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During the Covid-19 crisis, the Chilean Ministry of Health and the Ministry of Sciences, Technology,

Knowledge and Innovation partnered with the Instituto Sistemas Complejos de Ingenieŕıa (ISCI) and the

telecommunications company ENTEL, to develop innovative methodologies and tools that placed operations

research and analytics at the forefront of the battle against the pandemic. These innovations have been

used in key decision aspects that helped shape a comprehensive strategy against the virus, including tools

that: (i) shed light on the actual effects of lockdowns in different municipalities and over time; (ii) helped

allocate limited intensive care capacity; (iii) significantly increased the testing capacity and provided on-the-

ground strategies for active screening of asymptomatic cases; and (iv) implemented a nationwide serology

surveillance program that significantly influenced Chile’s decision regarding vaccine booster doses and that

also provided information of global relevance. Important challenges during the execution of the project

included the coordination of large teams of engineers, data scientists, and health care professionals in the

field; how to effectively communicate information to the population; and the handling and use of sensitive

data. The initiatives enjoyed ample press coverage and, by providing scientific evidence supporting the

decision-making behind the Chilean strategy against the pandemic, they helped provide transparency and

objectivity to decision-makers and the general population. According to conservative estimates, the number

of lives saved by all of the initiatives together is close to 3,000, equivalent to more than 5% of the total death

toll in Chile during the pandemic. The saved resources associated with testing, ICU beds, and working days

amount to more than 300 million USD.
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1. Introduction

Chile, a country of roughly 19.7 million inhabitants (INE 2019), had its first recorded Covid-19

case in March 3, 2020 with a traveler from Singapore. After almost two years, Chile has reported

about 2.1 million cases and 39.7 thousand deaths due to the Covid pandemic (Ministry of Health

2022b,c). According to the Bloomberg’s Covid Resilience Ranking, Chile was the best country in

the world to live in during the pandemic as of the end of 2021 (Bloomberg 2022). In this paper, we

describe how applied analytics played and continues to play a key role in Chile’s favorable situation

regarding overall pandemic management.

Chile’s strategy to contain the pandemic consisted in a multilayered approach based on three

strategic pillars:

1. Contagion prevention: lockdowns, testing and tracing strategies aimed at preventing infections,

and identifying early on infected individuals so as to minimize spread.

2. Nationwide centralized management of critical beds: balancing the capacity of intensive care

beds with growing and variable demand throughout the country.

3. Vaccine roll-out: designing and implementing a vaccination strategy to optimize its effective-

ness based on a limited supply of a diversified pool of vaccines, using different technologies

with uncertainty as to their effectiveness.

The collaboration between the Ministry of Health and the Ministry of Sciences, Technology,

Knowledge and Innovation with the Instituto Sistemas Complejos de Ingenieŕıa (ISCI, an interdisci-

plinary research center of engineering and economics) and ENTEL (the largest telecommunications

company in Chile) was formed to develop a scientific approach that could support key decision-

making in each of the three pillars of the Chilean strategy with the key goal of saving lives. In

this respect, analytics proved to be fundamental to solving the different complex problems of this

crisis.

At its core, the collaboration was supported by the collection, processing, and analysis of massive

amounts of critical data, which were used to feed various models and then to develop decision-

support tools using different dashboards, allowing decision-makers to have ready access to them.

These data science, analytics, and operations research efforts resulted in an end-to-end cutting-

edge technological pipeline, which was developed in a record amount of time given the urgency,

and according to the exigencies of the pandemic dynamics. The models use advanced methods

from statistics, machine learning, and operations research to support a proactive decision-making

process and resulted in important scientific contributions reported in no less than four publications

in prestigious journals (Carranza et al. 2022, Goic et al. 2021, Basso et al. 2021, Sauré et al. 2022).
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Figure 1 The data and analytics pipeline of the project.

As described in Figure 1, at the core of the project is the production of data on mobility patterns,

using granular anonymous cellphone data provided by ENTEL. Another key data source was the

Covid-19 data repository, a fundamental and strategic initiative of the Ministry of Science. The

repository contains open aggregated data on confirmed cases, ICU occupancy, deaths, and the

vaccination campaign, among other relevant information (and mobility data was added to this data

hub as well). The mobility data was combined, on the one hand, with granular socioeconomic data

and, on the other, with granular epidemiological data and serology data (Step 1 “Data Source” in

Figure 1). All these data were cleaned and processed to produce several data products (Step 2 “Data

Products” in Figure 1), including (i) origin destination matrices capturing mobility patterns; (ii)

graphical mapping layers describing these and other population characteristics, including infections

and demographics; and (iii) several health variables and outcomes. These data products then

fed different analytics and data science modules (including dashboards and models) that allowed

a series of decision-makers/users to take action regarding contagion prevention, management of

hospital resources, and vaccination roll-out.

Complementing Figure 1, Figure 2 presents an alternative perspective on the project in the form

of a timeline of the various milestones associated with the different modules in the project. We

present such a timeline as a reference to have at hand while reading this manuscript, so as to help

the reader envision of the unique situation the team and Chile was facing at any given point. Next,

we describe the components of the project in more detail.

Regarding contagion prevention, our team transformed aggregated and anonymized telecom data

into granular mobility data, which was then used to create public dashboards with this mobility

https://github.com/MinCiencia/Datos-Covid19
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Figure 2 Key pandemic indicators and project timeline during 2020 and 2021. Each milestone on the time-axis

includes the module in Figure 1 with which it is associated with.

data showing the impact of lockdowns and voluntary shelter-at-home decisions across the country.

The graphs and data are downloadable and are routinely added to the Ministry of Science’s GitHub.

We also developed econometric models showing that the impact of social-distancing measures

and lockdowns is highly heterogeneous and dependent on socioeconomic levels. The econometric

analysis also showed that reducing mobility correlates significantly with the reduction of infections.

The team produced 36 publicly available mobility reports describing these data and results, which

provided key input to (i) to the government’s lockdown strategy throughout the country, and ii)

its plan to support lower income populations with complementary measures to increase compliance

(Step 3a “Mobility” in Figure 1). An estimate of impact suggests that these efforts prevented

between 6,500 and 12,800 infections, between 280 and 551 hospitalizations in intensive care units

(ICU), and between 189 and 371 deaths in the first wave of the pandemic; see Section 2.2 for

details.

