
Optimal Sequential Stochastic Shortest Path
Interdiction

Juan S. Borrero
School of Industrial Engineering and Management, Oklahoma State University, juan.s.borrero@okstate.edu
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We consider the periodic interaction between a leader and a follower in the context of network interdiction

where, in each period, the leader first blocks (momentarily) passage through a subset of arcs in a network,

and then the follower traverses the shortest path in the interdicted network. We assume that arc costs are

stochastic, and that while their underlying distribution is known to the follower, it is not known by the

leader. We cast the problem of the leader, who aims at maximizing the cumulative cost incurred by the

evader, using the multi-armed bandit framework. Such a setting differs from the traditional bandit in that the

feedback elicited by playing an arm is the reaction of an adversarial agent. After developing a fundamental

limit in the achievable performance by any admissible policy, we adapt traditional policies developed for

linear bandits to our setting. We show that a critical step in such an adaptation is to ensure that the cost

vectors imputed by these algorithms lie within a polyhedron characterizing information that can be collected

without noise and in finite time. Within such a polyhedron, the problem can be mapped into a linear

bandit. The polyhedron has exponentially many constraints in the worst case, which are indirectly tackled

by solving several mathematical programs. We test the proposed policies and relevant benchmarks through

a set of numerical experiments. Our results show that the adapted policies can significantly outperform the

performance of the base policies at the price of increasing their computational complexity.
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1. Introduction

Motivation and Objective. In shortest-path interdiction, a Leader (or interdictor) blocks pas-

sage through a set of arcs or vertices in a network to disrupt the operation of a Follower (or evader)

who later traverses a path within the interdicted network. This interaction is adversarial: whereas

the evader chooses the path of minimal cost, the interdictor aims at maximizing the evader’s cost.

Shortest-path interdiction is a particular case of network interdiction problems, which are problems

that received significant attention in the literature, see Smith and Song (2020) for a survey on the

subject.

Network interdiction problems originally conceived a single-period interaction between the

leader and follower in which all parameters are deterministic and known to both agents (Fulkerson

and Harding 1977, Malik et al. 1989). In the last decades, various extensions to the original setting
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have been presented, each aimed at introducing realistic features into the models (Cormican

et al. 1998, Bayrak and Bailey 2008, Borrero et al. 2016, Kosmas et al. 2023). Motivated by their

application in surveillance and homeland security domains, in this paper we consider settings

where the follower has more knowledge about the cost structure of the network, relative to the

leader, and the agents interact repeatedly through time. See, for example Steinrauf (1991), Gift

(2010) that discuss such an application in the context of the US counter-narcotic efforts.

Starting with Borrero et al. (2016), there has been a handful of studies focusing on sequential

interdiction problems where the leader, unlike the follower, does not know the underlying cost

parameters (Borrero et al. 2019, Yang et al. 2021, Ketkov and Prokopyev 2020, Borrero et al.

2022a) and must infer them in an adaptive fashion from the observation of the follower’s responses.

Unlike traditional work in sequential decision-making under uncertainty, this stream of literature

has considered so far (to the best of our knowledge) deterministic settings where the leader focuses

on minimizing the number of periods it takes to reconstruct the full-information interdiction

action implemented by an oracle interdictor who knows the underlying parameters. In our work,

we extend upon this setting by considering the case of stochastic feedback, namely when the costs

observed by the leader include random perturbations - which categorizes it naturally as a bandit.

Model. We consider a model of periodic interaction between a leader (or interdictor) and a non-

strategic follower (or evader). Considering a fixed graph, in each period the interdictor acts first by

blocking passage on a subset of arcs of the graph, and then the evader responds by traversing an

unblocked path between a pair of fixed source and terminal nodes on the graph. The cost incurred

by the evader is the sum of the costs of the arcs in the path which form an iid sequence through

time.

We assume that the evader does not observe cost realizations but knows their probability dis-

tribution. Therefore, the evader uses the expected costs when choosing a path. In addition, we

assume that the evader is not forward-looking and selects the path with the smallest expected cost

(which we refer to as the shortest path). The first of these assumptions accommodates settings

where cost variations are only observed when/after traversing a path (e.g. one can reasonably

assume detecting drug movement through a pass is intrinsically binary and random, and cannot be

predicted beyond its probability of occurrence). The second assumption avoids considering strate-

gic inter-temporal interactions. However, when facing an oracle leader, a shortest-path response is

part of any sub-game perfect strategy, thus this assumption can be thought of as an asymptotic

approximation.

We assume that in each period the leader can block up to a finite and constant number of

arcs in the graph, and only for the duration of the period. The leader does not know the cost

distribution up front (except for its range), but instead, observes: (i) the path selected by the
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evader on each period, which the leader knows is a shortest path in the interdicted network; and (ii)

the cost realizations associated with the arcs in the aforementioned path. Using this form of semi-

bandit feedback (Audibert et al. 2013), the leader must select a sequence of interdiction actions

to maximize the cumulative cost incurred by the follower. Following extant work, we frame the

leader’s problem as a multi-armed bandit with a combinatorial number of correlated arms (Cesa-

Bianchi and Lugosi 2012, Gai et al. 2012, Modaresi et al. 2020). We then consider the problem of

minimizing the leader’s cumulative pseudo-regret relative to the policy adopted by an oracle leader

with prior knowledge of the cost distribution.

Main contributions. The first contribution is establishing a fundamental limit on the perfor-

mance of any admissible policy. Following the arguments in the seminal work of Lai and Robbins

(1985), we restrict attention to policies that perform consistently well across instances and then

use a change of measure argument to show that policies that perform well in alternative instances

of the problem, must constantly elicit feedback from a special class of arcs. This result implies

a minimal exploration frequency for a class of arcs in the network (see Theorem 1), which can

be translated into a lower bound on performance that exhibits a logarithmic dependency on the

length of the horizon, and whose definite form is the solution to a linear program of combinatorial

size: see Corollary 1. The logarithmic dependence in the horizon confirms intuition coming from

traditional bandits, speaks of the cost-efficient collection of information necessary to confirm the

optimality of the full-information solution, and is aligned with similar results in combinatorial

bandits (Modaresi et al. 2020).

A second contribution relates our problem to linear bandits (Auer 2002). As the evader’s

responses are the shortest paths (in expectation) in the interdicted network, it is possible to charac-

terize a polyhedron U that contains the mean cost vector almost surely (see equation (4)). Within

U the problem can be thought of as a linear bandit, and as such it could be tackled by state-of-the-

art linear bandit policies (see Remark 3). However, such polyhedron has (a priori) an exponentially

large number of constraints in the worst case. Thus, checking whether a cost vector belongs to U

might be challenging, which implies that adapting policies for linear bandits for this setting might

not be a straightforward task.

A third contribution is thus adapting standard policies for the linear bandit to the setting at hand,

namely the Thompson Sampling (TS) (Thompson 1933) and UCB (Auer et al. 2002) policies. With

a focus on asymptotic (in the horizon) optimality, the proposed policies begin with an initialization

phase in which U is found by implicit enumeration. For the case of the TS policy, we first develop

a short-term approximation for the posterior distribution over U based on a finite sample collected

using a hit-and-run scheme (Berbee et al. 1987). Then we use such a sample to approximate the

posterior sampling of cost vectors in U . For the case of the UCB policy, we consider a Bayesian
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version of the policy, and a multi-variate normal approximation of the posterior distribution over U ,

which allows us to use ellipsoidal uncertainty sets. We use mixed-integer programming to constrain

the selection of the cost vector within the feasible polyhedron. The resulting policy is closely related

to state-of-the-art implementations of UCB-type policies for the linear bandit.

Finally, we illustrate the practical implementation of the proposed policies, as well as their

empirical performance, through a set of numerical experiments. In doing so, we also consider

relevant benchmarks, namely more direct adaptations of the TS and UCB policies which do not

consider the set U . In this regard, our results show that carefully tailoring policies for the setting

at hand results in significantly better empirical performance. A feature of the proposed policies

is that their per-period practical complexity is closely related to that of solving a mixed-integer

programming implementation of the shortest-path interdiction.

Organization of the manuscript. Section 2 provides a review of the relevant literature, and

in Section 3 we present our model of stochastic sequential shortest-path interdiction. In Section 4

we develop a fundamental limit on the performance attainable by any admissible policy. Then, in

Section 5, after presenting an initialization phase common to all policies (Section 5.1), we introduce

our adaptations of the Thompson Sampling (Section 5.2) and Bayes-UCB (Section 5.3) policies.

Then, Section 6 presents a series of numerical experiments in which we test the performance of the

proposed policies and relevant benchmarks. Finally, Section 7 presents our final remarks. Proofs of

all results are relegated to Appendix A.

