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1 Introduction

Background and motivation. Multiclass queueing networks are widely used as mathematical

models of real-world complex systems, e.g., communication networks, manufacturing operations,

and service systems. At the same time, relevant queueing network models are mostly intractable for

purposes of exact performance analysis. A possible remedy for this is to approximate the queueing

network model with a more simplified structure that supports the derivation of the pertinent

performance measures. Perhaps the most prevalent approach in this context has focused on a class of

multidimensional diffusion processes, known as semimartingale reflected Brownian motions (SRBM)

which serves as a proxy for the dynamics of the underlying queueing network. Loosely speaking, a

d-dimensional SRBM living on the nonnegative orthant S := Rd
+ behaves like an ordinary Brownian

motion while in the interior of S, and is confined to the orthant by “instantaneous” reflection at

the boundary faces; a formal definition will be given in §2.

The connection between the queuing network and its “Brownian” counterpart was first es-

tablished in Reiman’s seminal paper [25]. There, it is shown that for a certain family of open

single-class queueing networks, the normalized vector of queue length processes converges in dis-

tribution to a SRBM on the positive orthant, as the traffic intensity approaches one. The scope of

queueing network models for which such weak limit theory exists has been greatly expanded since,

culminating in the influential papers of Branson [4] and Williams [30].

Regardless of whether supporting limit theory exists, one can always informally replace the

original network with a suitable SRBM and pursue performance analysis of the latter as an ap-

proximation for the former. This is in essence the proposal advocated by Harrison and Nguyen

[17], an approach that was dubbed QNET. In that paper, Harrison and Nguyen explain how to

“map” the parameters of the underlying queueing network to those of the approximating Brow-

nian model (the SRBM), and then use the latter to derive estimates of steady-state performance

measures such as mean queue length, workload, etc. It should be noted that even if the SRBM

can be arrived at as a rigorous weak limit, it is still unclear whether it is justified to approximate

the stationary distribution of the underlying queueing network with that of the SRBM (for cases

when this interchange-of-limits has been established, see e.g., Gamarnik and Zeevi [11] and Gurvich

and Zeevi [14]). Assuming that the approximating SRBM indeed admits a steady-state, the main

task, in order to carry out the program in Harrison and Nguyen [17], is to compute the stationary

distribution of the SRBM. This is the main focal point of the present paper.

Consider an SRBM Z = (Z(t) : t ≥ 0) with state-space S := Rd
+, whose drift vector µ =

(µ1, . . . , µd) and covariance matrix σ ∈ Rd×d dictate the dynamics of Z in the interior of the

orthant, and with matrix R ∈ Rd×d which dictates the directions of reflection at the boundary.

Suppose Z admits a unique stationary distribution π. In most cases, it is impossible to compute π
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in closed form, and a plausible alternative is to compute it numerically. To this end, define

Gf :=
1
2

d∑

i=1

d∑

j=1

σij
∂2f

∂xi∂xj
+

d∑

i=1

µi
∂f

∂xi
, (1)

Dif(x) := Ri · ∇f(x) for x ∈ Fi := {x ∈ S ; xi = 0}, (2)

where Ri is the i-th column of the reflection matrix, and for two vectors a, b ∈ Rd, a · b denotes the

scalar product. Using Ito’s lemma it has beeb shown that the stationary distribution π together

with a boundary measure ν must satisfy

∫

S
(Gf) (x)π(dx) +

d∑

i=1

∫

Fi

(Dif) (x) νi(dx) = 0, (3)

for all f ∈ C2
b . The equation above is known as the basic adjoint relationship (BAR), and the

aforementioned necessity was established in Harrison and Williams [18] (a more formal definition

of the BAR will be advanced in §2). The first term on the left hand side of (3) is driven by the

behavior of Z in the interior of S, while the second term is related to the behavior on the boundary

faces {Fi}, and it is associated with the d-dimensional pushing process keeping Z in the orthant.

Dai an Kurtz [8] established that this relationship is also sufficient to characterize the stationary

distribution (π) and boundary measure (ν).

With this characterization at hand, Dai and Harrison [6] developed an algorithm for computing

the stationary distributions of SRBM, by viewing the BAR as an orthogonality condition between an

infinite dimensional functional space and the stationary distribution. By considering an increasing

sequence of finite dimensional approximations of C2
b , they obtain a sequence of approximating

densities of π by means of orthogonal projections into a sequence of finite dimensional spaces.

They prove that this sequence of densities converges to the stationary density of the SRBM in

L2, but their proof relies on a certain conjecture regarding densities that arise as solutions to the

BAR. Later, Shen et al. [32] considered a variant of the Dai-Harrison algorithm for the case of

an SRBM on a hypercube using a finite element method (or piecewise polynomials) to form the

finite dimensional approximations of the functional space C2 (Shen and Chen [31] later extend this

algorithm to SRBM on the positive orthant).

Our approach. We view (3) as characterizing π via a solution to an infinite dimensional

system of linear equations. Obviously it is impractical to try to solve this directly, but one can try

approximating S and C2
b by suitable chosen sequences {Sn : n = 1, . . .} and {Fm : m = 1, . . .} of

finite cardinality subsets of S and finite-dimensional subspaces of C2
b , respectively, such that Sn ↑ S

and Fm ↑ C2
b in a suitable sense. For fixed values of n and m, (3) reduces to a finite-dimensional

linear program (LP), that can be solved efficiently. The hope is then, that roughly speaking, π will
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emerge as a limit of a sequence of optimal solutions to the aforementioned LP’s.

To establish the convergence of the sequence of approximations to the stationary distribution

π, we need to ensure that this sequence is tight. This leads us to impose additional constraints

in the LP formulation that enforce tightness. This, in turn, necessitates estimates of interior and

boundary moments. One of the contributions of this paper is to provide a mean for enforcing such

constraints, and in doing so we establish a certain relationship between the interior and boundary

measure (Harrison and Williams [18] conjectured that the latter is a “projection” of the former).

It is worth emphasizing that our proof of convergence does not require the conjecture advanced

in Dai and Harrison [7] and follow up papers. The LP formulation is also quite flexible in terms

of incorporating additional constraints, and we indicate how this can be used to get more stable

numerical results, and obtain accurate approximations to the entire distribution as opposed to

first moments as reported in Dai an Harrison [7] and some of the follow up papers. Finally, we

also illustrate the flexibility of the LP approach in two ways: (i) by indicating how it can be

adapted to account for parameter uncertainty in the primitives; and (ii) explaining how it can be

used to compute approximations to the stationary distribution of diffusion processes arising in the

many-server heavy-traffic regime.

Related literature. The linear programming approach pursued in the present paper origi-

nates with the work of Manne [24] in the context of discrete time and finite state-space Markov

chains. Hernandez and Lasserre [20] extend this to analyze the convergence of linear-programming

approximations for discrete-time general state-space controlled Markov chains. In [20], the authors

approximate a discrete time analog of the BAR using a discrete probability distribution and a

finite subspace of test functions. The main focus there is not on the steady-state distribution, but

rather on minimizing a steady-state cost function (see also [21] for further discussion and refer-

ences). Mendiondo and Stockbridge [22] extends this work to the continuous time setting in the

context of long-run average and discounted control problems, when the state and control spaces are

assumed to be compact. The key features that distinguish our work relative to these papers are:

(i) feasibility in our sequence of approximating problems is guaranteed, while the work cited above

assumes feasibility in the respective measure-control space; (ii) our focus is on directly computing

the stationary distribution; and (iii) we deal with particulars of the SRBM problem which involves

a non-compact state space, and involves reflection at the boundaries.

The remainder of the paper. Section 2 provides a formal definition of the SRBM, a summary

of known existence, uniqueness, stability results, and the BAR condition. Section 3 formulates our

algorithm, and establishes its convergence. Section 4 presents applications to several illustrative

SRBM instances, with extensive computational results. Section 5 extends the algorithm to the

setting where there is uncertainty with regard to certain parameters in the underlying queueing

system. Finally, §6 provides an application to an Ornstein-Uhlenbeck-type diffusion that arises in
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the so-called many server heavy-traffic regime, illustrating that the method is not limited to SRBM.

2 Semi-martingale Reflected Brownian Motion in the Orthant

This section first reviews some basic proporties of SRBM in the orthant, and then derives a result

which pertains to the boundary behavior of SRBM that is essential for the purposes of the algorithm

we develop in §3.

2.1 Review and Basic Properties

We start with a formal definition.

Definition 1 For d ≥ 1, integer, let S := Rd
+ (the positive d-dimensional orthant). Let µ be a

constant vector in Rd, σ a d× d non-degenerate covariance matrix (symmetric and strictly positive

definite), and R a d× d matrix. For each x ∈ S, an SRBM associated with the data (S, µ, σ,R, x)

is a Ft-adapted, d-dimensional process Z = (Z(t) : t ≥ 0) defined on some filtered probability space

(Ω,F ,Ft,P) such that:

(i) Z = X + RY , Px-a.s.,

(ii) Px-a.s., Z has continuous paths and Z(t) ∈ S for all t ≥ 0,

(iii) X is a d-dimensional Brownian motion with drift vector µ, covariance matrix σ and X(0) = x.

In addition X(t)− µt is a Ft-martingale,

(iv) Y is an Ft-adapted d-dimensional process such that under P it satisfies for each j = 1, . . . , d :

a.) Y (0) = 0,

b.) (Yi(t) : t ≥ 0) is continuous and non-decreasing,

c.) Yi(t) can increase only when Z hits the face Fi = {x ∈ S : xi = 0}.

Loosely speaking, an SRBM Z behaves like the Brownian motion X in the interior of S, and is

confined to the orthant by instantaneous “reflection” at the boundary faces: when Z hits Fi, the

process Yi increases, pushing Z in the direction Ri and keeping it in S. The most general condition

currently known to ensure existence and uniqueness (in law) of SRBM in the orthant is that the

matrix R be completely S.

Definition 2 A d × d matrix R is said to be S if there exits a d-dimensional vector u ≥ 0 such

that Ru > 0, and to be a completely S if each of its principal submatrices is an S matrix.
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This condition is in fact both necessary (Reiman and Williams [26]) and sufficient (Taylor and

Williams [28]).

With regard to the stationary distribution of SRBM, which constitutes the main focus of the

present paper, Dupuis and Williams [9] proved that a sufficient condition for existence is that all

solutions of an associated deterministic Skorohod problem are attracted to the origin in finite time.

In addition, any stationary distribution π of the SRBM Z is unique and equivalent to Lebesgue

measure on S. To complete the picture, for each i ∈ {1, . . . , d} there exists a finite Borel measure

νi on Fi such that νi is equivalent to the (d− 1)-dimensional Lebesgue measure on Fi, and for each

bounded Borel function f on Fi and t ≥ 0,

Eπ

[∫ t

0
f(Z(s))dYi(s)

]
= t

∫

Fi

f(x)νi(dx), (4)

where Eπ denotes expectation with respect to the stationary distribution π (i.e., when Z(0) ∼ π).

As alluded to earlier, the algorithm proposed in this paper is based on the BAR condition (restated

here) ∫

S
(Gf) (x) π(dx) +

d∑

i=1

∫

Fi

(Dif) (x) νi(dx) = 0 for all f ∈ C2
b , (5)

where the second order differential operator, G and the directional derivative, Di are defined in (1)

and (2) respectively. Necessity of the BAR was first shown by Harrison and Williams [18] when

the matrix R is Minkowski (I −R ≥ 0 and I −R transient), and later by Day and Harrison [7] for

the completely S case. Sufficiency was later proven by Dai and Kurtz [8] (see Dai [6]).