With respect to contagion prevention through testing and contact tracing (Step 3b “Testing

and Active Screening” in Figure 1), the team developed and implemented pilots on group-testing
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techniques, which shaped key aspects of the national testing strategy, significantly increasing testing

capacity by more than 28% leading to savings of more than 236 million USD; see Section 3.3 for

details.

In addition, using the mobility and granular geo-referenced epidemiological data mentioned

above, our team developed index-based nationwide heat maps to guide surveillance testing efforts

to detect asymptomatic cases in public spaces (Active Screening of Cases, which we refer to as

“BAC” for its Spanish acronym), which were adopted as integral components of the national testing

strategy. The BAC heat maps were adopted by all 16 regional Undersecretaries of Public Health,

and all 29 Health Services (HS) that form the front line of the Chilean public health-care system.

As of January 2022, the index continues to be used, and has proven instrumental in detecting tens

of thousands of asymptomatic cases. An estimate of impact suggests that BAC prevented between

16,205 and 23,586 infections, between 599 and 886 hospitalazaitons in ICU, and bewteen 296 and

448 less deaths from November 2020 to January 2022; see Section 3.3 for details.

Despite the prevention efforts described above, many people were nevertheless infected, and

a fraction of them were severely ill, thus requiring hospitalization. To support the centralized

management of critical beds (Step 3c “ICU Planning” in Figure 1), the team used predictive

machine-learning models to produce short-term demand forecasts of intensive care beds at the

regional level throughout the country. These forecasts were key inputs to inform the coordinated

efforts to adapt and augment the supply of this scarce resource, and reallocate patients across

regions. Notably, the ICUs were never overdemanded in Chile (iCovid Chile 2022). An estimate of

impact suggests that this initiative prevented between 467 and 1,1017 deaths from May 2020 to

August 2021; see Section 4.3.

As the pandemic advanced, vaccines became a key instrument to prevent infections, severe ill-

nesses, and deaths. Chile decided very early that it would follow a multi-platform approach, favor-

ing availability over the choice of a specific vaccine technology. Chile thus signed contracts with

vaccine manufacturers with different technologies, such as Sinovac (inactivated virus), Pfizer BioN-

Tech (mRNA), and AstraZenaca (viral vector). This raised the challenge of generating information

about the results of different vaccines that would not be easily obtained elsewhere. In the con-

text of vaccine roll-out, the team designed and implemented a centralized surveillance system that

monitored the presence of Immunoglobulin G antibodies (IgG) in adults and children, inoculated

with different types of vaccines (Step 3d “Serology Surveillance” in Figure 1). The information

provided by this system, which uses the mobility data to design the sampling mechanism in the

general population and fed a statistical model of IgG waning dynamics, was instrumental to the

government’s decision to implement heterologous booster shots. Chile became one of the world

pioneers in booster shots and, arguably, such boosters avoided a significant third wave in 2021,
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preventing between 6,600 and 29,000 infections, between 290 and 1,050 hospitalizations in ICU,

and between 300 and 1,100 deaths; see Section 5.4 for details.

Table 1 summarizes the overall impact of the project and its four initiatives: an estimated

total prevention of between 29,305 and 65,386 infections, between 1,169 and 2,486 hospitalizations

in ICU, and between 1,252 and 2,936 deaths from May 2020 to January 2022. In Table 1 we

also quantify the monetary savings associated with a decrease in workdays due to each infected

individual and to costs associated with ICU hospitalizations. These, in addition to the savings

associated with implementation of group-testing for SARS-CoV-2 massive diagnosis, amount to

between 290.6 and 416.2 million USD. These calculations are explained in Appendix B.

Table 1 Summary of impact and cost savings

Module Infections Lost workdays (M$) ICU hospitalization ICU costs (M$) Deaths

Mobility platform
Conservative 6,500 2.4 280 10.48 189
Less Conservative 12,800 4.7 550 20.64 371

BAC
Conservative 16,205 5.9 599 22.46 296
Less Conservative 23,586 8.6 886 33.23 448

ICU forecast
Conservative - - - - 467
Less Conservative - - - - 1,017

IgG surveillance
Conservative 6,600 2.4 290 10.88 300
Less Conservative 29,000 10.6 1,050 39.38 1,100

Total
Conservative 29,305 10.7 1,169 43.8 1,252
Less Conservative 65,386 23.9 2,486 93.2 2,936

Total $ Savings plus Test Savings
Conservative M$ 54.6 M$290.6
Less Conservative M$117.2 M$416.2

The initiatives in the project received a tremendous amount of attention in the press and the

general population. A sample of the coverage can be found here, and all media coverage of ISCI

activities, including Covid, may be found here (in Spanish). As an example, only the mobility

platform alone was covered by more than 25 TV and 35 radio interviews of the researchers and

more than 120 newspaper articles commenting on the reports generated by ISCI researchers.

To summarize, the collaboration between the Chilean government, ISCI, and ENTEL resulted in

a data-driven and science-based decision-making approach that helped the people of Chile endure

https://isci.cl/covid19/on-the-ground-applied-analytics-during-the-covid-crisis-in-chile-application-to-the-franz-edelman-award-by-instituto-sistemas-complejos-de-ingenieria-isci-ministry-of-health-chile-ministro-of-scie/
https://isci.cl/covid19/
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the pandemic. In the words of the Undersecretary of Public Health (2018-2022) Paula Daza, “This

collaborative work had a strong impact on the response capacity that we have developed as a

country to face the pandemic”, to which the Minister of Science (2018-2022) Andres Couve adds

“We achieved the remarkable and challenging goal of coordinating between the government, the

scientific community, and the private sector. And we showed that it can be done in a small and

faraway country that is preparing with the scientific community to tackle future challenges. And

we also showed that Chile can be an example of how science can be used in public policy.”