Notation. Throughout the manuscript, we use the following notation. For x∈R we define (x)+ :=

max{0, x} and (x)− := max{0,−x}. For x∈Rn and a positive-definite matrix Σ∈Rn×n, we define

‖x‖Σ := (x>Σ−1 x)∈R+. For n∈N, we define [n]≡ {1, . . . , n}, and let |B| denote the cardinality of

a set B. Graphs are defined on a fixed set of nodes N , and by subsets of a set of arcs A: we denote

by G≡ (N,A) the full underlying graph, and by G(B) the graph defined excluding the arcs in B

(G(B)≡ (N,A \B)), for all B ⊆A. We let P(B) denote the set of paths in G(B) between nodes 1

and n≡ |N |, and denote P ≡P(∅). Finally, we let 2B denote the power set of a set B, and assume

all random elements are defined within probability space (Ω,F, P ).

2. Literature Review

Our work borrows from and contributes to the network interdiction and multi-armed bandit lit-

erature. We position our work relative to both fields, highlighting the novelty of our model and

results.

Network Interdiction. In shortest path interdiction (Fulkerson and Harding 1977) and max flow

interdiction (McMasters and Mustin 1970, Ghare et al. 1971), a leader aims to maximally disrupt

a follower’s flow through a network. Whereas the original single-stage deterministic interdiction
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problems are NP-complete (Ball et al. 1989, Wood 1993), integer programming-based solution

approaches are viable in practice (see e.g. Wood (1993), Israeli and Wood (2002)). See Smith and

Song (2020) for a recent survey on network interdiction.

Many works relax the deterministic nature of the classical setup and have considered various

forms of uncertainty. For example, Cormican et al. (1998), Morton (2010), Kang and Bansal (2023)

consider settings in which the effectiveness of the interdiction effort is uncertain, and Hemmecke

et al. (2003) consider the case where the network topology is not known upfront. Bayrak and

Bailey (2008) consider deterministic settings where the leader and evader’s costs do not coincide,

thus departing from the max-min setup. Holzmann and Smith (2021), Sadana and Delage (2023)

study settings where the leader is allowed to randomize his actions. Closer to our setting, Nguyen

and Smith (2022b) and Nguyen and Smith (2022a) consider settings where costs are uncertain

and the leader maximizes the expected or conditional value at risk of the evader’s cost. These

latter works can be thought of as also considering information asymmetries, as the evader does

not know the effect of the interdiction actions with certainty. In a similar setup, Azizi and Seifi

(2023) considers a robust approach to handling the evader’s lack of knowledge.

In the last decade, multi-period network interdiction has been considered in deterministic settings

where agents interact repeatedly over time and a budget is allocated through time (Ajay Malaviya

and Sharkey 2012) or on each period (Soleimani-Alyar and Ghaffari-Hadigheh 2017), but not

dynamically within a period (see Sefair and Smith (2016) for a dynamic setting). Closer to our

work is the sequential shortest-path interdiction setting of Borrero et al. (2016) where the leader

is initially unaware of the (deterministic) network costs and must learn them by observing the

evader’s responses through time. Yang et al. (2021) and Borrero et al. (2022b) extend such a setting

by considering limited forms of feedback and by allowing the leader and evaders’ costs to differ,

respectively. Our work can be seen as extending that in Borrero et al. (2016) to settings where

network costs are stochastic and form an iid sequence. In this regard, two observations are in order.

First, by introducing cost uncertainty, the setting at hand can be envisioned as a multi-armed

bandit with multiple simultaneous plays and correlated rewards; as such we consider the objective

of minimizing the cumulative pseudo-regret (the standard criterion in the bandit literature) as

opposed to the concept of time-stability. Second, the greedy and pessimistic policies in Borrero

et al. (2016) can be interpreted as operating under the optimism in the face of uncertainty principle

behind, for example, the celebrated UCB policy (Auer et al. 2002). This latter observation allows

us to connect prior work in deterministic settings to the multi-armed bandit.

Multi-armed bandit. The multi-armed bandit (Thompson 1933, Robbins 1952) is a classical

framework for studying dynamic decision-making under model uncertainty. In its traditional formu-

lation, a decision-maker attempts to maximize his cumulative (stochastic) reward by pulling arms
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sequentially over time from an ex-ante identical set of arms. The setting features the classical explo-

ration (learning reward distributions, including ex-post suboptimal ones) vs. exploitation (pulling

the arm thought to deliver the largest reward) trade-off. Because in general optimal policies can

not be computed in closed form (except for some settings, see Gittins (1979)), the literature focuses

instead on achieving asymptotic optimality. In this sense, Lai and Robbins (1985) show that efficient

policies must try every suboptimal arm O(log t) periods, where t denotes the length of the horizon.

Envisioning each interdiction action as an arm, our setting can be casted as a multi-armed bandit

with combinatorially many arms and correlated rewards. Bandit settings with large sets of arms

have been studied extensively in the last decades. Kleinberg et al. (2008) considers settings with a

continuum of arms forming a metric space; see Bubeck et al. (2011) for a review of settings with

continuum arms. Closer to our setting, (Cesa-Bianchi and Lugosi 2012, Gai et al. 2012, Modaresi

et al. 2020) study adversarial and stochastic settings with combinatorially many arms. There,

like in our work, reward correlation is a byproduct of the linearity of the cost function. Modaresi

et al. (2020) adapt the arguments in Lai and Robbins (1985) and presents a O(log t) bound on

performance that is related to the solution to a combinatorial problem. Our lower bound result

can be seen as performing the same type of adaptation to the setting at hand.

A key result in our work is that after finite and deterministic information about the underlying

parameters is collected, the structure of the setting is equivalent to that of a linear bandit (Auer

2002), which has been thoroughly studied in the past. A significant portion of the work in linear

bandits presents different adaptations of the UCB policy of Auer et al. (2002): in such adapta-

tions, the decision-maker selects an action while considering the best possible realization of the

underlying mean cost vector within an uncertainty region, following the optimism in the face of

uncertainty principle. The distinction between these policies comes from the uncertainty region

used (see Section 6 for more details on this class of policies). In this regard, while some work

adopts rectangular uncertainty sets (Chen and Zhang 2009, Gai et al. 2012), the policies with the

best finite-time performance guarantees adopt ellipsoidal uncertainty sets (Dani et al. 2008, Rus-

mevichientong and Tsitsiklis 2010, Abbasi-Yadkori et al. 2011). Another important class of policies

are those based on posterior sampling (Thompson 1933). Within a parametric Bayesian setup, in

each period these policies sample from the underlying parameters’ posterior distribution and select

the best arm for such a sample. The finite-time performance guarantees of TS policies are closely

related to that of UCB policies for the case of linear bandits (Russo and Van Roy 2014). Section 5

shows that adapting the UCB and TS policies to our setting requires non-trivial modifications to

the uncertainty sets and priors used. Our work shows how to incorporate such modifications and

maintain computational tractability in practice.
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3. Model formulation

Consider sequential shortest path interdiction on graph G throughout a finite horizon of T periods.

In each period t ∈ [T ], the interdictor first blocks a finite set of arcs Bt, and then the evader

responds by traversing a path St ∈ P(Bt). We let Gt ≡G(Bt) denote the graph available to the

evader at period t∈ [T ].

The evader’s response. We assume that in each period t ∈ [T ] the evader faces a linear cost

function, modulated by a random cost vector ct(ω) := (cta(ω) : a∈A), so that the cost associated

with traversing path S in period t, is given by r(S,ct), where

r(S,c) :=
∑
a∈S

ca, S ∈P, c∈R|A|.

(We drop the dependence on ω ∈ Ω of random elements when it is clear from the context.) We

further assume that (ct : t∈ [T ]) form an i.i.d. sequence, and let F denote the (common) distribution

of ct, t∈ [T ]. We let C :=
∏
a∈A[la, ua] denote the support of F , where la and ua denote lower and

upper bounds on the cost of arc a∈A, respectively. We make the following key assumption about

the initial information the evader has.

Assumption 1 (A1). The evader knows F but does not observe ct, thus selects St minimizing its

expected cost, t∈ [T ].

Considering A1, we assume that upon observing Gt, the evader chooses St ∈ Pt ≡ P(Bt) to

minimize its expected cost. Defining µ :=EF [ct], in period t∈ [T ], the evader traverses

St ∈ arg min
{
r(S,µ) : S ∈Pt

}
.

Note that, conditional on the interdictor action, the evader solves a deterministic shortest-path

problem on each period. Despite this fact, our informational setup is such that in general the

interdictor will not be able to anticipate the evader’s response, as we detail next.

The interdictor’s decision. We consider a constant interdiction budget K <∞, so that on period

t∈ [T ] the interdictor chooses Bt ∈B := {B ⊆A : |B| ≤K}, the set of feasible interdiction actions.

We assume that the leader is interested in maximizing the cumulative cost incurred by the follower

and make the following key assumption about the information available to the interdictor at the

moment of selecting Bt.

Assumption 2 (A2). The interdictor does not know F , but knows its support C. In addition, at

period t he observes St and {cta : a∈ St} immediately after the evader traverses St, for t∈ [T ].
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Note that if the leader had access to F , then he would implement Bt =B∗ for all t∈ [T ], where

B∗ ∈ arg max{min{r(S,µ) : S ∈P(B)} : B ∈B} .