2.2 Relationship of the Interior and Boundary Measures

As mentioned in §1, our plan is to approximate the BAR (5) by a finite system of linear equations

with a finite number of unknowns, and using these solutions to construct a sequence of probability

measures converging to π. Since S is not compact, we will need to ensure the tightness of such a

sequence, which can be done by bounding expectations for both interior and boundary measures.

Using an explicit Lyapunov function argument, Glynn and Zeevi [12] prove the existence of

exponential moments of the interior measure for the case of R being symmetric and positive definite.

Budhiraja and Lee [5] provide a more general result which hinges on the existence of a suitable

Lyapunov function for the completely S case. Using this, we can show the following for the boundary

measures.

Theorem 1 Assume R is completely-S, and suppose π is the stationary distribution for Z associ-

ated with boundary measures νi , i = 1, . . . , d. Then, there exits a d-dimensional vector u with all
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components being strictly positive such that

∫

Fi

eu·x νi(dx) < ∞ , for i = 1, . . . , d.

Proof Consider a d-dimensional vector v > 0 such that R>v > 0 (we know such vector exists,

since the completely-S class is closed under transposition; see Reiman and Williams [26] for a

proof). Fix a > 0 and let f(x) = exp(ax · v). Applying Itô’s formula, we have that

f(Z(t))− f(Z(0))−
∫ t

0
(Gf)(Z(s))ds−

d∑

i=1

∫ t

0
(Dif)(Z(s))dYi(s)

is a local Px martingale with respect to a sequence of localizing stopping times Tn := inf {t ≥ 0, ‖Z(t)‖1 ≥ n}
n = 1, . . .. It follows that

Ex[f(Z(t ∧ Tn))]− f(x) = Ex[
∫ t∧Tn

0
(Gf)(Z(s))ds] + Ex[

d∑

i=1

∫ t∧Tn

0
(Dif)(Z(s))dYi(s)],

where Ex[·] = E[·|Z(0) = x] and a ∧ b := min {a, b}. For this choice of function f , (Gf)(x) =

f(x)
[
a(µ · v) + a2

2

∑d
i=1

∑d
j=1 σijvivj

]
and (Dif)(x) = af(x)[Ri · v]. Notice that

µ · v = µ(R>)−1R>v < 0, (6)

since R−1µ < 0 must hold for π to exist. Define α := −a(µ·v) > 0 and βi := aRi·v > 0 , i = 1, . . . , d.

The next inequality follows from the sign of α and the nonnegativity of f .

Ex[f(Z(t ∧ Tn))]− f(x) + αEx[
∫ t

0
f(Z(s))ds] ≥

d∑

i=1

βiEx[
∫ t∧Tn

0
f(Z(s))dYi(s)].

Now notice that

Ex[f(Z(t ∧ Tn))] = Ex[f(Z(t ∧ Tn)) ; Tn > t] + Ex[f(Z(t ∧ Tn)) ; Tn ≤ t]

≤ Ex[f(Z(t)) ; Tn > t] + φ(n)P[Tn ≤ t]

≤ Ex[f(Z(t))] + ecnP[ max
s∈[0 , t]

‖Z(s)‖1 ≥ n],

where φ(n) = max {f(x) ; ‖x‖1 = n} ≤ ecn for some c > 0. Using the El Kharroubi oscillation
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inequality (Lemma 1 in [3]) we have that

max
s∈[0 , t]

‖Z(s)‖1 ≤ K max
s∈[0 , t]

‖x + µs + AB(s)‖1

≤ K(‖x‖1 + c1t + c2 max
s∈[0 , t]

‖B(s)‖1)

≤ K(‖x‖1 + c1t + (c2d) max
s∈[0 , t]

max
i=1,...,d

|Bi(s)|)
= K(‖x‖1 + c1t + (c2d) max

i=1,...,d
max

s∈[0 , t]
|Bi(s)|),

where 0 ≤ K < ∞, B(s) is a d-dimensional standard Brownian Motion, A is the Cholesky decompo-

sition of σ with σ := AA>, c1 is a constant such that ‖µ‖1 ≤ c1, and c2 is such that
∑

ij |Aij | ≤ c2.

Using this, we have that

P[
{

max
s∈[0 , t]

‖Z(s)‖1 ≥ n

}
] ≤ P[

{
max

i=1,...,d
max

s∈[0 , t]
|Bi(s)| ≥ (n−K(‖x‖1 + c1t))/c2

}
]

≤ dP[
{

max
s∈[0 , t]

|B1(s)| ≥ (n−K(‖x‖1 + c1t))/Kc2

}
]

≤ 2dP[
{

max
s∈[0 , t]

B1(s) ≥ (n−K(‖x‖1 + c1t))/Kc2

}
].

A standard Gaussian tail bound gives P[
{
maxs∈[0 , t] B1(s) ≥ x

}
] ≤

√
t

2π
4
xe−x2/2t, therefore we can

conclude that

P[
{

max
s∈[0 , t]

‖Z(s)‖1 ≥ n

}
] ≤ k1

√
te−k2n2/t

for some 0 < k1, k2 < ∞, for n > K(‖x‖1 + c1t). Combining these results we have that for n large

enough,

Ex

[
d∑

i=1

βi

∫ t∧Tn

0
f(Z(s))dYi(s)

]
≤ Ex[f(Z(t))] + k1

√
tecn−k2n2/t − f(x) + αEx

∫ t

0
f(Z(s))ds.

Letting n →∞, and invoking monotone convergence on the right-hand-side (since f ≥ 0) we have;

Ex

[
d∑

i=1

βi

∫ t

0
f(Z(s))dYi(s)

]
≤ Ex[f(Z(t)]− f(x) + αEx

∫ t

0
f(Z(s))ds,

where Ex[f(Z(t))] is clearly finite valued for all x ∈ Rd
+ and t ≥ 0. Taking expectations with respect

to π, and considering a small enough value of a for Eπ[f(Z(0))] to exist, we have

d∑

i=1

βiEπ

[∫ t

0
f(Z(s))dYi(s)

]
≤ Eπ[f(Z(0))]− Eπ[f(x)] + tαEπ[f(x)].
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Now, for M > 0 consider fM (x) = f(x)1 {f(x) ≤ M}. Using (4) we have

Eπ

[∫ t

0
fM (Z(s))dYi(s)

]
= t

∫

Fi

fM (x)νi(dx).

Leting M ↑ ∞ and using monotone convergence, we conclude that

Eπ

[∫ t

0
f(Z(s))dYi(s)

]
= t

∫

Fi

f(x)νi(dx), i = 1, . . . , d.

It follows that
d∑

i=1

βi

∫

Fi

f(x)νi(dx) ≤ αEπ[f(x)], (7)

and thus ∫

Fi

eav·xνi(dx) ≤ α

βi
Eπ[ea v·x] < ∞, i = 1, . . . , d.

This concludes the proof.

Remark 1 A direct consequence of Theorem 1 is the finiteness of the moment generating function

of the stationary boundary measures in a neighborhood of zero. The nature of the result displayed

in (7) may be related to a conjecture made by Harrison and Williams [18] regarding the connection

between the interior and boundary measures. In particular, based on the analysis on the skew-

symmetric case, they conjecture that π should have a density function p on S such that the boundary

measure νi has density σii/(2Rii)p on Fi.

3 The Proposed Algorithm

3.1 LP Formulation

The BAR condition (5) which characterizes the stationary distribution π, can be visualized as an

infinite dimensional system of linear equations, and as such it is impractical to solve it directly.

The approach we adopt here it to develop a sequence of approximations which involve: (a) a finite

system of linear equations; and (b) a suitable discretization of π. Let S be a dense countable subset

of S, and consider an increasing sequence of finite cardinality sets Sn ⊆ S such that Sn ↑ S, and

0 ∈ Sn for all n ≥ 0. Also, let {Fm} be an increasing sequence of finite dimensional subspaces of

C2
b , such that for all f ∈ C2

b and for any compact set A ⊆ S, there exists a sequence {fm} with

fm ∈ Fm for each m = 1, . . ., such that

lim
m→∞ sup

A
|(G(fm − f))(x)| = 0,
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lim
m→∞ sup

A
|(Dj(fm − f))(x)| = 0 , for all j = 1, . . . , d,

where G is the second order operator defined in (1), and Di are the differential operators defined

in (2). Consider the following linear program.

(Pnm) min u

s.t.

∣∣∣∣∣∣
∑

i: xi∈Sn

(Gf)(xi)λi +
d∑

j=1

∑

i: xi∈F n
j

(Djf)(xi)γji

∣∣∣∣∣∣
≤ u , for all f ∈ Fm [≈ BAR] (8)

∑

i: xi∈Sn

λi = 1 [Normalization] (9)

∑

i: xi∈Sn

g(xi)λi ≤ M [Interior measure tightness] (10)

∑

i: xi∈F n
j

gi(xi)γji ≤ Mj , for all j ∈ {1 . . . , d} [Boundary measure tightness] (11)

λi, γij ≥ 0 , for all {i : xi ∈ Sn} and j ∈ {1, . . . , d} . [Nonnegativity] (12)

In this formulation, {λi : i s.t. xi ∈ Sn} is a discrete distribution, with Sn as its support, that

approximates π, and
{

γji : i s.t. xi ∈ Fn
j

}
is a discrete approximation to νj , j = 1, . . . , d. The

constants Mj j = 1, . . . , d and M , and the functions gj(·), j = 1 . . . , d and g(·) in (10)) and (11)

are specified as follows. First, the function g : S → R+ is chosen such that g(x) ≤ g(y) for x ≤ y

componentwise, and such that g(x) →∞ as ‖x‖1 →∞, and with M > 0 such that Eπ(g(Z)) ≤ M .

The functions gi : Fi → R+ are chosen such that gj(x) ≤ gj(y) for x ≤ y componentwise, and

such that gi(x) → ∞ as ‖x‖1 → ∞, with Mi > 0 such that
∫
Fi

gi(x)νi(dx) ≤ Mi. The constraint

(8) is a discrete approximation for the BAR, while constraints (9) and (12) impose the required

regularity on {λi} and {γji}, j = 1, . . . , d. With a forward view towards the convergence result in

§3.2, constraints (10) and (11) are put in place to impose tightness on the sequence of solutions

to these LP’s. The actual specification of the functions and constants in (10) and (11) will be

discussed in §3.3.

Remark 2 Our LP formulation proposes to approximate π by a discrete distribution with

support on Sn. Notice that this is equivalent to approximate π by a convex combination

of one point distribution functions, where λi is the weight given to the distribution

function that assigns probability one to the point xi ∈ Sn. In more generality, for

a given n, one can try to approximate (π, ν) as a convex combination of generic distribution

functions. For this approach to make sense, {Sn}, now viewed as a sequence of distribution

function spaces, must be such that, for any probability measure µ and finite measures

νi i = 1, . . . , d, there exists a sequences {µn} and {νni} i = 1, . . . , d with (µn, νn) ∈ Sn,
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such that µn ⇒ µ and νn ⇒ ν. We express this idea in more detail on §7.

3.2 Convergence Result

Let (λ, γ) be a feasible solution to (Pnm), where γ := (γ1, . . . , γd). Define

πn
λ(x) :=

∑

i: xi∈Sn

λiδxi(x),

νn
γj(x) :=

∑

i: xi∈F n
j

γjiδxi(x) j = 1, . . . , d,

where δy(x) = 1 if x = y and 0 otherwise. These discrete measures provide an approximation to

the true underlying probability measure π and boundary measures ν := (ν1, . . . , νd). The following

is the main result of this paper, and characterizes the properties of the sequence of approximating

distributions generated by the LP (Pnm). We use the notation “⇒” to mean weak convergence.