Organization of the paper. In Sections 2 to 5 we provide details on each of the four initiatives

of the project, in terms of the challenges faced, the analytics behind the solutions implemented, and

the estimation of impact associated with them. In Section 6 we elaborate on the various challenges

faced during the two years of execution of the project, and on the opportunities for transportability

associated with the project. Section 7 presents our conclusions. The Appendix includes further

technical details about the methods and models implemented, and their analysis.

2. Mobility and Contagion Prevention

2.1. Background

During the early stages of the pandemic, lockdowns aimed at inducing social distancing were

fundamental to slowing down the spread of the virus. Following the first cases in Chile in early

March of 2020, the rapid spread of infection – with a doubling time of 3 days on average – led to

school closures and lockdowns in the city of Santiago during March, where most of the cases were

concentrated. As shown in the top panel of Figure 3, most of the cases at that point were located in

high- and middle-income municipalities, which led health authorities to adopt a localized lockdown

strategy, enforcing mobility restrictions in these areas with a higher case incidence.

The top panel of Figure 3 shows the evolution of cases in three groups of municipalities: the first

two groups include the high- and middle-income localities where the first lockdowns were located,

and the third group includes the municipalities in the lockdowns that followed (starting in the

third week of April), the lower-income population lives. The dots on each curve show the periods

in which each group was in lockdown, revealing a significant disparity of these lockdowns in their

role in better controlling the infection: lockdowns and school closures were effective at reducing

cases in high-income areas, while in middle- and low-income areas cases continued to grow at a

faster rate than high income areas that were not under lockdown.

Unfortunately, the infection data revealing this heterogeneous effect of lockdowns across regions

came too late. For one, interventions intended to promote social distancing are aimed at reducing

transmission, and their effect on secondary infections are observed with a week of delay, which
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Figure 3 The top panel shows weekly new cases / 100 K population for three groups of municipalities. White

dots indicate weeks under lockdown for each group. The middle panel shows reporting delays, measured

from symptom onset to case confirmation. The bottom panel shows the changes in mobility for these

three groups of municipalities, relative to the mobility observed in the first week of March 2020.
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is approximately the average serial interval for the original strain of Covid-19 infections (Lauer

et al. 2020, Rai et al. 2021). In addition, the dramatic escalation of cases coupled with insufficient

testing capacity – positivity rates reaching as high as 38% at the end of May (see Figure 2) – led

to significant delays in the reporting of infections. The middle panel of Figure 3 shows the delay in

the reporting of new cases, indicating the proportion of cases reported with more than a week of

delay (≥ 1) and more than two weeks (≥ 2) after symptom onset (Arroyo et al. 2020). Note that

by mid-April, about half of the cases took more than one week to be confirmed, and by the end of

May this proportion reached 85%. At that time, about 40% of cases took more than two weeks to

be confirmed following the start of symptoms, with an average delay of 9.5 days. Because of these

reporting delays, there was little visibility into how the infections were evolving and therefore no

prompt feedback on the effectiveness of lockdowns in controlling outbreaks: by the time the cases

were reported, the situation was already out of control. Hence, it became evident that alternative

indicators were needed to provide timely feedback on the effectiveness of lockdowns in order to

plan them efficiently.

2.2. Analysis of Mobility Patterns

Tracking the mobility patterns of the population presented an opportunity to monitor whether

lockdowns were indeed inducing social distancing in the population, thereby providing valuable

information before outbreaks occured. Researchers around the world were using Google mobility

reports and other region-specific data from cellphones to track mobility. However, these data sources

were not well suited for the health authorities to assess the localized lockdown strategies used in

Chile because (i) the data sources were not sufficiently granular to monitor mobility at the level

at which the lockdowns were implemented, and (ii) they provided information about movements

within a given area, but did not provide information about travel patterns between households and

destinations, which was useful to understand the spread of outbreaks in order to plan localized

lockdowns.

In collaboration with ENTEL Ocean, the digital solutions branch of ENTEL, we constructed

mobility indicators at a more granular level, based on the usage of telecommunications infras-

tructure: devices are geo-referenced during each connection using antenna triangulation, which

provides a more representative sample of devices relative to the alternative of using GPS-based

location. Connections during night hours (9—11pm) were used to assign a household to each

device, which was aggregated at the census zone level to maintain anonymity. (Each census zone

is composed of several census blocks and has an average population of 3,661.) To identify mobility

patterns, we tracked the location of each anonymous device during two time blocks during working

hours (10am—1pm and 2—5pm), aimed at capturing work-commuting patterns during weekdays,
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excluding weekends and holidays. We then assigned a location to each time block, using the most

frequent census zone where the device was positioned. The data was then aggregated using origin—

destination matrices at the census zone level, thus maintaining anonymity of travel patterns; see

Carranza et al. (2022) for details on how these mobility indicators are calculated.

The bottom panel of Figure 3 shows changes in mobility relative to the first week of March,

considered as the pre-pandemic baseline. The figure reveals a huge disparity in mobility reductions

across municipalities: higher-income areas reduced mobility by 40%—50%; middle income areas

reduced mobility by 30%—40%, and lower-income areas reduced mobility only by 20%—25%.

This heterogeneous compliance with shelter-in-place mandates is an important factor in explaining

why lockdowns were not as effective at controlling infections during the first wave of cases. A

key advantage of having these mobility measures promptly available is that health authorities can

respond faster to this information (compared to a response based on infection rates). Further, the

heterogeneous socioeconomic response can suggest other measures to complement lockdowns and

reduce social distancing, such as food and financial support.

Beyond these descriptive statistics, we conducted a rigorous econometric analysis of these mobil-

ity patterns with two objectives in mind. First, we sought to measure the impact of lockdowns

in reducing mobility, and to better understand why this effect varied across locations. Second, we

studied if there was a causal relationship between reductions in mobility and controlling infection

rates, which was critical to validate that these new metrics were useful for anticipating infection

outbreaks, thereby providing faster feedback on the effectiveness of lockdowns. For such purposes,

we developed panel data linear regression models that tackled these two objectives. The models

exploit the staggered implementation of localized lockdowns across municipalities to separate sea-

sonal effects from the causal impact of the lockdowns on mobility. See Carranza et al. (2022) for

more details on the model and results.