We call the formulation above the full information problem and refer to B∗ as the full information

solution. Similarly, we define the evader’s response to the full information solution as

S∗ := arg min{r(S,µ) : S ∈P(B∗)} ,

which we assume is unique, to avoid unnecessarily cluttered notation (in the sequel, one can think

that µ is chosen at random from an absolutely continuous distribution). The interdictor cannot

implement the full information solution from the start as F is initially unknown (and so is µ). In

this regard, the interdictor’s actions must be adjusted to the information available at the beginning

of period t. Define

F t := σ ((Ss,{csa : a∈ Ss}) : s < t) , t∈ [T ],

and let F := {F t : t∈ [T ]} denote the filtration generated by the information revealed to the interdic-

tor through his interaction with the follower. We say π := {πt : t∈ [T ]} is an admissible interdiction

policy if it is a stochastic process adapted to F such that for all t∈ [T ], we have that Bt,π ≡ πt ∈B.

Remark 1. While a policy that implements B∗ every period is admissible, it would perform poorly

when applied to alternative cost distributions for which B∗ is not a full-information solution. Thus,

following the seminal work of Lai and Robbins (1985), we restrict our attention to policies that

perform consistently well across all instances.

Following the bulk of the literature, we assume that the leader is interested in minimizing the

expected regret associated with his actions. That is, for a distribution F and horizon T , we define

the expected regret associated to an admissible policy π as

Rπ(T,F ) := T · r(S∗, µ)−
T∑
t=1

r(St, µ)

where the above depends on F through µ= EF {ct}. (When it is clear from context, we will drop

the dependence on the policy π when possible.)

4. Asymptotic Limit on Achievable Performance

In this section we establish an asymptotic limit on achievable performance for every admissible

and consistent policy (we define the concept later in this section). Because of our interest in

asymptotic performance, we first consider the information about µ that can be recovered by

observing the evader’s responses to the leader actions in finite time, and then the information that
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comes from observing the costs incurred by said responses. Later in the manuscript we borrow

the ideas in this section to develop practical policies and focus on their finite-time performance.

Deterministic Finite-time Feedback. We make the following assumption on the follower’s

behavior, which states that the evader’s decisions are consistent over time.

Assumption 3 (A3). If S,S′ ∈Pt for t∈ [T ] and St = S, then Ss 6= S′ if S ∈Ps, for s∈ [T ].

Suppose that the leader interdicts the arcs in Bt in period t ∈ [T ]: independent of ct(ω), the

evader chooses a response, St, which (from A3) is the same for all periods s∈ [T ] for which Bs =Bt.

With this in mind, consider the information about µ that can be collected from observing the

evader’s response to every possible interdiction action, noting that this information can be obtained

in finite time. For ν ∈C, let S(B,ν) denote the evader’s response when the leader blocks the arcs

in B ∈ B, and the mean cost vector is ν. After implementing all interdiction actions, the leader

knows that

µ∈ U := {ν ∈C : S(B,ν) = S(B,µ), B ∈B} .

Note that U is the set of all (mean) cost vectors that can explain the feedback observed by the

interdictor after implementing all possible interdiction solutions. We assume that the leader knows

that µ ∈ U , as this information is deterministic (from A3) and can be obtained in finite time.

Additional information on µ might be obtained by repeatedly observing cost realizations of chosen

paths; from prior work on bandits, we anticipate that collecting such information will come at a

cost (in terms of asymptotic regret), and will contribute to distinguishing settings where B∗ is

optimal, from others.

Remark 2. In order to compute U , in principle it is necessary to implement a combinatorial

number of interdiction actions. However, in Section 5 we show that in practice this task can be

accomplished by implementing either a reduced set of actions (the proposed policies begin collecting

such information in an initialization phase), or that the set U can be constructed on-the-go.

4.1. A lower bound on performance

We begin by narrowing down the set of policies of interest; following seminal work in multi-armed

bandits (Lai and Robbins 1985), we restrict attention to policies that perform consistently well

across all distributions F . Specifically, we consider policies such that for all distributions F are

such that, for every α> 0,

Rπ(T,F ) = o(Tα).

This set of consistent policies excludes those policies that perform well in a particular setting, at

the expense of performing poorly in others. We exploit the consistency of the admissible policies to
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find a lower bound on the rate at which some suitably constructed sets of arcs must be traversed

by the evader, asymptotically. In what follows, with some abuse notation, we let B∗(ν) and S∗(ν)

denote the optimal interdiction action and evader’s response to said action when the mean cost

vector is ν ∈ U .

Suppose that B∗(ν) = B∗(µ) for all ν ∈ U , then the interdictor can find B∗(µ) a.s. in finite

time, and thus it is reasonable to expect that Rπ(T,F ) = O(1). Thus, assume that there exists

ν ∈ U such that B∗(ν) 6= B∗(µ); moreover, observe that since ν ∈ U then the feedback provided

by implementing B∗(µ) under ν coincides with that obtained when the mean cost vector is given

by µ (thus, by implementing B∗(µ) and observing the feedback one cannot differentiate whether

the underlying mean cost vector is ν or µ). Finally, note that a consistent policy must necessarily

deviate from implementing B∗(µ) (with a certain frequency, which we will characterize) so as to

collect feedback that allows distinguishing ν from µ. More importantly, such feedback comes from

observing the cost realizations for arcs a∈A where µa 6= νa.

Considering the discussion above, we define the class E ⊆ 2A of all sets E ⊆A \S∗(µ) such that

if the mean cost of the arcs in E change (relative to µ), then it is possible that B∗(µ) is not longer

optimal, i.e.

E ∈ E ⇐⇒∃ν ∈ U : νa = µa for a∈A \E and B∗(ν) 6=B∗(µ).

As hinted above, there exist settings where E = ∅, i.e. the feedback obtained in finite-time, in

addition to that obtained from implementing B∗(µ), suffices to characterize B∗(µ), in which case

we venture to say that a O(1) regret might be attainable. Example 1 presents such an instance.

Example 1. Consider the shortest-path interdiction setting in Figure 1. We assume an interdiction

budget of K <k−1, and consider the bounds la = 0 and ua =∞ for all a∈A. This setup is similar

to that of traditional multi-armed bandit in the sense that there are k− 1 non-intersecting paths.

Note that, by implementing (a subset) of all possible interdiction actions, the leader is able to

identify the K+ 1 paths with lowest mean cost, and their relative rank, and that such information

suffices to solve the full information problem.

1

2

k+ 1
...

k

µ1,2

µ1,k

µ2,k+1

µk,k+1

Figure 1 Shortest-path interdiction setting of Example 1. Each arc a ∈ A is labeled with µa, its expected cost

under F .
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Specifically, suppose, without loss of generality, that

µ1,j +µj,k+1 ≤ µ1,j+1 +µj+1,k+1, j < k,

and define Bj = {(1, i) : i= 2, . . . , j}, j = 2, . . . ,K + 1. Note that

U = {ν ∈C : S(B,ν) = S(B,µ), B =Bj, j = 2, . . . ,K + 1}

and note that when the mean cost vector is given by ν ∈ U , then any of the K paths of the

form 1 − j − (k + 1), j = 2, . . . ,K + 1, are shorter than any path of the form 1 − j − (k + 1),

j = K + 2, . . . , (k + 1). Thus, for any ν ∈ UK+1, the optimal interdiction solution is to interdict

B∗(µ), i.e., to interdict the paths 1− j − (k + 1), j = 2, . . . ,K + 1. This observation implies that

E = ∅, as desired.

Alternatively, there exist settings where E 6= ∅ and thus the feedback obtained in finite time,

and that coming from implementing B∗(µ) do not suffice to guarantee the optimality of B∗(µ).

Example 2 presents such a setting.

Example 2. Consider the network interdiction setting depicted in Figure 2, and suppose that

the interdiction budget is K = 2, and that la = 0 and ua =∞ for all a ∈A. Define the sub-paths

l(j)≡ (1, j+ 1)→ (j+ 1,6) and r(j)≡ (6, j+ 6)→ (j+ 6,11), for j < 5, and assume without lost of

generality that ∑
a∈l(j)

µa <
∑

a∈l(j+1)

µa, and
∑
a∈r(j)

µa <
∑

a∈r(j+1)

µa, j < 4.

For any j ≤ 2, define

B(j) := {B ∈B :B ∩ l(i) 6= ∅, i≤ j ∧B ∩ r(i) 6= ∅, i≤ 2− j} .

Pick µ so that B∗(µ)∈B(1), i.e. it is optimal to interdict the sub-paths l(1) and r(1), which implies

that S∗(µ) = l(2)→ r(2). Observe that because B∗(µ)∈B(1), the cost of l(3)→ r(1) is smaller that

l(2)→ r(2); similarly, the cost of l(1)→ r(3) is smaller than l(2)→ r(2).

1

2

6
...

5

7

11
...

10

µ1,2

µ1,5

µ2,6

µ5,6

µ6,7

µ6,10

µ7,11

µ10,11

Figure 2 Interdiction setting of Example 2. Each arc a∈A is labeled with µa, its expected cost under F .
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Consider now the set U , which contains all cost vectors consistent with the evader’s answers

to all interdiction actions. It is readily seen that the information in U implies that l(j) is shorter

than l(j + 1), j = 1,2,3; likewise, it implies that l(j) is shorter than l(k), k = 4,5, j = 1,2,3.