Theorem 2 Consider an SRBM Z as given in definition 1. Let π be the stationary distribution

for Z, with boundary measures νj , j = 1, . . . , d. Then, there exist sequences {nk} and {mk},
k = 1, 2, . . ., of positive integers that diverge to infinity as k → ∞, such that πnkmk

λk ⇒ π and

νnkmk

γkj
⇒ νj as k →∞, for j = 1, . . . , d, where (λk, γk) are optimal solutions to the LP (Pnkmk

).

Proof First, consider sequences {φn}, and {ϕn
1}, . . . , {ϕn

d}, of probability and finite measures

on S and F1, . . . , Fd, respectively, such that

(a) for every n ≥ 1, φn (ϕn
j ) has support on Sn (Fn

j ), that is, φn (ϕn
j ) is of the form φn(x) = πnm

θn (x)

(ϕn
j (x) = νnm

ϑnj(x)) for some vector θn ≥ 0 (ϑn ≥ 0) such that
∑

i θ
n
i = 1 (

∑
i ϑ

n
i < ∞);

(b) the sequences {φn} and {ϕn
1}, . . . , {ϕn

d} converge weakly to π and ν1, . . . , νd, respectively;

(c)
∫
S g(x)φn(dx) ≤ ∫

S g(x)π(dx), and
∫
Fj

g(x)ϕn
j (dx) ≤ ∫

Fj
gj(x)νj(dx), for j = 1, . . . , d, for all

n ≥ 1.

It is straightforward to ensure the first two properties above. We next explain how the third

can be made to hold. Fix n ≥ 1. Without lost of generality, assume the elements of Sn ={
x1, x2, . . . , x|Sn|

}
are such that x1 <l x2 <l . . . <l x|Sn|, where <l represents lexicographic order,

and | · | denotes the cardinality of a set. For xi ∈ Sn define Axi := {x ∈ S : xi <l x} ∪ {xi}.
Put Âi := {x ∈ Axi : i = max {k : x ∈ Axk

}}. Notice that
{

Âi

}
defines a partition of S. Set

θi := π(Âi), i.e.,
∫
x∈Âi

π(dx). Put θn := (θ1, . . . , θ|Sn|), and φn := πnm
θn . Consider a bounded

11



continuous function f : S → R, and the simple function approximation fn(x) := f(xi) for x ∈ Âi.

Since Sn ↑ S we have that fn → f by continuity of f . Hence,

∫

S
f(x)φn(x) =

∫

S
fn(x)π(x) →

∫

S
f(x)π(x) as n →∞,

by bounded convergence. Since this holds for all bounded continuous f , we conclude that φn ⇒ π

as n → ∞. On the other hand, by construction g(xi) ≤ g(x) for all x ∈ Âi, for all i = 1, . . . , |Sn|.
Therefore ∫

S
g(x)φn(dx) ≤

∫

S
g(x)π(dx).

The same argument applies to each of the boundary measure approximations.

Notice that (c) implies that (θn, ϑn
j ) is (Pnm)-feasible for all m and n. Let M denote the space

of probability measures on S, and Mj the space of finite measures on Fj , j = 1 . . . , d. For φ ∈M,

ϕj ∈ Mj , j = 1 . . . , d, and f ∈ C2
b , let B : M×M1 × . . . ×Md × C2

b → R denote the following

operator:

B(φ, ϕ, f) :=
∫

S
(Gf) (x) φ(dx) +

d∑

j=1

∫

Fj

(Djf) (x) ϕj(dx),

where ϕ := (ϕ1, . . . , ϕd). Fix n, and consider the sequence
{

(λn
m, γn

m
)
}

of optimal solutions to

(Pnm), m = 1, 2 . . .. This sequence is tight, so it converges weakly, along a subsequence {mn
k}, to

a probability distribution π̂n and finite measures ν̂n := (ν̂n
1 , . . . , ν̂n

d ). Now, for any function f ∈ C2
b

Consider the sequence {fm} with fm ∈ Fm such that limm→∞maxx∈Sn |(G(f − fm))(x)| = 0, and

limm→∞maxx∈F n
j
|(Dj(f − fm))(x)| = 0. Put πn

m := πn
λn

m
, and νn

m := νn
γn

m
. We have that

|B(π̂n, ν̂n, f)| = | lim
k→∞

B(πn
mn

k
, νn

mn
k
, f)|

= | lim
k→∞

B(πn
mn

k
, νn

mn
k
, f − fmn

k
) + lim

k→∞
B(πn

mn
k
, νn

m, fmn
k
)|

≤ | lim
k→∞

B(φn, ϕn, fmn
k
)|

= |B(φn, ϕn, f)|.

The sequence
{
(π̂n

, ν̂n)
}
, n = 1, 2, . . . is also tight, so it converges weakly, along a subsequence

{nk}, to a probability distribution π̂ and finite measures ν̂ := (ν̂1, . . . , ν̂d). From the above we have

that

|B(π̂, ν̂, f)| = | lim
k→∞

B(π̂nk , ν̂nk , f)| ≤ | lim
k→∞

B(φnk , ϕnk , f)| = |B(π, ν, f)| = 0.

Applying a diagonal argument, the result follows from the uniqueness of the stationary distribution,

and hence π̂ and ν̂ are solutions to the BAR.

12



3.3 Practical Considerations

In order to implement the algorithm described §3.1, we first need to specify the sequence of subsets

of S, {Sn}, and the sequence of finite dimensional spaces {Fm} approximating C2
b . Moreover, the

specification of the algorithm requires a specification of the tightness conditions. That is, we need

to specify feasible values of M and Mj for j = 1 . . . , d, as well as functions g and gj , j = 1, . . . , d.

In this section, we first discuss the specification of these constants and then we provide a specific

choice {Sn} and {Fm}.

Tightness of the interior distribution. We use a Lyapunov-function type argument. For il-

lustration purposes we will assume that R is symmetric and that R−1 is positive definite; this

facilitates the construction of a simple Lyapunov function (a more general, but less implicit argu-

ment can be followed using the Lyapunov function identified in Dupuis and Williams [9]). Consider

f(x) = x ·R−1x. Following the steps in the proof of Theorem 1, applying Ito’s formula and taking

expectations with respect to Px, we have

Ex[f(Z(t ∧ Tn))]− f(x) + Ex[
∫ t∧Tn

0
Z(s) · % ds] = Ct + Ex

[
d∑

i=1

∫ t

0
Zi(s)dYi(s)

]
,

where C =
∑

ij σij(R−1)ij > 0, σij is the (i, j)-element of σ, % := −R−1µ > 0, and Tn :=

inf {t ≥ 0 ; |Z(t)| ≥ n}. Notice that Ex[
∑d

i=1

∫ t
0 Zi(s)dYi(s)] = 0 by definition of the SRBM; see

Definition 1. Considering the sign of %, and that f ≥ 0, we have that

−f(x) + Ex[
∫ t∧Tn

0
Z(s) · % ds] ≤ Ct.

After applying the Monotone Convergence to the left-hand-side, and taking expectations with

respect to π, we conclude that ∫

S
(e · x)π(dx) ≤ C

minj {%j} ,

with e = (1, . . . , 1)> ∈ Rd. Here we can take g(x) = e · x and M = C/ minj {%j}. For the case

where R is Minkowski, a bound can be derived directly from lemma 8.4 in Harrison and Williams

[18].

Tightness of the boundary measures. Take a d-dimensional vector v > 0 such that R>v > 0

(which follows from the completely-S condition) and construct a d × d symmetric matrix V by

setting Vij = vjvi > 0. It follows that (RV )ij > 0 for i, j = 1, . . . , d. Let f(x) = x · V x. Note that

(Gf)(x) = [2µ · V x +
∑

ji vivjσij ]. Following the steps in the proof of Theorem 1, for n ≥ 1, we

13



have

Ex[f(Z(t))] + k1

√
tn2e−k2n2/t + Ex[

∫ t

0
Z(s) · ζds]− f(x) ≥ Ex

[
d∑

i=1

∫ t∧Tn

0
Z(s) · (RiV ) dYi(s)

]
,

where ζ := V µ > 0, following (6). Letting n →∞ and taking expectations with respect to π, and

using (4) as in proof of Theorem 1, we have that

∫

Fi

(e · x) νi(dx) ≤ α

βi

∫

S
e · xπ(dx),

i = 1, . . . , d, where α := maxj {ζj} > 0 and βi := minj {(V Ri)j} > 0, i = 1, . . . , d. Combining this

result with the previous one, we can choose gi(x) = e · x, and Mi = (Cα)/(βi minj {%j}).

Support and function space approximation. Harrison and Williams [19] proved that the sta-

tionary distribution for a standard SRBM1 has a separable density function (in the usual Cartesian

coordinates) if and only if the covariance matrix σ satisfies a “skew symmetry” condition:

2σij = Rij + Rji for i 6= j ∈ {1, . . . , d} . (13)

In this case, the marginal distribution for each coordinate i is exponential with rate 2%i :=

(−2R−1µ)i. Moreover, the boundary measures are the restriction of the joint distribution to the

corresponding faces of S (up to a scaling factor). Recently, Budhiraja and Lee [5] established that

the moment generating function of the stationary distribution is finite in a neighborhood of zero

under the sufficient stability condition of Dupuis and Williams [9].

The above observation motivates taking {Sn} to have an “exponential spacing” on the marginals,

that is for each n ≥ 1,

Sn = {x ∈ S : xi ∈ {[log(n)− log(k)]/(2%i) , for k = 1, . . . , n} , for i = 1, . . . , d} . (14)

For the boundary, we simply project this grid on the corresponding faces, Fn
j = {x ∈ Sn ; xj = 0} , j =

1, . . . , d. This structure of Sn is related to the choice of a reference density in the Dai-Harrison

algorithm [7]. Regarding the function spaces approximating C2
b , for each m ≥ 1 let Hm be the lin-

ear space spanned by
{
xp1

1 · · ·xpd
d , p1 + . . . + pd ≤ m, p1, . . . , pd are nonnegative integers

}
. Take

ε > 0 and define Hl
m := {f ∈ C2

b : f(x) = g(x) for ‖x‖1 ≤ l for some g ∈ Hm such that f(x) =

c for ‖x‖1 > l + ε for some constant c}. For each m ≥ 1 we take Fm =
⋃

1≤l≤mHl
m.

Remark 3 A practical choice of the exponential spacing can be had using a rate vector C%, with

0.5 ≤ C ≤ 2. Also, we use Fm := Hm in the numerical experiences.
1A SBRM is said to be standard if σii = 1 i = 1, . . . , d, R is invertible and ‖%‖∞ = 1.
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m 3 4 5 6 7 8 9 10
Eπ[Z1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Eπ[Z2] 0.793 0.821 0.764 0.768 0.762 0.758 0.760 0.750

Table 1: Moment estimates for the SRBM in example 1. The algorithm uses the grid Sn

as in (14) with n = 100, and m = degree of polynomials. True moments are Eπ[Z1] = 0.5 and
Eπ[Z2] = 0.75.

4 Numerical Results

In this section we compare the performance of our algorithm to some known analytical results of

particular instances of SRBM, as well as other numerical methods proposed in antecedent literature.

Example 1: A Two-Dimensional special case. Consider a two-dimensional SRBM Z =

(Z(t) : t ≥ 0) associated to the following data:

R =

(
1 0

−1 1

)
, σ =

(
1 0

0 1

)
, µ =

(
µ1

0

)
.