During the implementation of localized lockdowns, the high-income areas reduced their mobil-

ity twice as much as low- and middle-income areas; similar differences were observed during the

citywide lockdown period. Furthermore, by comparing infection rates across regions that were sub-

ject to similar lockdown conditions, we measured how differences in mobility are associated with

virus transmission. We constructed a specific measure of mobility for this purpose, which measures

the risk of infection on a focal location based on travel patterns from other locations, accounting

for asymptomatic cases from these origins. We showed that this measure of risk-adjusted mobil-

ity accounts for 37% of infection rates in low-income populations due to their higher mobility.

This risk-adjusted mobility metric also became useful for better targeting testing efforts to detect

asymptomatic cases circulating in the community, which we explain in the next section.
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Many of the mobility indicators constructed fed an online visualization platform that was made

available to the general public and health authorities. The platform visualization interface is shown

in Figure 4; figures are customizable and downloadable, as is the generating data, which has also

been made available at the GitHub of the Ministry of Science.

Figure 4 Mobility visualization platform. The graph shows a weekly time series of mobility during 18 months since

the start of the pandemic, measured as the relative change in the fraction of the population leaving

their census zone compared to pre-pandemic baseline. Dots indicate the level of mobility restrictions

of the municipality on each week. Background panels indicate the predominant level of restrictions for

the city. This public-access platform is available at ISCI’s website.

The mobility platform received huge coverage by the media, with more than 25 TV and 35 radio

interviews of the researchers and more than 120 newspaper articles on the reports generated by

ISCI researchers. Providing public access to this information and its broad dissemination through

the media helped to build confidence among the population that the huge efforts that were made

to comply with social distancing were indeed having an impact on mitigating the pandemic. The

mobility platform was expanded to include other major cities in Chile and trips between cities,

which was useful for monitoring travel patterns during the summer vacation period (January—

February 2021).

2.3. Impact: Increasing Shelter-in-Place Adherence

The information provided by this nationwide mobility platform became a useful tool for the health

authorities to assess the localized lockdown strategy used in Chile. The main impact of these

https://github.com/MinCiencia/Datos-Covid19
https://covidanalytics.isci.cl/movilidad/visor-movilidad/
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mobility indicators was: (i) to increase confidence among the population that social distancing

was effective at reducing virus transmission; (ii) to provide information to the health authorities

that would enable them decide where and when to impose social distancing mandates and provide

resources to increase the public’s compliance with them (e.g., distributing food and financial sup-

port in low-income neighborhoods); and (iii) to identify areas where lockdowns were simply not

working and other mitigation measures were needed to mitigate transmission (personal communi-

cations with the Minister of Science Andres Couve).

Altogether, these efforts contributed to reducing the mobility of the population and thereby

lowering infection rates. It is difficult to isolate the specific contribution that the mobility platform

had in the implementation of these multiple initiatives. Hence, we used a conservative approach to

quantify this potential contribution, evaluating the impact of a small change in mobility due to an

increase in shelter-in-place compliance. We used one standard deviation (σ) of the risk-adjusted

mobility observed during the March—July period as a reference to measure changes in mobility. A

5-percentage-point improvement in the compliance with shelter-at-home mandates translates into a

σ/10 reduction in mobility, equivalent to one-tenth of the observed standard deviation, a relatively

small change. Let’s assume that the implementation of the platform generated this small mobility

reduction during a limited time period, from the beginning of June 2020 (the first press releases

of the platform) to the beginning of August 2020 (the lifting of the citywide lockdown), a period

of 10 weeks in total. Using the econometric model that we developed in Carranza et al. (2022)

to link mobility with infections, this small change in mobility translates into a 1.2% reduction in

the weekly infection rate, equivalent to 6,500 fewer cases during this 10-week period (4.5% of the

infections registered in the period). In turn, this implied 279.5 fewer ICU hospitalizations and 189

fewer deaths (calculated based on the hospitalization and mortality rates from Table 2 in Appendix

B). If we assume a less conservative estimate of a 10% increase in shelter-at-home compliance due

to the platform implementation (a σ/5 reduction in mobility), the calculation yields 12,800 fewer

infections, 550 fewer ICU hospitalizations, and 371 fewer deaths.

As shown in Figure 4, the mobility indicators suggest a lockdown fatigue effect, where mobility

became less responsive to shelter-in-place mandates over time, a phenomenon that has been doc-

umented in related work (Joshi and Musalem (2021), Li et al. (2022)). Although lockdowns were

an effective measure for mitigating the spread of infections in the initial phase of the pandemic in

some regions, their effect became weaker over time. Hence, alternative measures were needed to

contain the pandemic. In the next section, we show how the mobility indicators constructed from

telecom data improved the efficiency of one important such strategy: the testing and screening of

asymptomatic cases that followed the first wave of the pandemic in Chile.
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3. Testing and Active Screening of Cases

Given the large proportion of infections transmitted by pre-symptomatic, asymptomatic, and

mildly symptomatic cases of Covid-19, massive testing in the general population became a useful

mitigation measure for reducing community transmission (Mercer and Salit 2021). However, capac-

ity was relatively low; in fact, positivity rates reached up to 40% at the peak of the first wave of the

pandemic in Chile. Hence, it became critical to expand testing capacity and improve the efficiency

of testing strategies. This section describes the efforts developed to achieve these objectives.

3.1. Group Testing Strategy

The first initiative was to implement a large-scale group-testing approach to expand testing capac-

ity at lower costs. The group-testing technique consists of producing a combined sample out of

individual samples, which is tested using a single PCR reaction in order to detect if any of the

individual samples is infectious, in which case each sample is tested individually. This technique is

effective at reducing laboratory costs and reporting delays when positivity rates are low (Dorfman

1943). The technique was first validated for Covid-19 by Yelin et al. (2020), but required a local

validation for its use in Chile (Farfan et al. 2020).