Note, however, that the information in U does not imply that l(4) is shorter than l(5) (because

l(4) and l(5) are never used by the evader). Similar implications hold for the r(j)s. Importantly,

the information in U does not imply that l(3)→ r(1) is shorter than l(2)→ r(2); neither that

l(1)→ r(3) is shorter than l(2)→ r(2).

We claim that for any given µ, E = {(1,4), (1,5)} is an element of E . Indeed, let νa = µa for

all a ∈ A, a 6∈ E, and set νa = µa + M , a ∈ E, where M is an arbitrarily large constant. Then,

it is readily seen that ν ∈ U . On the other hand, consider the action B̂ that interdicts (1,2) and

(1,3). Then S(B̂,µ) = l(3)→ r(1) is a shortest path and clearly, r(S∗(µ), ν)< r(S(B̂,µ), ν). This

argument also shows that {(1,4), (5,6)}, {(1,5), (4,6)}, and {(4,6), (5,6)} are all elements of E ;

following the same arguments, one can show that {(6,9), (6,10)}, {(6,9), (10,11)}, {(6,10), (9,11)},

and {(9,11), (10,11)} are elements of E . We note that these sets are not the only elements of E .

For instance, E = {(1,2)} is also in E . Indeed, let µ(s) denote the cost under µ of the path segment

s and define νa = µa for all a 6= (1,2), and ν1,2 = µ1,2 + ε, with ε ∈ (µ(l(2)) + µ(r(2))− µ(l(1))−

µ(r(3)), µ1,3 − µ1,2). Then ν ∈ U and r(S∗(µ), ν) < r(S(B̂,µ), ν). Finally, also note that not all

subsets of arcs are elements of E . For example, any subset of arcs in l(4)→ r(4) is not an element

of E , as for any ν ∈ U those arcs cannot be in any shortest path.

By construction, for each E ∈ E there exists (at least) one admissible alternative mean cost

vector under which B∗(µ) is no longer optimal. The following lemma establishes that the optimal

interdiction action under such an alternative cost configuration must necessarily interdict path

S∗(µ), and vice-versa, the evader’s optimal response under the new configuration is interdicted

under B∗(µ). Moreover, the lemma shows that the shortest path after optimal interdiction under

the alternative cost configuration must contain elements of E.

Lemma 1. Assume that E 6= ∅. For each E ∈ E, there exist ν ∈ U such that: B∗(ν) 6=B∗(µ); S∗(ν)∩

E 6= ∅; S∗(ν) 6∈ P(B∗(µ)); and S∗(µ) 6∈ P(B∗(ν)).

By construction, for each E ∈ E there exists an alternative mean cost configuration ν under

which: (i) the full-information solution B∗(µ) is suboptimal, and (ii) the feedback observed when

implementing B∗(µ) coincides with that observed when the cost vector is µ. Because a consistent

policy attains a sub-polynomial regret under both µ and ν, when the actual cost vector is µ, such

a policy must necessarily collect feedback from arcs in E (because of (ii)) if it hopes to establish

the sub-optimality of B∗(ν) (because of (i)). Because such a judgment call cannot be based on a
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finite sample if one is to attain asymptotic optimality, feedback from arcs in E must be collected

at some minimal frequency. Theorem 1 below establishes a lower bound on such a frequency.

For E ∈ E and t∈ [T ], define τ(E, t) as the number of periods up to (and including) t such that

the follower’s response included an arc in E. That is,

τ(E, t) :=
t∑

s=1

1
{
St ∩E 6= ∅

}
.

Theorem 1. Assume that E 6= ∅. For each E ∈ E there exists a constant κE <∞ such that for any

consistent policy π,

limsup
t→∞

P
{
τπ(E, t)

ln t
≤ κE

}
= 0.

Theorem 1 implies that consistency of a policy requires persistently observing cost realizations of

arcs that are not observable when choosing the full information solution, thus implying a minimal

regret growth with t. Theorem 1 can be leveraged to establish a fundamental bound on achievable

performance. For that, define

∆B := r(S∗(µ), µ)− r(S(B,µ), µ), B ∈B.

Consider a collection of cyclic policies such that, in each cycle, each policy selects interdiction

actions in B that assure that the follower’s response contains an element of E, E ∈ E , at least kE

times in each cycle. Consider the policy in this collection that attains the optimal (i.e., lowest pos-

sible) regret in each cycle. Observe that by Theorem 1, in the long run, the regret of any consistent

policy is at least the regret of such an ‘optimal’ cyclic policy. The next corollary summarizes this

discussion.

Corollary 1. For any consistent policy, π one has that

lim inf
t→∞

Rπ(t,F )

ln t
≥ κ,

where κ is the objective value of the following Lower Bound Problem (LBP).

κ := min
∑
B∈B

xB ∆B

s.t. ya ≤
∑

B∈B:a∈S(B,µ)

xB, a∈A∑
a∈E

ya ≥ kE, E ∈ E

ya ∈R+, a∈A, xB ∈R+, B ∈B
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Limits on achievable performance in the bandit literature in settings with combinatorially many

arms are typically put in terms of the cardinality of the sets involved, with the notable exception of

Modaresi et al. (2020), where the bounds presented depend on formulations akin to the LBP above.

In this regard, the logarithmic (in T ) growth of the lower bound on the regret is now a common-

place in the bandit literature, so one can see Theorem 1 as proof that such dependence is also the

best possible in the shortest-path interdiction setting. This is not surprising, as such a logarithmic

dependence can be attained by traditional bandit policies that treat each of the leader’s potential

actions (B ∈B) as an arm. However, the constant accompanying the logarithmic term (i.e. playing

the role of κ) in such policies turns out to be proportional to the size of B, which is exponentially

large in terms of A, in the worst-case. Policies designed for settings with combinatorially many arcs

in network settings (which compute mean cost estimates at the arc level) fare better, achieving

accompanying constants proportional to (a polynomial of) the size of A instead.

The dependence on both the size of B or A in finite-time performance upper-bounds for the case

of, for example, UCB-type policies is driven by the need to estimate mean rewards associated with

the elements of B or mean costs for the arcs in A, respectively. When seen through this lens, the

results in Theorem 1 and Corollary 1 suggest that, in the setting of shortest-path interdiction, the

regret is driven by the need to estimate mean costs of elements in each set E ∈ E . However, such an

estimation can be performed by implementing at most
(
|E| ∧

∣∣⋃
E∈E E

∣∣) solutions in B. The bound

in Theorem 1 does not explicitly consider the dependence on a set of solutions implemented, as it

aims at achieving the lowest possible regret.

We close this section by noting that if E = ∅, then the optimal full-information solution might

be found in finite time by employing the information in U , see Example 3.

Example 3. Consider again Example 1 and consider a policy that initially implements B1 = ∅,

and Bt =Bt−1 ∪ {(1, t)} for t= 2, . . . ,K + 1. By period t=K + 2, the interdictor can deduce that

all paths of the form 1− j− (k+1), j ≥K+2, are longer than the paths of the form 1− j− (k+1),

j = 2, . . . ,K + 1, and thus the interdictor can conclude that B∗(µ) =BK+1. Note that this policy

attains a finite regret (independent of T ); in particular,

lim inf
t→∞

R(t,F )

ln t
= 0.

Compare the above to probable finite performance upper bounds for traditional benchmark policies

(see next section) which ensure that, at most, lim inf R(t,F )

ln t
≥ o(|A|)∼ o(k).
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5. Adapted Seminal Policies

In this section, we adapt classical multi-armed bandit policies to the sequential interdiction setting

at hand. Because the implementation of the methods described in this section relies on mathe-

matical programming, we benefit from describing the set of interdiction actions as elements of the

set

X :=

{
(xa : a∈A) :

∑
a∈A

xa ≤K, xa ∈ {0,1}a∈A

}
,

where for a ∈A, xa = 1 encodes the action of blocking arc a, and xa = 0 otherwise. Thus, in this

section, we refer to x∈X and B ∈B as interdiction actions, interchangeably. Similarly, for t∈N, we

let zt := (zta, a∈A) denote a vector representing the path observed in period t, thus zta := 1{a∈ St}

for a∈A; we refer to St and zt interchangeably as well.

5.1. Initialization phase

A starting point, common to all the proposed policies, is an initialization phase that attempts

to compute the set U without resorting to explicit enumeration. Such a procedure operates in a

sequential fashion: starting from B1 = B at time t= 1, in period t≥ 1 the procedure implements

an action Bt from the set Bt ⊆B of interdiction actions for which the evader’s response cannot be

anticipated based on the information available at the time. This is,

Bt ∈Bt := {B ∈B : ∃ν, ν ′ ∈C s.t. Ss = S(Bs, ν) = S(Bs, ν ′), s < t ∧ S(B,ν) 6= S(B,ν ′)} . (1)

The procedure, which chooses Bt ∈Bt arbitrarily until Bt = ∅, is summarized in Algorithm 1. Note

that, at the end of the procedure, we can (without loss of generality) eliminate the set of arcs in A

that are not observed in any of the evader’s responses. In addition, by construction, we have that

U =
{
ν ∈C : S(Bt, ν) = St, t < t0

}
,

where t0 denotes the first period after the initialization phase. Implementing the initialization

procedure requires, for each period t < t0, computing Bt and selecting Bt from such a set. In

our experiments, we conduct such tasks jointly by solving the mixed integer program (2). The

formulation, which is instantiated in each period t, finds two mean cost vectors, ν1 and ν2, that

explain the evader responses observed prior to period t, and an interdiction action x∈X such that

the evader responses z̄1 and z̄2, encoded through a linear programming (LP) formulation of the

shortest path problem, under ν1 and ν2, respectively, differ.