For this SRBM the stationary condition reduces to µ1 < 0. Harrison [16] computed a closed form

solution for the density of the stationary distribution in polar coordinates:

p(x1, x2) = (2|µ1|)3/2/(π1/2)r−1/2 exp(µ1r(1 + cos(θ))) cos(θ/2),

where (x1, x2) = (r cos(θ), r sin(θ)). This SRBM is the only instance (excluding the skew symmetry

condition) for which the stationary distribution can be computed in closed form.

Without loss of generality consider µ1 = −1. It can be shown (Greenberg [13]) that

Eπ[Z1] = 0.5 , Eπ[Z2] = 0.75.

Taking Sn as in (14), with n = 100, we use the proposed algorithm to get estimates for these

moments. The results are displayed on Table 1 for various degrees of polynomials that compose

Fm. We see that the estimates are quite accurate even for low values of m. Each one of the

instances shown in Table 1 ran in less than 1 minute on a regular Desktop PC with processor

Intel Pentium D (3.2Ghz), using a MATLAB implementation of the algorithm. Figure 1 gives

the marginal distribution estimates for n = 100 and m = 6 (solid line), compared with the true

marginal distributions (doted line).

Example 2: A Symmetric case. A standard SRBM is said to be symmetric if its data has

the following properties: σij = ρ for 1 ≤ i < j ≤ d, µi = −1 for i = 1, . . . , d and Rij = Rji = −r ≤ 0

for 1 ≤ i < j ≤ d. That σ is positive implies that −1/(d − 1) < ρ < 1, and the completely S
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Figure 1: Marginal distribution estimates for the SRBM in Example 1. The algorithm
uses the grid Sn as in (14) with n = 100, and m = 6 degree polynomials. The marginal distribution
estimates (solid line) are superimposed on the true marginals (dotted line)

r\ρ -0.9 -0.5 0.0 0.5 0.9
0.2 1.98e-4 1.65e-4 1.26e-3 2.32e-3 6.66e-4
0.4 3.90e-4 4.88e-5 2.52e-5 2.92e-3 2.00e-4
0.6 1.76e-5 5.97e-4 2.05e-4 1.06e-6 5.70e-4
0.8 1.53e-5 4.27e-5 2.22e-5 1.17e-3 2.16e-3
0.9 1.65e-5 4.26e-5 5.43e-4 1.00e-3 3.24e-3
0.95 4.57e-6 3.42e-5 2.46e-4 5.98e-4 4.82e-3

Table 2: Relative errors for the SRBM in Example 2. Table depicts relative errors between
moment estimates and true moments for various values of r and ρ. Here n = 100 and m = 6.

condition reduces to r(d−1) < 1. This type of SRBM arises as a heavy-traffic limit of a symmetric

generalized Jackson network. Manipulating the BAR condition, Harrison and Dai [7] showed that

E(Z1) = . . . = E(Zd) =
1− (d− 2)r + (d− 1)rρ

2(r + 1)
.

We use our algorithm to compute estimates for these moments for the case d = 2. Imitat-

ing the work of Harrison and Dai [7], we let ρ take values in {−0.9,−0.5, 0.0, 0.5, 0.9} and r in

{0.2, 0.4, 0.6, 0.8, 0.9, 0.95}. Table 2 shows the relative errors between our estimates and the exact

values for m = 6 and n = 100. The relative error is always lower that 1%.

Example 3: Skew-symmetric SRBM. As indicated earlier, Harrison and Williams [19]

proved that a standard SRBM has a product form stationary distribution if and only if % < 0 and

condition (13) holds. In this, case we know that the i-th marginal distribution is exponential with
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m 3 4 5 6 7 8 9 10
Eπ[Z1] 0.4942 0.4943 0.4968 0.5014 0.5005 0.5011 0.4996 0.5002
Eπ[Z2] 2.0095 2.0094 2.0053 1.9976 1.9990 1.9981 2.0005 1.9996

Table 3: Moment estimates for the SRBM in Example 3. The algorithm uses n = 100, and
m = degree of polynomials. True moments are Eπ[Z1] = 0.5 and Eπ[Z2] = 2.0.
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Figure 2: Marginal distribution estimates for the SRBM in Example 3. The algorithm
uses the grid Sn as in (14) with n = 150, and m = 10 degree polynomials. The marginal distribution
estimates (solid line) are superimposed on the true marginals (dotted line).

mean 1/(2%i), i = 1, . . . , d. Consider a two-dimensional SRBM associated with the following data:

R =

(
1 −0.6

−0.25 1

)
, σ =

(
1 −0.425

−0.425 1

)
, µ =

(
−0.85

0

)
.

One can check that condition (13) holds, and that %> = (−1,−0.25). This implies that Eπ[Z1] = 0.5

and Eπ[Z2] = 2. Taking n = 100 we use our algorithm to get estimates for these moments for various

values of m, the mayor degree of the polynomials, and the results are summarized in Table 3. We

see that our algorithm provides good estimates even for low degree polynomials. Each one of the

instances shown in Table 3 ran in less than 1 minute on a regular desktop PC with processor

Intel Pentium D (3.2Ghz), using a MATLAB implementation of the algorithm. Figure 2 depicts

marginal distribution estimates for n = 150 and m = 10 (solid line), compared with the actual

marginal distributions (doted line).

Example 4: Suresh and Whitt’s Experiments. This section follows closely the analysis
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presented in Chapter 4 of Dai [6]. Consider a network of d queues in tandem. Let ρi denote the

mean service time at station i, C2
si

denote the squared coefficient of variation of the service time

distribution at station i, and C2
a denote the squared coefficient of variation for the interarrival

time distribution. Using the method proposed by Harrison and Nguyen [17], Dai [6] shows that

the d-dimensional current workload process can be approximated by a d-dimensional SBRM as in

Definition 1. When d = 2 the parameters (σ,R, µ) defining Z are given by

R =

(
1 0

−ρ2/ρ1 1

)
, σ =

(
ρ2
1(C

2
a + C2

s1
) −ρ1ρ2C

2
s1

−ρ1ρ2C
2
s1

ρ2
2(C

2
s1

+ C2
s2

)

)
, µ =

(
ρ1 − 1

ρ2/ρ1 − 1

)
.

The arrival rate is assumed to be 1, so that ρ1 and ρ2 represents the traffic intensities at station 1

and 2, respectively.

Suresh and Whitt [27] studied a system of two queues in tandem and considered various vari-

ability parameter triples (C2
a , C2

s1
, C2

s2
), for all combinations of the traffic intensities ρ1 and ρ2 in

a representative range. For C2
s1
6= C2

s2
they considered five variability combinations: (0.5,0.5,2.0),

(1.0,0.5,8.0), (1.0,2.0,4.0), (4.5,0.5,1.0) and , (4.0,1.0,4.0). We will refer to these as Case 1 to

Case 5, respectively. For C2
s1

= C2
s2

they consider two variability combinations: (1.0,0.5,0.5) and

(1.0,4.0,4.0). We will refer to these as Case 6 and Case 7, respectively. When C2
s1
6= C2

s2
, they

consider four values of ρi : 0.3, 0.6, 0.8, 0.9. When C2
s1
6= C2

s2
, for each queue they consider five

values of ρi : 0.1, 0.2, 0.3, 0.6, 0.9, for each queue.

Extensive simulation experiments were conducted in order to obtain estimates for the expected

steady-state waiting times. When C2
a = 0.5, the Erlang distribution was used with 2 degrees of

freedom. When C2
a = 1.0, the exponential distribution was used. When C2

a > 1.0, the hyperex-

ponential distribution with balanced means was used. They also compare their simulation results

with the results obtained by using a software package described by Whitt [29], dubbed the QNA

method. Dai [6] uses this set of experiments to test the algorithm proposed in Harrison and Dai [7],

which they refer to as the QNET method. We use these results to benchmark the performance of

our algorithm against the QNA and QNET methods. For the purposes of our algorithm, we used

n = 100 and m = 6 for all experiments. Each run took less than 3 minutes on regular Desktop PC

with processor Intel Pentium D (3.2Ghz), using a MATLAB implementation of the algorithm.

Tables 6 to 12 (see appendix A) give simulation estimates, QNET estimates, QNA estimates,

and our LP-based estimates. Table 4 summarizes all balanced heavy traffic cases (equal traffic

intensities in each queue, close to 1), and gives an overall comparison of QNA estimates, QNET

estimates and the LP-based estimates. Order I refers to the setting where the arriving customers

enters queue 1 first, then proceeds to queue 2, and then exits the system. In the same manner,

Order II refers to the setting where the arriving customers enter queue 2 first, then proceed to
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Order I Order II
Case ρ1 ρ2 QNET QNA LP-based QNET QNA LP-based

1 0.9 0.9 0.01 0.01 0.00 0.02 0.13 0.01
0.8 0.8 0.08 0.08 0.08 0.06 0.08 0.07

2 0.9 0.9 0.03 0.06 0.03 0.01 0.21 0.01
0.8 0.8 0.04 0.01 0.02 0.08 0.07 0.07

3 0.9 0.9 0.04 0.02 0.04 0.04 0.19 0.05
0.8 0.8 0.00 0.04 0.01 0.02 0.02 0.01

4 0.9 0.9 0.13 0.30 0.14 0.19 0.29 0.19
0.8 0.8 0.14 0.08 0.11 0.09 0.00 0.07

5 0.9 0.9 0.01 0.12 0.01 0.01 0.01 0.00
0.8 0.8 0.09 0.14 0.08 0.05 0.05 0.05

6 0.9 0.9 0.01 0.08 0.02 0.01 0.10 0.01
0.8 0.8 0.01 0.04 0.01 0.01 0.04 0.01

7 0.9 0.9 0.04 0.18 0.05 0.06 0.07 0.04
0.8 0.8 0.02 0.05 0.03 0.01 0.06 0.01

Average 0.05 0.09 0.04 0.05 0.09 0.04

Table 4: Summary of comparisons between QNA, QNET and the LP-based method for
Example 4. The table depicts the minimum between the absolute relative error and absolute error
with respect to the simulation estimates, for all three methods, for different orders of the queues,
and for different values of ρ1 = ρ2. The last row depicts the average of the errors for the different
combinations of methods/orders.

queue 1, and then exit the system. Each entry in Table 4 represents the minimum between two

values: the absolute relative error of the respective method compared to the simulation estimates;

and the absolute error of the respective method, again compared to the simulation estimates. As

expected, the QNET and LP-based methods give more accurate estimates compared to the QNA

method under balanced heavy traffic conditions. The LP-based method is seen to perform as least

as well as the QNET method, and gives rise to more accurate estimates in most cases.

5 A Robust Formulation

Consider a network of 2 queues in tandem, i.e., the departure process from queue 1 forms the

arrival process for queue 2. Jobs arrive to queue 1 according to an exogenous renewal process, and

upon completion of processing at queue 2 they depart the system. We can characterize this simple

queueing network by the 5-tuple

(C2
a , C2

s1
, C2

s2
, ρ1, ρ2),

where C2
a is the squared coefficient of variation for the interarrival time distribution, ρi is the

mean service time at station i = 1, 2, and C2
si

is the squared coefficient of variation of the service

time distribution at queue i = 1, 2. Assuming the arrival rate to queue 1 is one, the value of ρi
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coincides with the traffic intensity at queue i = 1, 2. The 2-dimensional workload process can be

approximated by a 2-dimensional SRBM Z in the orthant as given in Definition 1. Following the

prescription in Harrison and Nguyen [17], it can be shown that

µ =

(
ρ1 − 1

ρ2/ρ1 − 1

)
, σ =

(
ρ2
1(C

2
a + C2

s1
) −ρ1ρ2C

2
s1

−ρ1ρ2C
2
s1

ρ2
2(C

2
s1

+ C2
s2

)

)
, R =

(
1 0

−ρ2/ρ1 1

)
.