In order to validate the method before using it in a large-scale nationwide implementation,

we first conducted a pilot study through a group-testing monitoring program in long-term care

facilities (LTCF), while accounting for the particularities of the setting (Basso et al. 2021). The

success of the pilot showed that it was possible to diagnose patients at a much lower cost (in terms

of PCR reactions), and therefore was adopted as a national testing strategy and thus followed by

several laboratories. In particular, the number of tests performed via group-testing accounts for

approximately 10 to 20% of the total testing conducted (Ministry of Health 2022a). We elaborate

on the impact of this effort at the end of the section.

The use of the group-testing technique coupled with a decrease in positivity rates after the first

wave (see Figure 2) allowed testing capacity optimization, which enabled the health authorities to

initiate a testing plan to screen asymptomatic cases in the community.

3.2. Active Screening of Asymptomatic Cases

Unlike symptomatic individuals, who are tested once symptoms appear, asymptomatic individuals

are generally unaware of their condition and therefore are likely to continue with their daily activ-

ities without adopting additional care or restrictions, thus spreading the virus in the community.

Health authorities designed a testing strategy to identify these cases by implementing mobile PCR

testing stations in public locations. We developed a system to efficiently locate these stations that

combines mobility, granular georeferenced epidemiological data, and demographic information.
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Specifically, we developed an active screening index (also referred to as the “BAC index”, after

the Spanish acronym for Búsqueda Activa de Casos) that estimates the likelihood of finding asymp-

tomatic cases in localized public-access areas. The index – which is computed for each urban census

zone and each day – measures the risk of finding an asymptomatic case by weighting the positiv-

ity of the incoming people in a given census zone by the density of the inflow of asymptomatic

cases. The latter term is incorporated to account for the volume and spread of asymptomatic cases

in the area, given that stations have a limited testing radius. In this sense, the index combines

epidemiological and mobility data. Further details of the BAC index computation are provided in

Appendix A.

The BAC index was integrated into the Ministry of Health’s visualization platform (in the form

of heat maps) in order to guide testing efforts throughout the country. The pilot was launched in

October 2020, and the nationwide program in November 2020, covering a population of 15 million

residents in 256 towns and cities (see Figure 2). The index, which is computed at the beginning

of each week, is normalized so as to emphasize the relative comparison across geographic units,

thus facilitating the visualization for the decision-makers that choose which locations to prioritize

testing.

The independent dashboard developed by ISCI, also available to the health authorities, is shown

in Figure 5. There, the census zones shown in dark red are the ones with the highest index value,

whereas those in yellow have a lower index value. A higher index value implies a higher estimated

chance of finding asymptomatic cases and, therefore, a better candidate locate for a testing station.

Users were able to filter the index, e.g., by day of the week, which is an important feature, as

mobility patterns vary depending on the day of the week and so does the BAC index, accordingly.

This heat-map platform is updated every Sunday with the index values for the upcoming week.

3.3. Impact: Increasing Detection of Asymptomatic Cases

The success of the group-testing pilot led to the adoption of this technique as a nationwide strategy

in September 2020, which in turn led to a dramatic increase in testing capacity: considering that

between 10% and 20% of each PCR reaction used this technique, with a group size of 5 samples,

this translated into an overall increase in testing capacity of 28% to 35%, that is, in the order of

7.5 to 9.5 million tests between the beginning of the pandemic and January 2022. The resulting

savings were in the order of 236 to 299 million USD, assuming a cost of 31.25 USD for each PCR

test.

The active screening efforts supported with the BAC index visualization platform detected

46,000 asymptomatic cases from November 2020 to January 2022, with a total number
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Figure 5 Visualization heat-map tool of the BAC index. (The text of the visualization has been translated from

Spanish to English.)

of (active screening) tested individuals of 2,173,126 (see products 63, 64, and 65 at the

GitHub of the Ministry of Science).

To estimate the impact of the Testing and Active Screening module, we considered a counterfac-

tual scenario where the same number of tests were distributed at random in the population within

each town and city. The test positivity under this counterfactual was 0.68%, compared to 2.12%

using the BAC index, which yields 31,324 additional asymptomatic cases detected by the system.

Using the effective reproductive number (Re) – which represents the expected number of sec-

ondary infections of an infected case (Grassly and Fraser 2008) – we estimated the averted infections

from the detection of these incremental asymptomatic cases. We used only half of the estimated

Re since some of the infections may have occurred before detection (see Appendix B for details on

the parameters used). The calculations yields 16,205 fewer infections, 599 fewer ICU hospitaliza-

tions, and 296 fewer deaths. A less conservative scenario, in which we compare to the alternative

without any testing to detect asymptomatic cases, results in 23,586 fewer infections, 886 fewer ICU

hospitalizations, and fewer 448 deaths.

https://github.com/MinCiencia/Datos-Covid19
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4. ICU Capacity Planning

4.1. Background

In early May 2020, infection rates started to increase rapidly (see Figure 2), threatening the ability

of the health-care network to accommodate all incoming Covid-19 cases. By that time, the Ministry

of Health decided to assume centralized control of all ICU beds in public and private hospitals

in order to provide enough critical care to all those who might need it. This centralized design

considered expanding bed capacity at the regional level and moving patients across regions to

balance bed utilization. These decisions required a detailed forecast of how many beds were going

to be needed in the near future for each region in the country.

By mid-May, the Chilean Society of Intensive Medicine (SOCHIMI) reported a worrisome occu-

pation rate of ICU beds of more than 95% in the capital city of Santiago, where most of the cases

were concentrated; hence, ICU capacity planning became a first-order concern. On May 12, we

were urged to prepare short-term forecasts of ICU occupancy rates for those regions with the high-

est utilization rates. Within 24 hours, we submitted our first report. From then on, we prepared

forecasts every two days for several weeks during the whole duration of the hospital crisis.