Γ := max (ν2)
>
z̄1 − ȳ2

n + ȳ2
1 (2a)
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Algorithm 1 Initialization phase

Set t= 1, Bt =B, t0 = 1

while Bt 6= ∅ do

Choose Bt ∈Bt arbitrarily, and observe St

Set t= t+ 1, t0 = t, and update Bt according to (1)

end while

Set A≡
⋃
t<t0

S(Bt).

Set U ≡ {ν := (νa, a∈A)∈C : S(Bt, ν) = S(Bt, µ), t < t0}.

s.t. yk,sj − y
k,s
i ≤ νki,j, (i, j)∈A \Bs, s < t, k= 1,2 (2b)

yk,sn − y
k,s
1 =

(
νk
)>

zs, s < t, k= 1,2 (2c)

A z̄k = b, k= 1,2 (2d)

z̄ki,j +xi,j ≤ 1, (i, j)∈A, k= 1,2 (2e)

ȳkj − ȳki ≤ νki,j +M xi,j , k= 1,2 (2f)

ȳkn− ȳk1 =
(
νk
)>

z̄k, k= 1,2 (2g)

yk,s, νk, ȳk ∈R|A|, z̄k ∈ {0,1}|A| , x∈X . (2h)

In this formulation, (2b) to (2c) enforce (through strong duality) that both cost vectors ν1 and ν2

are consistent with the feedback observed prior to period t. Constraints (2d) to (2g) ensure that

z̄k is among the shortest paths in the interdicted network when the interdiction action x ∈ X is

adopted and the mean cost vector is νk, for k= 1,2. (Here, A corresponds to the adjacency matrix

of graph G, and b= (−1,0, . . . ,0,1), thus (2d) amounts to primal feasibility of z̄k).1 The next result

establishes that (2) accomplishes its purpose.

Lemma 2. Let x̂ be an optimal solution of (2) and let B̂ = (a ∈ A : x̂a = 1) be the interdiction

solution induced by x̂. Then: ( i) Γ≥ 0; ( ii) If Γ = 0 then Bt = ∅; and ( iii) If Γ> 0 then B̂ is an

element of Bt.

Note that whereas formulation (2) includes nonlinear quadratic terms in its objective function

and in constraints (2g), they correspond to sums of products of continuous and binary variables and

as such can be linearized. Consequently, formulation (2) can be solved directly using out-of-the-shelf

state-of-the-art MIP solvers.

Remark 3 (Connection to Linear Bandits.). Seminal linear bandit policies typically

impute (in each period) a mean cost vector ν and select (either sequentially or jointly) an action

that is optimal for such a mean cost vector. In our setting, when the selection of ν is restricted to
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lie in U , the structure of the interdictor’s problem is that of a linear bandit (Auer 2002). Specifi-

cally, if the interdictor knows that the mean cost vector lies in U , then the interdictor can be seen

as choosing yt ∈ {y ∈ R|A|+ : y = yB,B ∈ B} (yB being the indicator vector of S(B,µ)) after which

the interdictor receives the linear profit of (ct)>yt. In this regard, the challenges in the design of

the policies outlined next (beyond dealing with a combinatorial set of actions, and a non-trivial

map from an interdiction to a response) correspond to ensuring that the imputed mean cost vector

remains within U , so that the aforementioned equivalence, which ensures linearity in costs, holds

true and thus can be exploited for finding a candidate action.

5.2. A Posterior (Thompson) sampling policy

Next, we propose an adaptation of the Thompson Sampling (TS) policy (Thompson 1933). For

this, we adopt a parametric approach in which F is characterized by a vector of parameters - which

for convenience we identify with µ - and consider an initial prior distribution over µ. The policy

starts with the initialization phase described in Algorithm 1, which identifies U and redefines A.

In each period after the initialization phase, the TS policy samples a vector from the posterior

distribution of µ, and implements the full-information solution computed while assuming that the

underlying mean cost vector equals the sample. We provide the details of our implementation next.

Consider a prior distribution λ(·) on µ such that λ(U) = 1, and let λt ≡ λ|Ft denote the posterior

distribution conditional on the feedback observed by the beginning of period t∈ [T ]. For t≥ t0, the

TS policy draws a sample mean cost vector νt ∼ λt and implements Bt :=B∗(νt). The procedure

is depicted in Algorithm 2.

Algorithm 2 TS phase

Set t= t0 and λt = λ|Ft0 .

while t≤ T do

Sample νt from distribution λt.

Implement B∗(νt) and observe St.

Set t= t+ 1 and update λt := λ|Ft .

end while

Implementing the TS policy requires sampling from the posterior distribution λt, and solving an

instance of the full-information problem. In our numerical experiments, we conduct the latter task

by solving the following MIP:

Bt ∈ arg max
{
yn− y1 : yj − yi ≤ νti,j +M xi,j ∀(i, j)∈A,x∈X

}
. (3)



18 Borrero, Sauré and Trigo: Optimal Sequential Stochastic Shortest Path Interdiction

Formulation (3) is well-known and follows directly from considering the dual of a linear program

formulation of the shortest-path problem while envisioning the interdiction of an arc as increasing

its cost by a sufficiently large (hence the big-M constant M) constant. Sampling from λt presents

additional challenges, which we address next.

Sampling from the posterior distribution. Implementing the TS policy requires specifying a

prior distribution λ such that λ(U) = 1. However, in practice, U is not computed explicitly: one

can see that U is the polyhedron

U =
{
ν ∈C :

∑
a∈St

νa ≤
∑
a∈S

νa, S ∈P(Bt), t < t0

}
, (4)

and thus is defined implicitly by the output of the initialization base. With no explicit representation

of U , defining a prior over it becomes challenging. In this regard, a method for defining the prior

consists of first defining a prior distribution λ̄ over R|A| such that λ̄(U) > 0, and at time t = t0

selecting λ as the restriction of λ̄ to U . That is,

λ(U) :=
λ̄(U ∩U)

λ̄(U)
, U ∈B(R|A|).

(Here, B denotes the Borel sets). This method has the additional advantage that if λ̄ and F are

conjugate priors, then so are λ and F . Let λ̄t(·) denote the posterior distribution of µ given F t

relative to the prior λ̄(·), i.e. λ̄t := λ̄(·)|Ft ; from above, one can check that

λt(U) =
λ̄t(U ∩U)

λ̄t(U)
, U ∈B(R|A|).

Thus, computing the posterior distribution λt becomes as easy as computing λ̄t (which in the case

of conjugate priors can be done analytically), provided that one can compute the constant λ̄t(U)

and carry the intersection operation with U .

In practical terms, sampling from λt can be done without computing the constant λ̄t(U) - this

is the essence of Monte Carlo Markov Chain methods (see, e.g. Geyer (1992)). In theory, a simple

acceptance-rejection method suffices: letting dλt(ω)

dλ̄t
denote the Radon-Nikodym derivative of λt

with respect to λ̄t, we note that

dλt(ω)

dλ̄t
=

1{ω ∈ U}
λ̄t(U)

, ω ∈Ω.

From the above, an exact acceptance-rejection method for sampling from λt consists of drawing

a sample from λ̄t, and then accepting (rejecting) the sample if it does (does not) belong to U .

The scheme is depicted in algorithmic form in Algorithm 3. Whereas Algorithm 3 does not require
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Algorithm 3 AR sampling

For t∈N, compute λ̄t and sample ν from λ̄t.

while ν /∈ U do

Sample ν from distribution λ̄t.

end while

set νt = ν.

computing the constant λ̄t(U), it does require checking whether a sample ν lies in U . In our

numerical experiments, we perform such a check by solving the following LP:

min
∑

s<t0
ws (5a)

s.t. ysj − ysi ≤ νi,j, (i, j)∈A \Bs, s < t0 (5b)

ysn− ys1 = ν>zs−ws, s < t0 (5c)

ys ∈R|A|, ws ∈R+ s < t0. (5d)

Constraints (5b) encodes (LP) dual-feasibility of the vector ys at time s, and (5c) imposes strong

duality: if ws = 0, then zs is indeed the shortest path on the interdicted network at time s; otherwise

ws compensates for the optimality gap associated with zs. Overall, if the objective function (5)

is 0, we conclude that ν ∈ U . Otherwise, if the objective function is greater than zero, then there

exists a time period s < t for which zs is not an optimal solution under ν.