Using this, one can apply the LP-based algorithm to solve for the steady-state distribution of Z

(see Example 4 in §4).

One potential issue that arises in practice is that the value of certain inputs parameters may

not be known exactly. In what follows, we will illustrate how such parameter uncertainty can be

dealt with in the context of our algorithm, via a robust formulation. To be concrete, suppose we

are interested in incorporating uncertainty with regard to the traffic intensities at each station.

Assume that the true values of (ρ1, ρ2) belong to the following set

Qδ :=
{
ρ̂1 + δρ1, ρ̂2 + δρ2 : δρ2

1/a1 + δρ2
2/a2 ≤ r2

}
,

with a1 a2 > 0, and a1r, a2r ¿ 1,. That is, the values of (ρ1, ρ2) are contained in an ellipsoid with

“small” radius r, centered on (ρ̂1, ρ̂2). This ellipsoidal uncertainty set is motivated by the classical

robust counterpart formulation in Nemirovski and Ben-Tal [1]. “Translating” this uncertainty to

the SRBM data, we have

µ =

(
ρ̂1 + δρ1 − 1

ρ̂2/ρ̂1 − (ρ̂2δρ1)/ρ̂2
1 + δρ2/ρ̂1 − 1

)
, R =

(
1 0

−ρ̂2/ρ̂1 + (ρ̂2δρ1)/ρ̂2
1 − δρ2/ρ̂1 1

)
,

σ =

(
(ρ̂2

1 + 2ρ̂1δρ1)(C2
a + C2

s1
) −(ρ̂1ρ̂2 + δρ1ρ̂2 + ρ̂1δρ2)C2

s1

−(ρ̂1ρ̂2 + δρ1ρ̂2 + ρ̂1δρ2)C2
s1

(ρ̂2
2 + 2ρ̂2δρ2)(C2

s1
+ C2

s2
)

)
.

Notice that both the second order differential operator G, as well as the boundary differential

operator Di are linear in δρ1 and δρ2. Consider now the BAR constraints in (Pnm):

∣∣∣∣∣∣
∑

i: xi∈Sn

(Gf)(xi)λi +
d∑

j=1

∑

i: xi∈F n
j

(Dif)(xi)γji

∣∣∣∣∣∣
≤ u, for all f ∈ Fm.

Define y = (λ, γ1, . . . , γd), where λ ∈ R|Sn| and γi ∈ R|F
n
j |, j = 1, . . . , d. The BAR constraints can

then be represented as

|Anmy| ≤ eu,

for some matrix Anm ∈ R|Fm|×|Sn|+
∑ |F n

j |, where |a| denotes componentwise absolute value for a
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vector a, e is a |Fm|-dimensional vector with all its entries equal to one, and |Fm| refers to the

cardinality of the set of basis functions spanning Fm. It is easy to see that Anm is also linear on δρ1

and δρ2, therefore it can be represented as Anm := Ânm+δρ1A
nm
δρ1

+δρ2A
nm
δρ2

for some matrices Ânm,

Anm
δρ1

, Anm
δρ2

∈ R|Fm|×|Sn|+
∑ |F n

j | independent of δρ1 and δρ2. As a consequence, when uncertainty

over traffic intensities is modeled as above, we have that Anm belongs to the uncertainty set

Unm =
{

Ânm + δρ1A
nm
δρ1

+ δρ2A
nm
δρ2

| δρ2
1/a1 + δρ2

2/a2 ≤ r2
}

.

Following Ben-Tal and Nemirovski [1], we consider the robust counterpart of (Pnm)

(Rnm) min u

s.t. |Anmy| ≤ eu for all Anm ∈ Unm [≈ BAR + uncertainty set]
∑

i: xi∈Sn

λi = 1 [Normalization]

∑

i: xi∈Sn

g(xi)λi ≤ M [Interior measure tightness]

∑

i: xi∈F n
i

gi(xi)γji ≤ Mj for all j ∈ {1 . . . , d} [Boundary measure tightness]

y ≥ 0 [Nonnegativity]

where y = (λ, γ1, . . . , γd). With this robust formulation we are looking for a probability distribution

and finite measures that minimize the violation of the BAR condition, for all possible realizations of

(ρ1, ρ2) ∈ Qδ. Let us denote by Ai the i-th row of a matrix A. The point y = (λ, γ) is (Rnm)-feasible

if it is (Pnm)-feasible, and

|(Ânm)i y + δρ1(Anm
δρ1

)i y + δρ2(Anm
δρ2

)i y| ≤ u for δρ2
1/a1 + δρ2

2/a2 ≤ r2 , i = 1, . . . , |Fm|.

Noting that

max
δρ2

1/a1+δρ2
2/a2≤r2

|(Ânm)i y + δρ1(Anm
δρ1

)i y + δρ2(Anm
δρ2

)i y|

= |(Ânm)i y|+ ‖√a1r(Anm
δρ1

)i y,
√

a2r(Anm
δρ2

)i y‖2,

we can restate (Rnm) as a conic quadratic program, with the BAR constraint above replaced by:

∣∣∣(Ânm)i y
∣∣∣ ≤ e · u− ‖b1(Anm

δρ1
)i y, b2(Anm

δρ2
)i y‖2 for all i = 1, . . . , |Fm|

where bi :=
√

air, i = 1, 2. Solving such conic-quadratic problems can be done in polynomial time
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using interior point methods, with essentially the same computational complexity as LP problems

of similar size (see [2]).

6 An Illustrative Application in the Many-server Heavy-traffic

Regime

In this section we illustrate how the proposed algorithm can be used to approximate the stationary

distributions of diffusions arising under the so called many-server (or Halfin-Whitt) heavy-traffic

regime. For this purpose we will consider a two class queueing system operating under a first-come

first-out discipline and with class 1 receiving static priority over class 2. Specifically, class 1 arrivals,

say customers, occurs according to Poisson process with rate λ1. Requests for class 1 service engage

one server each for i.i.d. exponentially distributed amounts of time with rate µ1, provided that

the total number of class 1 customers in the system is less than the total number of servers N ;

otherwise, they wait in queue for an available server. Class 2 customers are assumed to arrive

according to a Poisson process with rate λ2, independent of the arrival process for class 1 customer.

Requests for class 2 service are i.i.d. exponentially distributed amounts of time with rate µ2. When

there is at least one server free and there are not class 1 customers waiting on queue, that server

is allocated to a class 2 service request, and when there are no free servers, the class 2 customers

wait on queue. Despite its simple structure, exact analysis of this system is not straightforward.

6.1 Diffusion Approximation and BAR condition

Maglaras and Zeevi [23] studied this system and derived a diffusion approximation under the many-

server regime developed by Halfin and Whitt [15]. This regime is defined by letting the number

of servers grow, and concurrently letting the system utilization approach 1 at an appropriate rate.

Specifically, consider a sequence of systems with n servers and arrival rates λn
i := nκiµi − γi

√
nµi

for some constants κi > 0 and γi ∈ R for i = 1, 2 such that κ1 + κ2 = 1.

Let Qn
i (t) denote the number of customers in the system, both in service and in queue, in each

customer class i = 1, 2. Put Xn
i (t) := (Qn

i (t) − κin)/
√

n, i = 1, 2. Then, if (Xn
1 (0), Xn

2 (0)) → ξ ∈
R2, then Xn = (Xn

1 (t), Xn
2 (t) : t ≥ 0) converges (as n → ∞) to a diffusion process X = (X(t) :

t ≥ 0) being the unique strong solution to

dX(t) = b(X(t))dt + ΣdB(t), X(0) = ξ. (15)

Here B = (B(t) : t ≥ 0) is a standard Brownian motion in R2, and the infinitesimal drift function

22



bi(·) for the i-th component is giving by

b1(x) := −µ1γ1 − µ1x1 ,

b2(x) :=

{
−µ2γ2 − µ2x2 x1 + x2 ≤ 0

−µ2γ2 + µ2x1 x1 + x2 > 0
,

and Σ := diag(σ1, σ2), with σ2
i := 2µiκi, i = 1, 2. The first component of X is an Ornstein-

Uhlenbeck process, and the second component has more complicated structure. The process X

admits a unique stationary distribution π if and only if γ :=
∑k

i=1 γi > 0 (see Maglaras and Zeevi

[23] for further details). For f ∈ C2
b define the second order differential operator

Lf :=
2∑

i=1

(
bi

∂f

∂xi
+

σ2
i

2
∂2f

∂x2
i

)
.

Under the above stability condition, γ > 0, a direct application of Ito’s lemma shows that for all

f ∈ C2
b , the stationary distribution π must satisfy the following BAR:

∫

R2

(
2∑

i=1

bi(x)
∂f(x)
∂xi

+
σ2

i

2
∂2f(x)

∂x2
i

)
π(dx) = 0. (16)

The sufficiency of (16) is established in the next proposition.

Proposition 1 Suppose π is a probability measure on R2. If it satisfies (16), then π is the sta-

tionary distribution for X.

Proof Consider f ∈ C2
b , and suppose that x0 ∈ Rm is such that supx∈Rm f(x) = f(x0) ≥ 0. The

application of Ito’ formula gives

f(X(t))−
∫ t

0
(Lf)(X(s))ds = f(x0) +

∫ t

0
∇f(X(s)) · ΣdW (s).

Taking expectations w.r.t. Px0 , we have

Ex0 [f(X(t))]− f(x0) = Ex0

[∫ t

0
(Lf)(X(s))ds

]
.

Divide by t and take t → 0. By the continuity of L and the continuity of X, we get (Lf)(x0) ≤ 0,

since the left hand side above is non-positive. Therefore, the operator (L,C2
b ) satisfies the positive

maximum principle. Consider a probability measure π on R2 satisfying (16). Since f(X(t)) −∫ t
0 (Lf)(X(s))ds is a Px-martingale, the measure Pπ ≡

∫
Rm Pxπ(dx) is a solution for the martingale

problem for (L, π). C2
b is an algebra, and is dense in C(Rm). The operator (L, C2

b ) satisfies the
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positive maximum principle, and therefore Echeverria’s theorem (see [10], Theorem 9.14 of Chapter

4) applies to assert that π is a stationary distribution for a solution of the martingale problem for

(L, π). We know that Pπ is a solution of the martingale problem for (L, π), and this solution is

unique, since (15) admits a unique strong solution; see [23]. This implies that π is a stationary

distribution for X. The results follows from the uniqueness of the stationary distribution.

6.2 LP Formulation and Convergence

Adopting the approach used on §3, consider an increasing sequence of finite cardinality sets Sn ⊂ R2

such that Sn ↑ S, and consider an increasing sequence {Fm} of finite subspaces of C2
b such

that, for all f ∈ C2
b and for any compact set A ⊂ R2 there exists a fm ∈ Fm, such that

limm→∞ supx∈A |(L(fm − f))(x)| = 0. For fixed values of n and m, the following LP mirrors

the one in §3.1:

(Pnm) min u

s.t.

∣∣∣∣∣∣
∑

i: xi∈Sn

(Lf)(xi)λi

∣∣∣∣∣∣
≤ u, for all f ∈ Fm [≈ BAR]

∑

i: xi∈Sn

λi = 1 [Normalization]

∑

i: xi∈Sn

g(xi)λi ≤ M [Interior measure tightness]

λ ≥ 0, [Nonnegativity]

for a suitable chosen M ≤ ∞. In this formulation, {λi : i s.t. xi ∈ Sn} is a discrete distribution

with Sn as its support, that approximates π. The constant M , and the function g(·) are specified

as follows. The function g : R2 → R is chosen such that g(x) ≤ g(y) for x ≤ y componentwise, and

such that g(x) → ∞ as ‖x‖1 → ∞, and with M > 0 such that Eπ(g(X)) ≤ M . Convergence to

π along a subsequence of solutions to these LP’s can be proved by following the same steps as in

proof of Theorem 2.

