only one system needs to be solved and therefore only one

iteration is required. We now show by induction that the result is also true for i≥ 2. Let us define

νj, where j ∈ {1, . . . , i− 1}, as the number of iterations executed by the algorithm to calculate Y j,

not counting the iterations used to calculate Y k for k ∈ {1, . . . , j−1}. Also, let mj be the number of

rows in matrix Y j. Calculating Y i−1 will involve a total of
∑i−1

j=1 νi iterations, while calculating Y i

may entail from 1 to mi−1 iterations, then it follows that the number of iterations for the algorithm

to finish in the worst case is given by
∑i−1

j=1 νj +mi−1. For example, in the case illustrated by the

dotted line in Figure 5, Y 3 is calculated in ν1 = 1, ν2 = 1 iterations; ν3 can therefore take values

between 1 and 5, the worst case thus being ν1 + ν2 +m2 = 7.

Continuing now with the induction on i, note that by Proposition 4 we have

mi−1 = 2 + (mi−2− νi−1 + 1). (A-10)

Assume that the result is true for i− 1. Then,

i−1∑
j=1

νj +mi−1 =
i−2∑
j=1

νj + νi−1 +mi−1

≤ (3(i− 1)− 2−mi−2) + νi−1 +mi−1

= 3i− 2 +
(
mi−1− (2 + (mi−2− νi−1 + 1))

)
= 3i− 2,
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Y 1

m3 = 7, ν3 = 1

m3 = 6, ν3 = 2

m3 = 5, ν3 = 3

m3 = 4, ν3 = 4

m3 = 3, ν3 = 5

m3 = 6, ν3 = 1

m3 = 5, ν3 = 2

m3 = 4, ν3 = 3

m3 = 3, ν3 = 4

m3 = 5, ν3 = 1

m3 = 4, ν3 = 2

m3 = 3, ν3 = 3

m1 = 3
ν1 = 1

ν2 = 3

ν2 = 2
m2 = 4

ν2 = 1
m2 = 5

m2 = 3

Y 3Y 2

Figure 5 Possible number of rows and iterations for calculating Y 3.

Were the inequality follows from the induction hypothesis and the last equality follows from

equation (A-10). Since the νj were chosen arbitrarily, the result is proved. �

Proof of Lemma 1. Let τ be an Ft - stopping time. Then Vi(Sτ+Ti+1
) is equal to

sup
ξ≥0

E
[
e−rξ max

{
Wi(Sξ) + e−rTiE[Vi−1(Sξ+Ti)|Fξ],−C0

}
−
∫ ξ

0

e−rtMdt|S0 = Sτ+Ti+1

]
. (A-11)

Using the change of variable ξ = λ− Ti+1, the fact that Brownian motion is a Lévy process and

recalling that St is equal to S0 exp((µ− σ2

2
)t+σBt), it is the case that (A-11) equals

sup
λ≥Ti+1

E
[
e−r(λ−Ti+1) max

{
Wi(Sλ) + e−rTiE[Vi−1(Sλ+Ti)|Fλ],−C0

}
−
∫ λ−Ti+1

0

e−rtMdt|S0 = Sτ

]
.

Rearranging this last expression yields

sup
λ≥Ti+1

E
[
e−r(λ−Ti+1) max

{
Wi(Sλ) + e−rTiE[Vi−1(Sλ+Ti)|Fλ],−C0

}
−
∫ λ

0

e−r(u−Ti+1)Mdu|S0 = Sτ

]
+

∫ Ti+1

0

e−r(u−Ti+1)Mdu,
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which is less than or equal to

erTi+1 sup
λ>0

E
[
e−rλmax

{
Wi(Sλ) + e−rTiVi−1(Sλ+Ti),−C0

}
−
∫ λ

0

e−ruMdu|S0 = Sτ

]
+erTi+1

∫ Ti+1

0

e−ruMdu.

We therefore conclude that

Vi(Sτ+Ti+1
)≤ erTi+1Vi(Sτ ) + erTi+1

∫ Ti+1

0

e−ruMdu,

as required. �
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