Approximate Sampling from the posterior. The practical efficiency of acceptance-rejection

schemes depends on the expected number of rejections made before accepting a sample. In our set-

ting, one can anticipate that, depending on the volume of U , as time progresses λ̄t will concentrate

around µ, which should result in small rejection rates. However, because λ̄ is chosen irrespective

of U , it is possible that λ̄t0(U) is very small, which translates into very small initial acceptance

rates, which in turn affects computational efficiency of implementing the TS policy (note that each

accept/reject decision requires solving an instance of (5)).

In order to speed up the implementation of the TS policy, especially for early time periods, we

consider the following approximate sampling scheme:

(i) Before sampling at time t0, we construct a finite sample Ũ of vectors in U by sampling at

random from it using a hit-and-run scheme;

(ii) at time t≥ t0, we sample ν from λ̄t; if the sample is rejected, then we sample from an approx-

imate distribution λ̃t that has support on Ũ (guarantying that the sample lies in U).

We construct the finite set Ũ following the hit-and-run scheme of Berbee et al. (1987) for (approx-

imately) sampling uniformly from a polyhedron. The procedure works iteratively, starting from
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an incumbent mean cost vector νk ∈ U at iteration k, and constructs a new cost vector νk+1 by

first sampling a random direction d∼N (0, I) (where N stands for the normal distribution and I

is the identity matrix in R|A|×|A|,2 and then sampling νk+1 at random (uniformly) from the (one

dimensional) set
{
νk +dv : v ∈R

}
∩U .

In Berbee et al. (1987), the set
{
νk +dv : v ∈R

}
∩U is computed by finding the values of v such

that νk + dv belongs to a facet of U . Observe that, because U is bounded, there are exactly two

such values, which we refer to as v+ and v−, associated with the directions d and −d, respectively.

A direct application of the method in Berbee et al. (1987) requires writing U as a polyhedron whose

only variables are ν; in our case:

U =
{
ν ∈C : (zs−z)>ν ≤ 0 ∀z ∈Zs, s < t0

}
, (6)

where Zs = {z ∈ {0,1}|A| : Asz = b} \ {zs} is a vector representation of P(Bt) (excluding St). It

then computes

v+ := min
{ (z−zs)>νk

((zs−z)>d)+
: z ∈Zs, s < t0;

ua− νka
da

: a∈A, da > 0;
la− νka
da

, a∈A, da < 0
}
, (7a)

v− := min
{ (z−zs)>νk

((zs−z)>d)−
: z ∈Zs, s < t0;

νka −ua
da

: a∈A, da < 0;
νka − la
da

, a∈A, da > 0
}
, (7b)

samples v∼U [v−, v+] and sets νk+1 = νk+dv. Observe that this method cannot be applied directly

to our case, as for s < t0, Zs can have exponentially many elements in the worst case. Nonetheless,

the next result shows that v+ and v− can be found by solving a pair of LP formulations.

Lemma 3. For d∈R|A|, one has that v+ =w(d) and v− =w(−d), where for d̃∈R|A|

w(d̃) := max w (8a)

s.t. ysj − ysi ≤ νki,j + d̃i,j w, (i, j)∈A \Bs, s < t0 (8b)

ysn− ys1 = (νk + d̃w)>zs, s < t0 (8c)

νk + d̃w ∈C (8d)

ys ∈R|A|, w ∈R. (8e)

The hit-and-run procedure is detailed in Algorithm 4. There, H denotes the size of the set Ũ .

Remark 4. The correctness of Algorithm 4 rests on the assumption that each vector νk lies inside

of the interior of U , which is guaranteed (with probability one) if ν1 ∈ Int(U) 6= ∅. Note that if µ is

indeed distributed according to an absolutely continuous prior λ, then Int(U) 6= ∅ almost surely, in

which case one can find µ1 ∈ Int(U) by solving the formulation

max ε (9a)
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Algorithm 4 Sampling from U
Require: ν1 ∈ U , H ∈N

for k= 1 to H do

Sample d∼N (0, I)

Find w+ and w− by solving (8) using directions d and −d, respectively

Sample v∼U [−w−,w+] and set νk+1 = νk +dv

end for

s.t. ys,kj − y
s,k
i ≤ νi,j + εek, (i, j)∈A \Bs, s < t0, k= 0, . . . , |A| (9b)

ys,kn − y
s,k
1 = (ν+ εek)>zs, s < t0, k= 0, . . . , |A| (9c)

ys,k, ν ∈R|A|, ε∈R, (9d)

where ek ∈R|A| is such that eki = 1{k= i}, for i≤ |A|, k≤ |A|. Indeed, letting (
{
ys,k

}
, ν, ε) denote

a solution (9), then one has that if Int(U) 6= ∅, then ε > 0, and ν + εek ∈ U for all k ∈ {0, . . . , |A|},

thus one can set ν1 = ν+ 1 ε (2 |A|)−1 ∈ Int(U) .

Once Ũ is constructed, our approximate sampling scheme samples ν at time t≥ t0 from a distribu-

tion λ̃t with support on Ũ . We construct such a distribution so as to approximate λt. In particular,

we consider

λ̃t(ν)∝ ∂λ̄t(ν), ν ∈ Ũ ,

where ∂λ̄t stands for the Radon-Nikodym derivative of λ̄t with respect to the Lebesgue measure

in R|A|. (Recall that λ̄t is readily available for the case of conjugate distributions.) Algorithm (5)

below summarizes our implementation of the TS policy.

5.3. A Bayesian Upper Confidence Bound policy

Next, we present an adaptation of a Bayesian upper confidence bound (Bayes-UCB) policy (Kauf-

mann et al. 2012). Our starting point is the parametric approach used in the previous section. In

particular, we consider the posteriors λt over U , and λ̄t over R|A|.

The Bayes-UCB policy starts by implementing the initialization phase. Then, for period t≥ t0, it

considers an uncertainty region U t ⊆U such that λt((U t)c) =O(t−1), and implements the solution

to the following program

Bt ∈ arg max
{

max
{
r(S(B), ν) : ν ∈U t

}
: B ∈B

}
. (10)

For each interdiction action B ∈ B, the interdictor adopts the optimism in the face of uncertainty

principle and assumes a favorable realization of the underlying mean cost vector, but discarding
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Algorithm 5 approximate TS phase

Require: K ∈N, ({(zs,Bs), s < t0})

Set t= t0 and λt = λ.

Compute ν1 by solving (9), and use it to compute Ũ following Algorithm (4)

while t≤ T do

Sample νt from distribution λ̄t, and find w by solving (5)

if w> 0 then

Resample νt from λ̃t

end if

Implement B∗(νt) and observe St.

Set t= t+ 1 and update λ̄t := λ̄|Ft .

end while

those values that have a probability lower than O(t−1) of occurring (i.e. those outside U t). When

λt is absolutely continuous, one can choose U t := {ν ∈ U : ∂λt(ν)≤ ξ(t)}, where

ξ(t) := sup
{
ξ ∈R+ : λt

({
ν ∈ U : ∂λt(ν)≤ ξ

})
< t−1

}
. (11)

The policy is depicted in Algorithm 6.

Algorithm 6 Bayes-UCB phase

Require: ({(zs,Bs), s < t0})

for t= t0 to T do

Compute U t, implement a solution to (10), and observe St

Set t= t+ 1 and update λ̄t := λ̄|Ft .

end for

Implementing the Bayes-UCB policy requires computing U t and solving (10) for all t≥ t0. Note

that the former step requires access to λt, which is not readily available. Thus, in our numerical

experiments, we consider a (truncated) multivariate normal approximation to λt when computing

ξ(t) according to (11). In particular, for t≥ t0, we consider the following approximating scheme:

i) Let ĉt and Σ̂t denote the mean and covariance matrix associated the posterior λ̄t, and consider

the distribution λ̄tN :=N (ĉt, Σ̂t).

ii) Construct a large (but finite) sample of points Ut from λ̄tN , and use (5) to compute the

ρt := |Ut ∩ U|/ |Ut|. Note that ρt is a Monte Carlo approximation to λ̄tN (U).
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iii) Define the distribution λtN so that

∂λtN (ν) =
1

ρt
∂λ̄tN (ν)1{ν ∈ U} .

iv) We approximate the uncertainty region U t with the (1− t−1) quantile ellipsoidal confidence

region of λtN . That is, we consider the approximation

Ũ t :=
{
ν : ‖ν− ĉt‖Σ̂t ≤ χ2

|A|((1− t−1)ρt)
}
,

where χ2
k stands for the quantile function of the chi-squared distribution with k degrees of

freedom, k ∈N
Because λt(U)≈ ρt, the approximate uncertainty region might not be contained in U (especially

in the short term). Moreover, it might be the case that Ũ t ∩U = ∅. Thus, in our implementation,

we first approximate the solution to (10) restricting attention to the set Ũ t ∩ U by solving the

formulation

max yn− y1 (12a)

s.t. yj − yi ≤ νi,j +xi,jM, (i, j)∈A (12b)

‖ν− ĉt‖Σ̂t ≤ χ2
|A|((1− t−1)ρt) (12c)

ysj − ysi ≤ νi,j, (i, j)∈A \Bs, s < t0 (12d)

ysn− ys1 = ν>zs, s < t0 (12e)

x∈X ys, ν ∈R|A| (12f)

When this formulation is infeasible (i.e. when Ũ t∩U = ∅) we ignore constraints (12d)-(12e). When

feasible, the formulation above finds an interdiction action x which results in a (dual) response y

by the evader when ν is chosen so it is consistent with the information obtained up to time t and

belongs to the approximate uncertainty region. Let (x, y, ys, ν) denote the solution to (12) above

in period t: we implement xt = x in period t. Because of the large computational cost of step ii)

above, in our numerical experiments we construct Ut only at a certain frequency.