Remark 4 As mentioned on Remark 2, our LP formulation proposes to approximate π by

a convex combination of one point distribution functions. In more generality, one

may try to approximate π as a convex combination of generic distribution functions.

We express this idea in more detail on §7.
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6.3 Practical Considerations

In order to implement and use the algorithm described above, we need to specify the sequences

{Sn} and {Fm}. Moreover, the specification of the algorithm requires a feasible specification of the

tightness condition, via choice of of M and g.

Tightness. For illustration purposes we will assume γ2 > 0 to facilitate the explicit construc-

tion of a simple Lyapunov function. Along the lines of §3.3, consider the function f(x) = ‖x‖2
2. For

this function we have

(Lf)(x) = −µ1γ1x1 − µ1x
2
1 − (µ2γ2x2 + µ2x

2
2)1 {x1 + x2 ≤ 0}

−(µ2γ2x2 − µ2x2x1)1 {x1 + x2 > 0}+ σ2
1 + σ2

2,

where 1 {B} is the indicator of the set B. It then follows that L(x) ≤ −c1‖x‖1 + c2 for all x such

that ‖x‖1 ≥ r, for some r > 0, and for some constants c1, c2 > 0. Therefore, we conclude that

L(x) ≤ −c1‖x‖1 + c3 for all x ∈ R2, for a suitable constant c3 ≥ c2. It follows from Corollary 2 on

Glynn and Zeevi [12] that Eπ(‖X‖1) ≤ c3/c1, therefore we can take g(x) = ‖x‖1, and M = c3/c1.

Support and function space approximation. As mentioned, X1(∞) ∼ N(−γ1, κ1). Based

on this, we set the grid to have an “Normal-based” spacing on the first coordinate, and in absence

of prior information on the distribution of x2, we take the grid to be equispaced on the second

coordinate:

Sn = {x ∈ S : {x1 = (Φ−1(1/2 + k/(2n)) + γ1)/
√

κ1 k = 0,±1 . . . ,±n− 1}
×{x2 = αj/n j = −n, . . . , n}}, (17)

for some constant α > 0. Regarding the approximation of the function space C2
b , we take the same

sequence specified in §3.3.

6.4 Numerical Results

In the 2-class queue described in §6.1, take κ1 = κ2 = 0.5 and γ1 = γ2 = 0.25 (these parameters

correspond to the example studied in Maglaras and Zeevi [23]). Figure 3 compares the approxima-

tion of the marginal distributions resulting from the algorithm by taking Sn as in (17) with n = 50

and m = 4 (solid line), against the true marginal distribution for the first coordinate, and against

an approximation computed via Monte Carlo simulation (doted line), using an Euler scheme to

approximate (15), for the second coordinate. Despite the pour fit, table 5 shows that the algo-

rithm provide reasonable moment approximations for each coordinate. There, estimates from the
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Figure 3: Marginal distribution estimates for the two-dimensional diffusion. The dotted
line is computed via Monte Carlo simulation, and the solid line represents the algorithm estimates
based on n = 50 and m = 4.

algorithm are compared against true moments, for the first coordinate, and against approximations

computed via Monte Carlo simulation, labeled as “true values”, for the second coordinate.

One observation that is evident from Figure 3 is that the LP approximation to the BAR

condition is not imposing any reasonable smoothness on the resulting distribution (at least not for

low values of m). Given the nature of the diffusion process under study here, one would anticipate

much smoother stationary distribution for the second coordinate relative to what is computed by

the algorithm (this is also seen to be the case in the dashed lines in Figure 3 which were obtained by

simulation). To try to encode this into our LP formulation, we incorporate “smoothness” constrains

as follows. Consider a neighborhood parameter r > 0, and a smoothness parameter δ. The following

constraint can then be added to (Pnm):

|πn
m(x)− πn

m(y)| ≤ δ for all (x, y) ∈ Sn s.t. ‖x− y‖2 < r. (18)

This constraint is in essence imposing a type of a Lipschitz continuity on the distribution. In

practice we introduce these constraints on each marginal distribution separately. We choose r so

that the r-ball contains only one neighbor in each marginal, and δ sufficiently small to exclude

“peaks” as those observed in figure 3. In particular, setting δ1 = 0.0026 (the first coordinate) and

δ2 = 0.0011 (the second coordinate) we obtain the moment approximations reported in Table 5.

Remark 5 Assuming that π is indeed Lipschitz continuous, one can implement constraint (18) by

getting an upper bound on the Lipschitz continuity constant. This upper bound can be obtained as

26



E[X1
1 ] E[X2

1 ] E[X3
1 ] E[X4

1 ] E[X1
2 ] E[X2

2 ] E[X3
2 ] E[X4

2 ]
“True value” -0.25 0.56 -0.39 0.94 1.19 8.31 70.67 854

Estimate -0.25 0.56 -0.39 0.94 1.26 7.79 69.68 812
Smoothed estimate -0.25 0.56 -0.39 0.94 1.16 7.44 66.88 771

Relative error 0 0 0 0 0.058 0.063 0.014 0.049
Smoothed relative error 0 0 0 0 0.025 0.105 0.053 0.097

Table 5: Moment approximations for first and second coordinates for the 2-dimensional
diffusion. The algorithm uses n = 100 and m = 6 degree polynomials. The table shows relative er-
rors of algorithm estimates (incorporating smoothness constraints) with respect to true/simulated-
values.

follows. For any set A ⊂ Rd, we have that π(A) =
∫
Rd K(y, A)π(dy), where K(A, y) represents

the kernel associated to the diffusion process. Assuming that π has a density ξ with respect to the

Lebesgue measure on Rd, and that this is differentiable, we have that

ξ(x) =
∫

Rd

K(y, x)ξ(y)dy ⇒ ‖∇ξ(x)‖1 =
∫

Rd

‖∇K(y, x)‖1ξ(y)dy ⇒ ‖∇ξ(x)‖1 ≤ Eπ|e · ∇K(y, x)|,

where e ∈ Rd has all components equal to one. Now, suppose we can find a non-negative function

g : Rd → R+, twice continuous differentiable, and a constant c for which

Lg(x) ≤ −|e · ∇K(y, x)|+ c

uniformly on y ∈ Rd, for all x ∈ Rd, then we can use Corollary 2 on Glynn and Zeevi [12] to assert

that

‖∇ξ(x)‖1 ≤ Eπ|e · ∇K(y, x)| ≤ c.

Figure 4 depicts the approximation to the marginal distributions obtained by incorporating these

smoothing constraints. The above considerations and implementation of the constraints is not

meant to give definitive prescriptions, but rather to illustrate the flexibility of the LP approach,

and the ability to incorporate such a priori information

7 Probability measure and function space approximation choice

Consider the LP formulation presented on §3.1. There, for fixed values of n and m, a feasible

solution (λ, γ) to (Pnm) is used to approximate π and ν := (ν1, . . . , νd) through a probability

measure and finite measures assigning mass to a finite and discrete set of points on S and Fi

i = 1, . . . , d, respectively. More specifically, one can construct the following approximations to π
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Figure 4: Smoothed marginal distribution estimates for the two-dimensional diffusion.
The dotted line is computed via Monte Carlo simulation, and the solid line represents the algorithm
estimates based on n = 50 and m = 4, incorporating smoothness constraints.

and ν:

πn
λ(x) :=

∑

i: xi∈Sn

λiδxi(x), νn
γj(x) :=

∑

i: xi∈F n
j

γjiδxi(x) j = 1, . . . , d,

where δy(x) = 1 if x = y and 0 otherwise. Notice that this is equivalent to approximate π by

a convex combination of probability measures assigning all mass to single points in S and at the

same time approximate νi by linear (positive) combination of probability measures assigning mass

to single points in Fi, i = 1, . . . , d. Using this interpretation, there is no need to restrict the

approximating “architecture” to probability measures assigning all mass to single points.

Let M denote the space of probability measures on S, and Mj the space of finite measures

on Fj , j = 1 . . . , d. For arbitrary (finite) sets M ⊂ M and M j ⊂ Mj , j = 1, . . . , d, and vectors

λ ∈ R|M| and γ := (γ1, . . . , γd), γj ∈ RMj , j = 1, . . . , d, define:

π(M, λ) :=
∑

i: φi∈M
λiφi, νj(Mj , γj) :=

∑

i: ϕi∈Mj

γjiϕi j = 1, . . . , d. (19)

Consider a sequence {Mn} such that for all n > 0, Mn ⊂ M, |Mn| < ∞, and such that

for all φ ∈ M there exist a sequence of stochastic vectors {λn} such that
∫
S g(x)π(Mn, λn)(dx) ≤∫

S g(x)φ(dx) for all n > 0, where g : S → R+ specified as in §3.1, and π(Mn, λn) ⇒ φ. Analogously,

consider sequences
{
Mn

j

}
j = 1, . . . , d, such that for all n > 0, Mn

j ⊂Mj , |Mn
j | < ∞, j = 1, . . . , d,

and such that for all ϕ ∈ Mj there exist a sequence of positive (finite) vectors
{

γn
j

}
such that
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∫
Fj

gj(x)νj(Mn
j , γn

j )(dx) ≤ ∫
Fj

gj(x)ϕ(dx) for all n > 0, where gj : Fj → R+ specified as in §3.1,

and νj(Mn
j , γn

j ) ⇒ ϕ, for j = 1, . . . , d.

For f ∈ C and for φ ∈ M define B(φ, f) :=
∫
S f(x) φ(dx), and for ϕ ∈ Mj define Bj(ϕ, f) :=∫

Fj
f(x) ϕj(dx). Fixing n > 0 and m > 0, we can restate Pnm as follows:

(P̃nm) min u

s.t.

∣∣∣∣∣∣
λiB(π(Mn, λ), Gf) +

d∑

j=1

Bj(νj(Mn
j , γn

j ), Djf)

∣∣∣∣∣∣
≤ u , for all f ∈ Fm [≈ BAR] (20)

∑

i: xi∈Sn

λi = 1 [Normalization] (21)

B(π(Mn, λn), g) ≤ M [Interior measure tightness] (22)

Bj(νj(Mn
j , γn

j ), gj) ≤ Mj , for all j ∈ {1 . . . , d} [Boundary measure tightness] (23)

λi, γij ≥ 0 , for all {i : xi ∈ Sn} and j ∈ {1, . . . , d} . [Nonnegativity] (24)

Where the constants M , Mj , j = 1, . . . , d, are chosen as in §3.1. Notice that P̃nm remains a finite

dimensional linear program. The following corollary generalizes Theorem 2.

Corollary 1 Consider an SRBM Z as given in definition 1. Let π be the stationary distribution

for Z, with boundary measures νj , j = 1, . . . , d. Then, there exist sequences {nk} and {mk},
k = 1, 2, . . ., of positive integers that diverge to infinity as k → ∞, such that πnkmk

λk ⇒ π and

νnkmk

γkj
⇒ νj as k →∞, for j = 1, . . . , d, where (λk, γk) are optimal solutions to the LP (P̃nkmk

).

The proof of theorem 2 carries on under the new assumptions on {Mn} and
{
Mn

j

}
, j = 1, . . . , d.

Also, extending this formulation for cases like the Many-server Heavy-traffic regime presented on

§6 is straightforward.

The complexity of formulating P̃nkmk
depends directly on the ability to efficiently compute

B(φ, f) for all pairs (φ, f) ∈ Mn × Fm, and Bj(ϕ, f) for all pairs (ϕ, f) ∈ Mj × Fm, j = 1, . . . , d.