4.2. Short-term ICU Occupancy Forecasts

The forecasts were based on compartment a model where patients stochastically evolve through

different states (details of the model are described in Goic et al. (2021)). For each region, we

replicated the behavior of the ICU process, balancing inbound and outbound flows of patients

in three different state variables: first, the number of infectious individuals who show symptoms

of Covid-19; second, the number of critically ill people who need an ICU bed; and finally the

number of individuals who are discharged from an ICU. To describe transitions between states, we

estimated how likely it was that a given patient would evolve to another state, and a probability

distribution for the duration of that transition. Our model considers that these events depend on

the characteristics of the patients, and that the duration of stay can be highly heterogeneous. For

instance, while some patients require ventilation for only a few days, other stay in an ICU for

several weeks (Vekaria et al. 2021). To accommodate these variations, we used flexible distributions

to characterize the length of stay, even allowing for bi-modal distributions.

The calibration of the compartment model required precise estimates of the relevant epidemi-

ological and clinical parameters, which were expected to change as the pandemic evolved. For

example, the proportion of patients requiring mechanical ventilation can change over time, and

so can the clinical criteria for releasing them from the ICU: because Covid-19 was a new virus

it involved continuous learning by medical teams. In this regard, the Chilean Society of Intensive

Medicine indicated that compared to early cases, patients were reducing their length of stay due
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Figure 6 Schematic representation of ICU forecasts dashboard.

to less frequent use of mechanical ventilators and a more effective selection of the more serious

cases. Finally, the systems for generating the data were under constant stress and, therefore, the

information that we had available could be lagged.

To accommodate all these short-term variations in the process we combined the compartment

model with a variety of autoregressive and machine learning models that have been shown to

provide flexible estimation of complex dynamic interactions (Zhang 2003, Zhang and Qi 2005).

To produce an integrated forecast for each region, we used ensembles that have been shown to

provide more accurate predictions in different domains (Montgomery et al. 2015, Wu and Levinson

2021). Considering that the medical staff in charge of ICU capacity decisions had a very intuitive

interpretation of the compartment model, we always included it in the ensemble.

These forecasting models were built into a fully automated dashboard system that generated

detailed reports as needed (we generated 30 in 2020 and 26 in 2021). Figure 6 provides a schematic

illustration of these dashboard-style reports, which were designed to facilitate a quick evaluation

on the part of health officials and SOCHIMI. For each region, we provided a graphical summary of

the actual requirements and our predictions for the next 14 days and, we highlighted the number

of additional ICU beds that would be required in exactly one and two weeks ahead. The report

included a summary table with one- and two-week predictions for all country regions, allowing the

health authorities to visualize those regions in most critical need of new beds.

4.3. Impact: Benefits of Accurate Forecasting

Each short-term ICU forecast was reported by the Minister of Science to the President and his

Crisis Advisory Committee, who used them as input for focusing efforts to adjust the supply of

intensive care beds. In particular, this interaction resulted in a progressive and directed increase

in the number of ICU beds, leading to more than doubling the national capacity of ICU beds from
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1,563 at the beginning of the pandemic to 3,102 beds at the peak of the first wave, and then to

4,538 beds at the peak of the second wave. Most of this additional capacity resulted from converting

traditional beds into ICU beds. To put this effort into context, this increment allowed hospitals to

provide critical care to 7,870 patients, saving a large fraction of them.

Our forecasts were instrumental to assisting health officials to increment capacity at the right

pace. Certainly, larger forecasting errors would lead to different costs depending on the direction

of the error. While overpredictions are associated with larger investments and longer delays of

other medical procedures (Sud et al. 2020), underpredictions would have implied a potentially high

number of Covid-19 patients without critical care. To assess the impact of having more accurate

predictions, we assumed that the ICU bed capacity decisions closely follow the forecasts, which is

reasonable because conversion of ICU beds is expensive and has a large opportunity cost in terms of

other procedures; hence, large safety stocks are rarely allocated. Monte Carlo simulations indicate

that having worse forecasting accuracy would have caused between 575 and 1,151 individuals not

to receive the mechanical ventilation they needed. Considering the ICU survival rate derived from

Table 2, we estimate that our system directly assisted in saving between 467 and 1017 lives. See

Appendix C for more details.

Our forecasts also helped to adjust the lockdown plans and other policies in order to prevent

ICU capacity overflow. This proactive planning of ICU capacity was successful in preventing the

overflow of patients into ICUs that was observed in other countries and, later in the process, in

allowing hospitals to readily re-schedule a significant number of surgeries that were delayed during

the most critical phases of the pandemic.

5. Serological Surveillance

5.1. Background

By the second half of 2020 it became clear that vaccine roll-out would become central in most

countries’ strategies to contain the pandemic, once vaccines became available. It was also clear that

vaccine supply was uncertain, and that prioritization of high-risk groups would likely be required.

At the time, Chile had acquired a significant amount of the inactivated virus vaccine CoronaVac

from the Chinese manufacturer Sinovac, but did not have priority access to large volumes of mRNA

(e.g., Pfizer) or viral vector (e.g., AstraZeneca) vaccines. At this juncture, the government opted

for pursuing a vaccine roll-out strategy that would combine vaccines with different technologies.

This strategy quickly placed Chile as a leader in the vaccination campaign worldwide, with about

75% of its population vaccinated with CoronoVac. However, it was unclear whether this inactivated

virus vaccine would have a lasting effect on the population. Since the Chilean vaccination strategy
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was unique, health authorities could not rely on international studies on vaccine protection, and

therefore needed to develop their own system to monitor vaccine effectiveness. Further, a key aspect

was that the system would need to have the capacity to evaluate changes in potential vaccine

protection over time and for the different vaccines.

Experience with the implementation of lockdowns revealed that waiting to analyze large-scale

infection data in order to monitor the effectiveness of the vaccine would lead to a long delay to

take action. An alternative was to implement a nationwide serology study to monitor the immune

response of the inoculated population over time and evaluate how this was affected by prior infec-

tion, demographic variables, comorbidities, and the vaccine used, among other factors. A key design

aspect of this serological monitoring system was to decide the location of the antibody testing sta-

tions in order to maximize the representativeness of the sample. An efficient design would increase

the statistical power of the study, which in would turn reduce the time needed to reach conclusions

and take action.

A first pilot program was implemented in March 2021, in parallel with the start of the nationwide

vaccination campaign, in which antibody testing stations were installed at high-traffic locations in

Santiago. The locations were chosen based on the mobility patterns that were used to construct

the mobility platform and the BAC system (see Figure 1).