Remark 5 (Connection to Linear Bandits - Continued). UCB policies for linear bandits

can be thought of as solving (12) while not having to consider (12d) and (12e) to select an action

from a combinatorial set3, with policies differing on the elliptical uncertainty set considered, see

Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Abbasi-Yadkori et al. (2011). In par-

ticular, implementing the OFUL policy Abbasi-Yadkori et al. (2011), a state-of-the-art variant of

the UCB policy of Auer (2002) which exhibits superior practical performance, amounts to (under

some mild assumptions) replacing (12c) with

‖ν− c̃t‖Σ̃t ≤

√
|A| log

(
1 + tLγ−1

δ

)
+ γ1/2,
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where L denotes the length (in number of arcs) of the largest path from 1 to n in G, γ and δ are

tuning parameters, c̃t is the `2-regularized least-square estimate of µ, and

Σ̃t := γ I +
t∑

s=1

zs (zs)>.

The set above is closely related to that used in our approximate Bayes-UCB policy: `2-regularized

least-square estimates can be seen as incorporating information about a prior (encoded in the

regularization term) into log-likelihood minimization under a multivariate normal assumption.

5.4. Oblivious adapted policies.

We close this section presenting direct adaptations of the seminal Thompson and UCB policies

to this setting. These variations, which aim at reducing the burden of implementation, come from

ignoring information about the mean cost vector deduced from observing the follower’s response.

In the case of the UCB policy, ignoring information about the adversarial nature of the follower’s

response amounts to using a confidence region for the unrestricted posterior λ̄t instead of λt, see

(11). Depending on the choice of λ̄ (in the case of a conjugate prior) such a region might have an

analytical representation; otherwise, one may use the normal approximation for the posterior, i.e.,

U t ≈ Ũ t :=
{
ν ∈R|A| : ‖ν− ĉt‖Σ̂t ≤ χ2

|A|(1− t−1)
}
.

(we do the latter in our numerical experiments). For selecting Bt, we select

Bt ∈ arg max
{

max
{

min{r(S), ν) : S ∈P(B)} : ν ∈ Ũ t
}

: B ∈B
}

(OUCB -1).

That is, we select ν optimistically and implement the optimal shortest-path interdiction action for

such a cost vector. Note that finding Bt for the oblivious policy amounts to solving (12) while

relaxing constraints (12d) and (12e).

The case of Thompson sampling policy follows the same idea: in Algorithm 2 we sample directly

from λ̄t as opposed to approximate sampling from λt. This step, which is the most time-consuming

in our implementation of the TS policy, is performed rather directly in the case of conjugate priors

(we do the latter in our numerical experiments).

6. Numerical Experiments

In this section, we illustrate the practical performance of the proposed policies and algorithms

using a set of numerical experiments. We first describe the test instances and then analyze the

performance of the various policies.
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6.1. Test instances and implementation details

Network structure. We test our policies using the class of layered graphs (Ryzhov and Powell

2011) in which nodes are located in a grid consisting of various layers, each having the same

number of nodes; the source node is connected to all nodes in the first layer, all nodes in a layer

are connected to all nodes in the next layer, and all nodes in the final layer are connected to the

sink node. Our experiments use networks with three layers, and consider the cases of: two nodes

per layer with an interdiction budget of K = 1; four nodes per layer with a budget of K = 2; and

five nodes per layer with a budget of K = 3. Additionally, we consider the case of a network with

five layers, five nodes per layer, and a budget of K = 3.

Cost and prior distribution. Given a network topology, an instance is determined by the

distribution F of the costs. In our experiments, we consider Bernoulli distributed costs, independent

across arcs, thus for µ∈ [0,1]|A| we have that

cta =

{
1 with probability µa
0 ∼ .

,

and cta ⊥ cta′ for a,a′ ∈ A, for all t ∈ [T ] (we consider T = 1000 in all our experiments). Thus,

instances are defined by the value of µ. In our experiments, we sample µa independently for each

arc a∈A from a U [0,1] distribution.

Our policies are embedded in a Bayesian framework. Practical implementation of the proposed

policies requires specifying a prior λ̄ over R|A| for µ (as opposed to a prior λ over U). Because costs

are Bernoulli distributed, to have conjugate cost and prior distributions (which allow expedited

computations), we consider a U [0,1] prior for µa, independently for each a∈A. This implies that,

λ̄ta ≡Beta(1 + |{s < t : a∈ Ss ∧ csa = 1}| ,1 + |{s < t : a∈ Ss ∧ csa = 0}|), a∈A, t∈ [T ].

The setup thus corresponds to Beta-Bernoulli distributed costs and mean costs. The experiments

start with the initialization process described in (1).

Instance filtering and further details. In our experiments we focus on comparing the per-

formance of various policies. With this in mind, for each sampled value of µ we conduct the

initialization phase (common to all policies) and check whether E = ∅. If this is the case, we discard

the value of µ and resample it. For each network structure, we sample 30 “non-trivial” instances

(i.e. settings in which E 6= ∅), compute the decision of each policy at each t∈ [T ], and report average

performance across these instances.

In our implementation of the adapted TS policy, we used |Ũ | = 1000 points to conduct our

approximate sampling scheme. In our implementation of the adapted UCB policy, we sample 1000

points from Ut to compute ρt, and we updated such a sample every 100 periods.
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All algorithms were coded in Julia v1.6.7 (Bezanson et al. 2017). We use Gurobi 11.0.0 (Gurobi

Optimization, LLC 2023) to solve all MIP and LP formulations. All experiments were performed

on a Windows PC with AMD Ryzen 7 PRO 5850U processor with 8 cores and 16 threads, and 16

GB of RAM.

6.2. Policy performance

Consider the comparative performance of the policies in a small instance consisting of a graph with

three layers, two nodes per layer, with an interdiction budget of K = 1. For such a setting, Figure 3

depicts the evolution of cumulative regret across time. There, each curve represents the evolution

Figure 3 Performance of the first instance (3 layers, 2 nodes, budget of 1)

of the cumulative regret on average across 30 non-trivial instances. We observe that the adapted

TS policy outperforms the adapted UCB policy (uniformly across the horizon), which is consistent

with prior work on bandits. Note that both the adapted TS and UCB policies outperform their

oblivious counterparts (as defined in Section 5.4), which is aligned with intuition and speaks of the

benefits associated with exploiting the structural properties of the setting and restricting attention

to mean estimates within U . Notably, we observe that the oblivious UCB policy outperforms the

oblivious TS policy, indicating that disregarding the structural properties of the setting affects the

performance of the oblivious TS policy more than that of the oblivious UCB policy.

Table 1 compares the performance of the adapted and oblivious policies in the full set of test

instances, both in terms of (average) total cumulative regret after 1000 periods and (average)

running time. We set up an upper bound of 24 hours on the running time of our instances: we
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Layers Nodes Budget(K) Init. Trivial TS Oblivious TS UCB Oblivious UCB
time (s) instances

3 2 1 0.64 2 Policy Time 6.83 9.08 31.81 390.16
Mean regret 35.32 3.79 18.27 9.80

3 4 2 0.86 1 Policy Time 32.72 81.44 145.33 177.40
Mean regret 155.34 2.80 44.57 45.69

3 5 3 16.28 2 Policy Time 58.05 89.92 744.11 3018.62
Mean regret 108.32 24.06 61.14 65.43

5 5 3 3,618.71 0 Policy Time 215.32 229.76 1886.88 -
Mean regret 169.88 80.19 110.36 -

Table 1 Mean running times in seconds and mean regret (across 30 replications) for each policy. Best

performance in boldface.

do not report the performance of the adapted UCB policy for networks with 5 layers, as running

times in such instances consistently reached the upper bound. We only found 5 “trivial” instances

using our procedures.

Overall, the adapted TS policy provides the best empirical performance without increasing run-

ning times significantly relative to that of linear bandit policies. Specifically, the TS policy outper-

forms the benchmark across all network structures in terms of total cumulative regret. In contrast,

the performance of the UCB oblivious policy is comparable to that of its adapted counterpart, even

outperforming it in some cases. It is also notable that the performance gap between the adapted

and oblivious policies tends to decrease as the size of the instances increases. We suspect, how-

ever, that if the number of periods T increases with the instance size, then this gap should remain

relatively constant.

From Table 1 we observe that running times for the initialization phase common to all policies

are relatively small compared to the policy running times (which do not consider initialization

time) for the smaller instances. However, this is not the case for the largest network structures in

our experiments, where initialization time goes over one hour, significantly larger than the running

time of the TS policies. These results suggest that the performance improvements resulting from

using the information in U come at a computational price, which might be significant for larger

instances.