This indicates that the selection of {Mn}, {Mj}, j = 1, . . . , d, and {Fm} could be made considering

all possible synergies for formulating P̃nkmk
. For the implementations presented on §4 and §6, the

selection of the probability measure sequences as single mass point measures “decouples” from the

selection of Fm since, for computing B and Bj , j = 1, . . . , d, one just need to be able to evaluate

the functions on Fm on any point of S and Fj , j = 1, . . . , d, respectively. Nevertheless, other choice

for the probability measure-function space sequences, may result on an easier formulation of the

corresponding linear programs.

Example 1. Consider the SRBM-implementation of the algorithm, shown on §4. For {Mn} let

Mn to be a finite number of suitable truncated gaussian distributions, that differs on their first and
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second moments, for all n > 0. If {Fm} remains as specified (Fm form by polynomials of degree

up to m), B(φ,Gf) unfolds as nothing but a linear combination of moments of a truncated normal

random variable, so it can be computed efficiently. Considering truncated normal random variables

to approximate the boundary measures results on the same type of efficiency.

Example 2. Consider any affine diffusion on Rd, such that the BAR is necessary and sufficient

to characterize a unique stationary distribution (this is the case of the diffusion that solves (15),

presented on §6). Here the state space has no boundaries, so one only need to chose {Mn} and

{Fm}. One can take {Mn} such that Mn contains a finite number gaussian distributions, that

differs on their first and second moments, for all n > 0. If {Fm} is such that Fm is form by

polynomials of degree up to m, for all m, then B(φ, Gf) is, again, a linear combination of moments

of a truncated normal random variable (here the truncation is given by the nature of the drift

coefficients of the diffusion process), so it can be computed efficiently.
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C2
a = 0.5, C2

s1
= 0.5, C2

s2
= 2.0

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 10.12 10.13 10.01 10.010 7.75 8.97 7.84 7.946

0.01 0.01 0.00 0.051 0.02 0.13 0.01 0.430
0.9 0.8 4.00 4.00 4.07 3.856 6.58 7.94 6.58 6.292

0.04 0.04 0.06 0.219 0.05 0.26 0.05 0.368
0.9 0.6 1.12 1.12 1.14 1.039 5.07 6.24 5.33 4.976

0.08 0.08 0.10 0.035 0.02 0.25 0.07 0.260
0.9 0.3 0.16 0.16 0.16 0.127 4.17 4.60 4.60 4.309

0.03 0.03 0.03 0.003 0.03 0.07 0.07 0.154
0.8 0.9 10.12 10.13 10.25 10.153 3.48 3.54 3.49 3.444

0.00 0.00 0.01 0.670 0.01 0.03 0.01 0.116
0.8 0.8 4.00 4.00 3.99 3.706 3.07 3.14 3.10 2.895

0.08 0.08 0.08 0.158 0.06 0.08 0.07 0.085
0.8 0.6 1.12 1.12 1.15 1.068 2.46 2.46 2.50 2.374

0.05 0.05 0.08 0.030 0.04 0.04 0.05 0.042
0.8 0.3 0.16 0.16 0.16 0.129 1.74 1.82 1.97 1.670

0.03 0.03 0.03 0.005 0.04 0.09 0.18 0.044
0.6 0.9 10.12 10.13 10.50 9.687 1.08 1.00 1.08 0.966

0.04 0.05 0.08 0.786 0.11 0.03 0.11 0.024
0.6 0.8 4.00 4.00 4.09 4.007 1.00 0.88 1.00 0.912

0.00 0.00 0.02 0.125 0.09 0.03 0.09 0.011
0.6 0.6 1.12 1.12 1.12 1.072 0.86 0.69 0.87 0.736

0.04 0.04 0.04 0.024 0.12 0.05 0.13 0.020
0.6 0.3 0.16 0.16 0.16 0.133 0.63 0.51 0.66 0.491

0.03 0.03 0.03 0.002 0.14 0.02 0.17 0.006
0.3 0.9 10.12 10.13 10.40 9.562 0.16 0.14 0.16 0.136

0.06 0.06 0.09 0.719 0.02 0.00 0.02 0.002
0.3 0.8 4.00 4.00 4.00 4.024 0.16 0.13 0.15 0.129

0.01 0.01 0.01 0.272 0.03 0.00 0.02 0.002
0.3 0.6 1.12 1.12 1.16 1.090 0.15 0.10 0.15 0.112

0.03 0.03 0.06 0.032 0.04 0.01 0.04 0.001
0.3 0.3 0.16 0.16 0.15 0.131 0.12 0.07 0.12 0.075

0.03 0.03 0.02 0.003 0.05 0.01 0.05 0.001
Average 0.035 0.035 0.046 0.055 0.069 0.072

Table 6: Expected Waiting Times at the Second Queue in Example 4: Case 1. Entries at
the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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C2
a = 1.0, C2

s1
= 0.5, C2

s2
= 8.0

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 36.09 34.81 35.80 37.040 24.32 29.04 24.32 24.050

0.03 0.06 0.03 4.410 0.01 0.21 0.01 1.760
0.9 0.8 14.05 13.75 14.05 13.350 18.36 24.22 19.00 18.120

0.05 0.03 0.05 1.260 0.01 0.34 0.05 0.930
0.9 0.6 3.89 3.87 3.92 3.800 10.54 16.28 13.20 12.630

0.02 0.02 0.03 0.240 0.17 0.29 0.05 0.800
0.9 0.3 0.55 0.55 0.55 0.520 6.60 8.63 8.94 7.550

0.03 0.03 0.03 0.020 0.13 0.14 0.18 0.380
0.8 0.9 36.42 35.15 36.70 37.580 11.38 11.47 11.35 10.740

0.03 0.06 0.02 5.260 0.06 0.07 0.06 0.450
0.8 0.8 14.28 13.89 14.08 13.780 9.65 9.57 9.60 8.950

0.04 0.01 0.02 1.570 0.08 0.07 0.07 0.470
0.8 0.6 3.94 3.91 3.96 3.840 6.29 6.43 7.08 6.330

0.03 0.02 0.03 0.250 0.01 0.02 0.12 0.270
0.8 0.3 0.55 0.56 0.56 0.490 2.94 3.41 4.48 3.360

0.06 0.07 0.07 0.020 0.13 0.01 0.33 0.100
0.6 0.9 36.45 35.72 36.79 34.610 3.68 3.23 3.59 2.860

0.05 0.03 0.06 3.370 0.29 0.13 0.26 0.140
0.6 0.8 14.40 14.11 14.56 13.160 3.31 2.69 3.29 2.570

0.09 0.07 0.11 1.500 0.29 0.05 0.28 0.110
0.6 0.6 4.02 3.97 3.99 3.960 2.72 1.81 2.70 2.070

0.02 0.00 0.01 0.240 0.31 0.13 0.30 0.040
0.6 0.3 0.56 0.57 0.57 0.520 1.38 0.96 1.80 1.110

0.04 0.05 0.05 0.020 0.24 0.14 0.62 0.030
0.3 0.9 36.45 36.27 38.55 31.120 0.55 0.46 0.54 0.240

0.17 0.17 0.24 4.440 0.31 0.22 0.30 0.010
0.3 0.8 14.40 14.34 14.06 13.330 0.54 0.38 0.52 0.250

0.08 0.08 0.05 0.600 0.29 0.13 0.27 0.000
0.3 0.6 4.05 4.03 4.10 4.100 0.50 0.26 0.48 0.270

0.01 0.02 0.00 0.250 0.23 0.01 0.21 0.010
0.3 0.3 0.57 0.58 0.57 0.550 0.39 0.14 0.39 0.200

0.02 0.03 0.02 0.020 0.19 0.06 0.19 0.000
Average 0.048 0.047 0.052 0.171 0.125 0.206

Table 7: Expected Waiting Times at the Second Queue in Example 4: Case 2. Entries at
the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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C2
a = 1.0, C2

s1
= 2.0, C2

s2
= 4.0

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 22.03 23.53 22.06 23.026 19.13 21.99 19.36 18.447

0.04 0.02 0.04 2.776 0.04 0.19 0.05 1.520
0.9 0.8 9.07 9.30 9.24 8.887 16.23 9.93 16.68 16.562

0.02 0.05 0.04 0.544 0.02 0.40 0.01 1.427
0.9 0.6 2.64 2.61 2.69 2.829 13.00 16.52 14.00 14.538

0.07 0.08 0.05 0.116 0.11 0.14 0.04 1.192
0.9 0.3 0.39 0.37 0.38 0.402 12.22 13.24 13.28 12.967

0.01 0.03 0.02 0.008 0.06 0.02 0.02 1.738
0.8 0.9 20.92 22.84 21.26 23.698 8.45 8.69 8.52 8.981

0.12 0.04 0.10 2.050 0.06 0.03 0.05 0.426
0.8 0.8 8.70 9.02 8.64 8.686 7.57 7.87 7.66 7.747

0.00 0.04 0.01 0.378 0.02 0.02 0.01 0.376
0.8 0.6 2.57 2.54 2.59 2.758 5.59 6.53 6.39 6.438

0.07 0.08 0.06 0.079 0.13 0.01 0.01 0.343
0.8 0.3 0.38 0.36 0.38 0.399 4.88 5.23 5.55 4.896

0.02 0.04 0.02 0.004 0.00 0.07 0.13 0.146
0.6 0.9 20.31 21.71 21.04 21.969 2.61 2.44 2.60 2.618

0.08 0.01 0.04 2.683 0.00 0.07 0.01 0.067
0.6 0.8 8.13 8.58 8.37 8.131 2.43 2.21 2.43 2.352

0.00 0.06 0.03 0.311 0.03 0.06 0.03 0.079
0.6 0.6 2.45 2.41 2.48 2.485 2.13 1.84 2.15 2.012

0.01 0.03 0.00 0.086 0.06 0.09 0.07 0.063
0.6 0.3 0.37 0.34 0.37 0.368 1.52 1.47 1.72 1.556

0.00 0.03 0.00 0.015 0.02 0.06 0.11 0.044
0.3 0.9 20.25 20.61 21.83 21.480 0.39 0.35 0.38 0.345

0.06 0.04 0.02 3.439 0.05 0.01 0.04 0.009
0.3 0.8 8.01 8.14 8.50 8.408 0.38 0.32 0.37 0.345

0.05 0.03 0.01 0.472 0.04 0.03 0.03 0.008
0.3 0.6 2.26 2.29 2.37 2.337 0.36 0.26 0.35 0.321

0.03 0.02 0.01 0.081 0.04 0.06 0.03 0.009
0.3 0.3 0.35 0.33 0.35 0.340 0.30 0.21 0.31 0.248

0.01 0.01 0.01 0.007 0.05 0.04 0.06 0.005
Average 0.037 0.037 0.029 0.045 0.080 0.043

Table 8: Expected Waiting Times at the Second Queue in Example 4: Case 3. Entries at
the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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C2
a = 4.0, C2

s1
= 0.5, C2

s2
= 1.0

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 10.73 8.77 10.79 12.541 9.56 8.38 9.60 11.788

0.14 0.30 0.14 1.650 0.19 0.29 0.19 2.494
0.9 0.8 3.00 3.46 3.09 3.325 9.43 10.45 13.64 15.032

0.10 0.04 0.07 0.102 0.37 0.30 0.09 1.716
0.9 0.6 0.69 0.97 0.73 0.725 4.12 13.85 17.65 16.603

0.04 0.25 0.00 0.016 0.75 0.17 0.06 1.426
0.9 0.3 0.10 0.14 0.10 0.076 3.12 17.13 20.59 19.682