The tests were free of charge for voluntary patients and individuals who volunteered, signed

an informed consent, and were tested for IgG antibodies using a lateral flow test (LFT) that

produced results within 15 minutes; while waiting for results, subjects responded to a web-based

questionnaire (under a health-care worker’s supervision) asking for clinical and geo-demographic

data, which populated our database in real time.

The pilot concluded successfully with over a thousand people tested, and the results were made

publicly available through a web-based dashboard. Among lessons learned during the pilot were

the need to account for evolving vaccination status information (e.g., number of doses), and to

carefully communicate the non-diagnostic nature of the test and that a negative result did not

necessarily translate into lack of protection.

5.2. Nationwide Implementation

Starting in March 2020, 29 testing stations were deployed throughout the most populated cities

in Chile (see Figure 2). The operation was carried out by personnel from the 29 health services

that form the front line of the Chilean public health-care system. The testing stations were located

strategically so as to obtain a geographically representative sample of the general population. For

this, we used our data on mobility patterns and demographics to formulate an integer program

(IP) that selected the census zones in which to install testing stations so that the geographical

https://covidanalytics.isci.cl/resultsero_rm/
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distribution of the overall sample collected would replicate that of the general population, subject

to some operational constraints. Because mobility patterns change from day to day, sometimes

from morning to afternoon, the model considered the decisions of where to locate each station, on

what day, and in which time block (morning/afternoon). The model considered a planning horizon

of one month, which allowed us to maintain representativeness over time during the duration of

the study. The overall problem is separable across Chile’s 16 regions (first-level administrative

division); thus, we solved 16 separate formulations to find an optimal nationwide allocation. The

formulation of the IP can be found in Appendix D

5.3. Operation and Results

The serological study described above operated for about 9 months, during which over 70 thousand

samples were collected. Throughout the study, we constantly monitored the sample, in terms of its

representativeness with regard to various sociodemographic variables (most notably the geographic

one, which was the one that we were actively managing) so as to detect any anomaly. In this regard,

because of idiosyncratic discrepancies between mobility data and realized mobility, biases associated

with testing volunteers in public spaces, and unplanned modifications to station allocation (e.g.,

at times some stations could not change locations at the required frequency, and some locations

were either permanently or sporadically unavailable), the geographic representativeness of partial

samples did not always match that prescribed by the solution to the IP model. We dynamically

corrected partial deviations from the planned sample by implementing the IP solution on a rolling

horizon basis, fixing the composition of the collected sample, and planning data collection for the

rest of the horizon. Figure 7 shows the final composition of the sample for the most populated city

in Chile. Reº¯½Çe Semanal

Ɩ7391
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Figure 7 Sample vs. census population distribution across the most populated municipalities of Santiago.
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By September 2021, most of the samples being collected corresponded to individuals with either

partial or full vaccination schemes. A first analysis showed that the collected data allowed us to

monitor the dynamic IgG response to vaccination in the general population. In light of the result

above, the study was extended for six more months, in the form of a monitoring program of IgG

dynamics in a vaccinated population (where geographical representativity was less relevant) that

continued operating with a reduced number of stations, collecting data mostly on IgG response to

primary and booster doses. By the time of this writing, the aforementioned monitoring program

had tested over one hundred thousand volunteers from the largest cities in Chile.

Because of the profound public policy implications of our results (see below), we extended our

study along several dimensions. On the one hand, with the support of the Ministry of Education,

we extended our study to include the pediatric population, which was incorporated into the vaccine

roll-out program late in the second half of 2021, see Torres et al. (2022b). Because inoculations

were carried out at public schools and during school days, our study formulated an IP model to

select about two dozen schools, across three regions, so as to obtain a representative sample of the

pediatric population of those regions. In said IP, school enrollment data took the role that mobility

data had in the nationwide serological study. On the other hand, we are currently studying the

relationship between IgG positivity and quantitative levels of neutralizing antibodies, which will

help connect IgG positivity to more robust measures of protection.

5.4. Impact: Advancing Booster Roll-out

The centralized IgG surveillance system demonstrated the waning of IgG positivity among recipi-

ents of a primary vaccination scheme using Sinovac (about 75% of the eligible population) after the

second week since receiving a second dose, specially among those 60 years of age and older; see the

left panel in Figure 8, and Sauré et al. (2022) for more details. This information was crucial to sup-

porting the decision to begin rolling out booster doses in early August (see Figure 2): heterologous

regimes using either Pfizer or AstraZeneca as boosters (but not Sinovac) were prioritized, specially

among older segments of the population. More recently, information collected by the surveillance

system guided the decision regarding a second booster dose (right panel in Figure 8; see Torres

et al. 2022a for more details), which began roll-out in January 2022.

The IgG surveillance system can be credited in part for the early roll-out of booster shots in

Chile. In order to quantify the impact of this decision, we estimate: i) the overall impact of booster

doses using data available reporting the incidence of infections, ICU hospitalizations, and deaths

during September–December 2021 for populations without booster shots, and ii) the impact of
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Figure 8 IgG positivity among recipients of primary vaccination scheme (left panel) and booster dose over two-

dose Sinovac primary vaccination (right panel); error marks depict 95% confidence intervals; the series

correspond to the Pfizer BioNTech (red), Oxford/AstraZeneca (blue), and Sinovac (green) vaccines.

earlier implementation by considering the alternative scenario where the decision is delayed until

booster doses are approved by the US Food and Drug Administration (FDA).

Regarding i) above, Appendix E provides further details about the data and the model used

for estimating the impact of the booster shot on health outcomes. Using these predictions, we

estimated for each week and each health outcome the number of occurrences that were prevented,

considering the actual population of different age groups that received the booster up to that week.

The weekly averted occurrences for each outcome are illustrated in the top panel of Figure 9, where

the colors indicate different age groups. Averted infections were predominantly in the younger

group, where transmission is higher. Averted hospitalizations and deaths were concentrated in the

older age groups, which is the main reason why these age groups were prioritized during the booster

vaccination campaign. The bottom panel of the figure shows the cumulative averted cases at the

end of each month.