As expected, running times for the TS policy are larger than those of its oblivious counterpart,

as it requires additional computational time when a sampled mean cost is found to lie outside U .

However, such a computational cost remains below that associated with both UCB policies. In this

regard, note that the UCB policy requires computing ρt every 100 periods, which is time-consuming

as it requires checking whether each sampled point belongs to U . This task, performed by solving

a MIP formulation, explains why running times go over the upper limit for networks with 5 layers.

7. Conclusions

In this work, we study a model of periodic interaction on a network between a leader and a non-

strategic follower where, in each period, the interdictor acts first by blocking passage on a subset of
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arcs of the graph, and then the evader responds by traversing the unblocked path with the smallest

expected cost on the interdicted graph. We assume that initially, the interdictor does not know the

cost distribution but observes cost realizations associated with the arcs traversed by the evader. By

framing the problem as a multi-armed bandit, we established a fundamental limit on the asymptotic

performance of any admissible policy. In particular, we showed that asymptotic optimality requires

a minimal exploration frequency for a class of arcs in the network, which translates into a lower

bound on performance by solving a linear program of combinatorial size. This program, broadly

speaking, finds the most cost-efficient way of collection of information necessary to confirm the

optimality of the full-information solution.

On a practical side, we showed that it is possible to adapt standard policies for the linear bandit

to the setting at hand, namely the Thompson Sampling and Upper Confidence Bounds policies.

A key step in this adaptation is to incorporate into posterior sampling and uncertainty region

computation information about the setting that can be collected in finite time and without noise.

While such a step presents various computational challenges, we proposed approximate methods

based on the use of mathematical programming, which results in policies closely related to state-

of-the-art implementations of UCB-type policies for the linear bandit. Our numerical experiments

have shown that carefully tailoring policies for the setting at hand results in significantly better

empirical performance, at a small computational cost. In this regard, while the benefits of the

proposed adaptation are clear for the Thompson Sampling policy, that is not the case for UCB

policies. Further research might focus on improving the construction of confidence regions, which

is the most computationally expensive step in our adaptation of the UCB policy, and on finding

faster ways to compute U in the initialization step.
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Appendix A: Proofs of main results

Proof of Lemma 1. For (i), suppose by contradiction that S(B) ∈ P(B∗). Then, by def-

inition of S∗, r(S∗, µ) ≤ r(S(B), µ). On the other hand, since B ∈ B̃, then r(S(B), µ) < r(S∗, µ),

and it can be concluded that r(S(B), µ)< r(S(B), µ), which is a contradiction. Likewise, suppose

by contradiction that S∗ ∈ P(B) and let c ∈ U(B). Then r(S(B),c)≤ r(S∗,c) because c ∈ U and

r(S∗,c)< r(S(B),c) as c ∈ U(B). This implies that r(S(B),c)< r(S(B),c), which is a contradic-

tion. For the second part, see the first part of the proof of Theorem 1

Proof of Theorem 1. We assume that the cost distribution is parametrized on the mean

cost vector, is absolutely continuous, and that its components are independent. Thus, we adopt

the notation fa(·|ua) to represent the density of the cost associated with arc a, where ua represents

its mean value, for a ∈A. Let La(ua|νa) denote the Kullback-Leibler divergence between the cost

vector distributions for arc a when the mean costs are given by ua and νa respectively, i.e.

La(ua|νa) :=

∫
R

ln(fa(x|ua)/fa(x|νa))fa(x|ua)dx.

Consider E ∈ E : by construction there exists ν ∈ U with νa = µa for all a ∈ A \ E, such that

max{r(S(B′), ν) :B′ ∈B} > r(S∗, ν). Set B := arg max{r(S(B′), ν) :B′ ∈B}, which we assume is

unique (to avoid excessive notation). Note that E ∩S∗ = ∅, so that

r(S(B), µ)≤ r(S∗, µ) = r(S∗, ν)< r(S(B), ν).

We conclude that S(B)∩E 6= ∅.

For any consistent policy π we have that for any α> 0

Rπ(t,F (·|ν)) ≥ ∆Eν

[
t−
∑
s≤t

1{Bs =B}

]

≥ ∆Eν

[
t−
∑
s≤t

1{Ss = S(B)}

]

≥ ∆(t−K ln t)Pν

{∑
s≤t

1{Ss = S(B)}<K ln t

}
≥ ∆(t−K ln t)Pν {τ(E, t)<K ln t}= o(tα).

for any positive constant K ≤ t/ ln t, where ∆ denotes the minimum optimality gap under ν, and

Eu and Pu denote expectation and probability operators when the underlying mean cost vector is

given by u. (While various random elements, e.g. St, depend on the policy π, we ignore such a

dependence, to streamline the exposition.) From the consistency of π, we conclude that

Pν {τ(E, t)<K ln t}= o(tα−1). (13)
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For a∈E and k≤ τ({a} , t), define random variable η(a,k) as the period at which a cost realization

for arc a is observed by the k-th time, i.e.

η(a,k)(ω) := inf

{
t≥ 1 :

∑
s≤t

1{a∈ Ss(ω)}= k

}
, k≤ τ({a} , t)(ω), a∈E

and the partial log-likelihood random variable

La,k(ω) :=
k∑
i=1

ln

(
fa(c

η(a,i)(ω)
a (ω)|µa)

fa(c
η(a,i)(ω)
a (ω)|νa)

)
.

Define the event

W :=

{
ω ∈Ω : max

a∈E

{
La,τ({a},t)(ω)

}
≤ (1−α) ln t

|E|
, τ(E, t)(ω)<K ln t

}
.

Under our assumptions on F we have that

Pν {W}=

∫
W

dPν =

∫
W

∏
a∈E

τ({a},t)∏
k=1

fa(c
η(a,k)
a |νa)

fa(c
η(a,k)
a |µa)

dPµ

=

∫
W

∏
a∈E

exp
(
−La,τ({a},t)

)
dPµ ≥ exp (−(1−α) ln t)Pµ {W} =

Pµ {W}
t1−α

.

From (13), we conclude that

lim
t→∞

Pµ {W}= 0. (14)

From the SLLN we have that limk→∞
1
k
La,k =La(µa|νa) a.s. (Pµ) for a∈E, thus

lim
k→∞

1

k
max{La,l : l≤ k}=La(µa|νa) a.s. (Pµ), a∈E.

This implies that, for any δ > 1,

lim
k→∞

Pµ
{
La,l
k

> δLa(µa|νa) for some l≤ k
}

= 0,

which in turn implies that, taking k= (1−α) ln t

δ |E|La(µa|νa)
,

lim
t→∞

Pµ
{
La,l >

(1−α) ln t

|E|
for some l≤ (1−α) ln t

δ |E| La(µa|νa)

}
= 0.

The above equation implies that

lim
t→∞

Pµ
{
La,τ({a},t) >

(1−α) ln t

|E|
, τ({a} , t)≤ (1−α) ln t

δ |E|La(µa|νa)

}
= 0.

Define κE := (1−α)|E|
δ

min{La(µa|νa)−1 : a∈E}: noting that τ({a} , t)≤ τ(E, t) for a∈E, and using

the union bound, we conclude from above that

lim
t→∞

Pµ
{
La,n({a},t) >

(1−α) ln t

|E|
, τ(E, t)≤ κE ln t , for some a∈E

}
= 0,
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Using K = κE, (14) and the above imply that

lim
t→∞

Pµ {τ(E, t)≤ κE ln t}= 0.

Because of the arbitrary nature of α> 0 and δ < 1, the result holds when redefining

κE := |E|min
{
La(µa|νa)−1 : a∈E

}
.

Proof of Lemma 2. Observe that formulation (2) maximizes the gap between z̄1 and z̄2

when the mean cost vector is ν2. Because z̄1 is not necessarily optimal under ν2, then Γ ≥ 0. If

Γ = 0, then we conclude that z̄1 is optimal under ν2, which implies, from the maximization sense

of the formulation, that the conditions in (1) does not hold for any B ∈ B. Alternatively, if Γ> 0

then B̂ is an element of B for which the conditions in (1) hold.

Proof of Lemma 3. We focus on proving that v+ = w+, the other case is similar. Observe

that given νk ∈ int(U) and the direction d, v+ can equivalently be found by finding the largest

possible w such that (zs − z)>(νk +wd)≤ 0 ∀z ∈ Zs, s < t0 and νk +wd ∈ C. In other words, we

seek the w that solves the following problem:

max w (15a)

s.t. min
{

(νk +wd)>z : Asz = b, z ∈ {0,1}|A\B
s|}≥ (νk +wd)>zs s < t0 (15b)

νk +wd∈C (15c)

w≥ 0. (15d)

Observe that the optimization problem in (15b) can be replaced by its linear relaxation because of

the total unimodularity of As. Additionally, one can replace such a relaxation by its dual, obtaining

max w

s.t. max
{
ysn− ys1 : ysj − ysi ≤ νki,j +wdi,j (i, j)∈A \Bs, y ∈Rm

}
≥ (νk +wd)>zs s < t0

νk +wd∈C

w≥ 0.

The result follows by noting that (8) is equivalent to the formulation above.
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