0.02 0.06 0.02 0.001 0.84 0.13 0.05 2.000
0.8 0.9 7.70 11.18 15.63 16.269 2.87 3.31 2.95 3.130

0.53 0.31 0.04 2.358 0.08 0.06 0.06 0.155
0.8 0.8 4.17 4.42 4.27 4.803 3.75 4.13 3.83 4.114

0.13 0.08 0.11 0.398 0.09 0.00 0.07 0.240
0.8 0.6 0.80 1.24 0.85 0.907 3.21 5.47 5.74 6.147

0.11 0.33 0.06 0.026 0.48 0.11 0.07 0.526
0.8 0.3 0.10 0.18 0.10 0.088 1.20 6.77 7.28 6.941

0.01 0.09 0.01 0.001 0.83 0.02 0.05 0.387
0.6 0.9 3.41 15.15 19.31 18.706 0.69 0.93 0.72 0.788

0.82 0.19 0.03 2.371 0.10 0.14 0.07 0.020
0.6 0.8 2.62 5.98 6.61 6.987 0.77 1.16 0.81 0.934

0.63 0.14 0.05 0.717 0.16 0.23 0.12 0.018
0.6 0.6 1.17 1.68 1.21 1.471 1.05 1.54 1.07 1.302

0.20 0.14 0.18 0.039 0.19 0.18 0.18 0.018
0.6 0.3 0.10 0.24 0.11 0.129 0.75 1.90 1.74 1.755

0.03 0.11 0.02 0.002 0.57 0.08 0.01 0.049
0.3 0.9 2.11 18.97 22.10 20.014 0.10 0.13 0.10 0.105

0.89 0.05 0.10 2.027 0.01 0.03 0.01 0.001
0.3 0.8 0.96 7.50 8.10 8.165 0.10 0.17 0.11 0.117

0.88 0.08 0.01 0.492 0.02 0.05 0.01 0.002
0.3 0.6 0.62 2.11 1.96 2.031 0.10 0.22 0.11 0.142

0.69 0.04 0.03 0.051 0.04 0.08 0.03 0.002
0.3 0.3 0.17 0.30 0.17 0.205 0.15 0.27 0.15 0.178

0.04 0.10 0.04 0.005 0.03 0.09 0.02 0.002
Average 0.329 0.145 0.058 0.296 0.123 0.067

Table 9: Expected Waiting Times at the Second Queue in Example 4: Case 4. Entries at
the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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C2
a = 4.0, C2

s1
= 1.0, C2

s2
= 4.0

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 26.11 22.56 26.10 25.776 20.25 20.25 20.40 20.453

0.01 0.12 0.01 2.604 0.01 0.01 0.00 1.104
0.9 0.8 9.14 8.91 9.28 10.105 20.25 20.25 20.21 25.409

0.10 0.12 0.08 0.854 0.20 0.20 0.20 2.870
0.9 0.6 2.32 2.51 2.42 2.652 20.25 20.25 21.66 23.394

0.13 0.05 0.09 0.130 0.13 0.13 0.07 2.348
0.9 0.3 0.32 0.36 0.32 0.357 20.25 20.25 22.72 21.580

0.04 0.00 0.04 0.012 0.06 0.06 0.05 2.733
0.8 0.9 29.08 24.62 29.08 33.220 8.00 8.00 8.04 9.201

0.12 0.26 0.12 5.395 0.13 0.13 0.13 0.534
0.8 0.8 10.30 9.73 10.46 11.360 8.00 8.00 8.04 8.455

0.09 0.14 0.08 0.723 0.05 0.05 0.05 0.535
0.8 0.6 2.51 2.74 2.55 2.868 8.00 8.00 7.97 8.643

0.12 0.04 0.11 0.188 0.07 0.07 0.08 0.441
0.8 0.3 0.32 0.39 0.34 0.399 8.00 8.00 8.03 7.991

0.08 0.01 0.06 0.009 0.00 0.00 0.01 0.327
0.6 0.9 31.58 28.03 33.45 31.279 2.25 2.25 2.28 2.298

0.01 0.10 0.07 3.484 0.02 0.02 0.01 0.063
0.6 0.8 11.89 11.07 11.99 12.949 2.25 2.25 2.26 2.443

0.08 0.15 0.07 1.016 0.08 0.08 0.08 0.099
0.6 0.6 2.90 3.11 2.94 3.389 2.25 2.25 2.28 2.523

0.14 0.08 0.13 0.150 0.11 0.11 0.10 0.045
0.6 0.3 0.34 0.44 0.36 0.444 2.25 2.25 2.26 2.316

0.10 0.00 0.08 0.011 0.03 0.03 0.02 0.054
0.3 0.9 32.35 31.31 37.00 27.840 0.32 0.32 0.32 0.269

0.16 0.12 0.33 1.955 0.05 0.05 0.05 0.005
0.3 0.8 12.73 12.37 13.17 13.667 0.32 0.32 0.32 0.286

0.07 0.09 0.04 1.304 0.03 0.03 0.03 0.005
0.3 0.6 3.48 3.48 3.50 3.611 0.32 0.32 0.33 0.330

0.04 0.04 0.03 0.226 0.01 0.01 0.00 0.009
0.3 0.3 0.41 0.50 0.42 0.528 0.32 0.32 0.32 0.328

0.12 0.03 0.11 2.000 0.01 0.01 0.01 0.006
Average 0.089 0.086 0.091 0.063 0.063 0.056

Table 10: Expected Waiting Times at the Second Queue in Example 4: Case 5. Entries
at the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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C2
a = 1.0, C2

s1
= 0.5, C2

s2
= 0.5

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 4.84 4.43 4.88 4.793 4.84 4.43 4.86 4.910

0.01 0.08 0.02 0.269 0.01 0.10 0.01 0.215
0.9 0.6 0.46 0.49 0.47 0.410 5.54 5.35 6.00 5.658

0.05 0.08 0.06 0.006 0.02 0.05 0.06 0.410
0.9 0.3 0.06 0.07 0.07 0.043 6.01 5.89 6.25 5.635

0.02 0.03 0.02 0.001 0.07 0.05 0.11 0.293
0.9 0.2 0.03 0.03 0.03 0.013 6.05 5.99 6.42 6.180

0.02 0.02 0.01 0.001 0.02 0.03 0.04 0.442
0.9 0.1 0.01 0.01 0.01 0.002 6.07 6.05 6.60 6.047

0.01 0.01 0.00 0.000 0.00 0.00 0.09 0.253
0.6 0.6 0.54 0.59 0.54 0.552 0.54 0.59 0.54 0.552

0.01 0.04 0.01 0.008 0.01 0.04 0.01 0.009
0.6 0.3 0.07 0.08 0.07 0.057 0.61 0.65 0.65 0.644

0.01 0.02 0.01 0.001 0.03 0.01 0.01 0.011
0.6 0.2 0.03 0.03 0.03 0.018 0.64 6.70 0.70 0.669

0.01 0.01 0.01 0.000 0.03 6.03 0.03 0.011
0.6 0.1 0.01 0.01 0.01 0.003 0.67 0.67 0.74 0.668

0.01 0.01 0.00 0.000 0.00 0.00 0.07 0.015
0.3 0.3 0.08 0.09 0.08 0.079 0.08 0.08 0.08 0.079

0.00 0.01 0.00 0.001 0.00 0.00 0.00 0.001
0.3 0.2 0.03 0.04 0.03 0.026 0.08 0.10 0.08 0.087

0.00 0.01 0.00 0.000 0.01 0.01 0.01 0.001
0.3 0.1 0.01 0.01 0.01 0.004 0.09 0.10 0.09 0.094

0.01 0.01 0.00 0.000 0.00 0.01 0.00 0.001
0.2 0.2 0.03 0.04 0.03 0.031 0.03 0.04 0.03 0.031

0.00 0.01 0.00 0.000 0.00 0.01 0.00 0.001
0.2 0.1 0.01 0.01 0.01 0.005 0.03 0.04 0.03 0.035

0.01 0.01 0.00 0.000 0.01 0.01 0.01 0.001
0.1 0.1 0.01 0.01 0.01 0.004 0.01 0.01 0.01 0.006

0.01 0.01 0.00 0.000 0.00 0.00 0.00 0.000
Average 0.011 0.023 0.010 0.015 0.423 0.030

Table 11: Expected Waiting Times at the Second Queue in Example 4: Case 6. Entries
at the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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C2
a = 1.0, C2

s1
= 4.0, C2

s2
= 4.0

Order I Order II
ρ1 ρ2 QNET QNA LP Sim QNET QNA LP Sim
0.9 0.9 26.43 30.09 26.80 25.505 26.43 30.09 26.86 28.072

0.04 0.18 0.05 2.955 0.06 0.07 0.04 2.921
0.9 0.6 3.47 3.34 3.46 3.405 20.57 24.62 22.34 22.857

0.02 0.02 0.02 0.144 0.10 0.08 0.02 4.542
0.9 0.3 0.51 0.48 0.51 0.530 20.27 21.34 23.80 20.511

0.02 0.05 0.02 0.019 0.01 0.04 0.16 1.629
0.9 0.2 0.20 0.19 0.20 0.199 20.26 20.74 23.00 19.132

0.00 0.01 0.00 0.005 0.06 0.08 0.20 2.606
0.9 0.1 0.04 0.04 0.45 0.046 20.25 20.37 29.07 20.067

0.01 0.01 0.40 0.001 0.01 0.02 0.45 1.768
0.6 0.6 2.94 2.74 2.95 2.874 2.94 2.74 2.96 2.918

0.02 0.05 0.03 0.001 0.01 0.06 0.01 0.116
0.6 0.3 0.48 0.39 0.48 0.457 2.32 2.37 2.55 2.494

0.02 0.07 0.02 0.013 0.07 0.05 0.02 0.114
0.6 0.2 0.20 0.15 0.19 0.188 2.27 2.30 2.50 2.231

0.01 0.04 0.00 0.004 0.02 0.03 0.12 0.088
0.6 0.1 0.04 0.03 0.04 0.045 2.25 2.26 2.44 2.271

0.01 0.02 0.00 0.002 0.01 0.00 0.07 0.135
0.3 0.3 0.42 0.34 0.43 0.378 0.42 0.34 0.42 0.371

0.04 0.04 0.05 0.011 0.05 0.03 0.05 0.009
0.3 0.2 0.17 0.13 0.18 0.153 0.39 0.33 0.39 0.356

0.02 0.02 0.02 0.006 0.03 0.03 0.03 0.006
0.3 0.1 0.04 0.03 0.04 0.039 0.34 0.32 0.37 0.346

0.00 0.01 0.00 0.002 0.01 0.03 0.02 0.012
0.2 0.2 0.16 0.13 0.17 0.141 0.16 0.13 0.17 0.145

0.02 0.01 0.03 0.003 0.02 0.02 0.02 0.006
0.2 0.1 0.04 0.03 0.04 0.034 0.15 0.13 0.15 0.134

0.01 0.00 0.01 0.002 0.02 0.00 0.02 0.003
0.1 0.1 0.04 0.03 0.04 0.034 0.04 0.03 0.36 0.033

0.01 0.00 0.00 0.002 0.01 0.00 0.33 0.003
Average 0.016 0.035 0.044 0.031 0.036 0.105

Table 12: Expected Waiting Times at the Second Queue in Example 4: Case 7. Entries
at the table depict expected waiting time estimates (above) and the minimum between the absolute
relative errors and absolute errors with respect to the simulation estimates (below), for all three
methods, for different orders of the queues, and for different values of ρ1 and ρ2. The last row
depicts the average of the errors for the different combinations of methods/orders.
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