Regarding ii), the FDA approved Pfizer boosters during November 2021; thus, the alternative

roll-out would have been delayed by 2 to 3 months, which we used to calculate the lower and

upper bounds of the impact of the serological surveillance system. Delaying the campaign by 2

months would have caused 6,600 additional infections, 290 ICU hospitalizations, and 300 deaths,

which correspond to the conservative estimates of the impact. An additional month of delay (3

months total) would have causes infections to increase by 29,000, leading to 1,050 additional ICU

hospitalizations and 1,100 additional deaths.
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Figure 9 Averted infections, ICU hospitalizations, and deaths associated with the booster shot campaign through

September–December 2021. The top panel shows the weekly averted cases for different age groups.

The bottom panel shows the cumulative averted cases at the end of each month.

6. Implementation Challenges and Transportability

6.1. Implementation Challenges

In addition to the technical difficulties that were encountered in developing the different modules of

the project, there were also significant practical challenges at different stages of the implementation

that set the project apart from more traditional implementations of analytics and operations

research. These challenges needed to be promptly addressed in order to enable a timely adoption

of the system and maintain engagement of the different stakeholders.

A first major challenge was urgency: as opposed to other applications of analytics that can be

planned carefully, here we were dealing with an always changing situation, where needs arose sud-

denly and solutions had to come swiftly. Responding in such an environment required a significant

amount of spirit, and continuous improvement.

A second challenge was the coordination of a large number of professionals with different back-

grounds and working in different institutions, each of which were fundamental in the development

of the system. The implementation required building collaborations among: (i) engineers from dif-

ferent institutions with training in data science and modeling, who were in charge of developing

the data pipeline and analytics backbone of the system; (ii) public officials in charge of adapting

the regulatory environment that was needed for the project to be implemented in practice; (iii)

health-care professionals that formed the front line workforce in charge of making the system work
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in the field; and (iv) public relations teams from many institutions, in charge of communicating the

efforts and results obtained in the context of the project. Many of these professionals were also geo-

graphically dispersed, which further complicated coordination in the nationwide implementation

of some of the modules.

A third challenge was to encourage participation and adoption by the different health authori-

ties that form Chile’s decentralized health-care system. Although there was full alignment among

the high-level leadership of the government (i.e., at the ministry level), a full-fledged nationwide

implementation required the sponsorship of the local authorities in each of the regions in Chile.

For example, the launch of the Testing and Active Screening module was implemented simulta-

neously in four cities in the presence of health authorities and ISCI researchers at each location,

which included media coverage on national TV, and then extended nationwide with similar media

coverage.

A fourth important challenge was to define the data that could be actually used as an input to the

system. Early in the project, it was clear that mobility data would provide key information to guide

decision-making, but it was fundamental to mitigate any concerns related to consumer privacy that

could hinder the use of these data. Similar concerns were raised in using granular epidemiological

data that was not publicly available. Models needed to be adapted in order to use anonymous data

that was properly aggregated in order to protect the confidentiality of users and patients; research

teams had to agree on nondisclosure agreements and work through an iterative process among the

institutions involved in order to reach consensus on the precise level of granularity beyond which

the data could not be used, balancing model precision with privacy concerns.

Fifth, we faced a critical challenge on how the implementation of the system and the information

that it was providing was communicated to the general public. During the implementation of the

Mobility module, there was strong evidence that certain municipalities were exhibiting low levels

of adoption of the quarantine mandates. Revealing this information without an adequate level

of communication could generate resistance in the population if it was viewed as too invasive or

controlling. To mitigate this risk, ISCI researchers were directly involved in the communication

campaign through the media, highlighting the scientific evidence provided by the mobility platform,

mitigating concerns related to user privacy, and suggesting the need to provide aid to those areas

that were facing difficulties in complying with lockdown mandates.

Similar communication interventions were needed to disseminate the findings of the Serology

Surveillance module, which was revealing a decay of the (IgG) immunity response of the CoronaVac

vaccine in the elderly population after 3 months of inoculation. It was important to highlight the

value that this early and fast vaccination campaign, focused initially on this high-risk population

group, had in reducing mortality and hospitalization rates during the second wave of cases in

https://www.youtube.com/channel/UChWYOukYm4reerYo9Ywceug/videos?view=0
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Chile, in which the Gamma variant was prevalent in South America. Researchers in Chile from

different disciplines worked in several studies that provided scientific evidence of the effectiveness

of the vaccination campaign during this second wave, thereby demonstrating that it had fulfilled

its purpose within the overall vaccination plan that Chile pursued (Jara et al. 2021, Sauré et al.

2021). These studies complemented the evidence provided by the Serology Surveillance module,

showing that there was indeed an immune response from the vaccine during those critical months,

but that it was necessary to reinforce it through the booster shots in anticipation of the Delta

wave. These conclusions – which were derived from the results published in Sauré et al. (2022) –

were broadcasted on national TV, in a joint presentation by the Ministry of Health, the Ministry

of Science, and ISCI researchers. Reinforcing the positive aspects of Chile’s unique vaccination

strategy based on scientific evidence is one of the factors that contributed to the high level of

vaccine acceptance in the Chilean population.

Finally, many of the solutions proposed were quite delicate in nature: they revealed confi-

dential data, anticipated potential scenarios with high morbidity/mortality levels, bad outcomes

for the community, or spoke to the efficient use of public resources. In this regard, each pro-

posed solution had to be thoroughly discussed with the health authority before their dissemina-

tion/implementation, so as to consider all possible political ramifications.

6.2. Transportability

The initiatives in the project share the common trait of using evidence-based approaches to guide

decision-making for efficient use of scarce resources. A key role in said approaches is that played by

the mobility data, which comes from the collaboration agreement and work by ENTEL and ISCI.

In this regard, there are many future application areas that will greatly benefit from the avail-

ability of the mobility data produced in the context of this project; moreover, it is possible to

process the raw data so as to produce different data products that suit the specific needs of other

application areas.

Regarding the analysis of mobility patterns as used in this project, it is possible to directly adapt

the Serology Surveillance and the Testing and Active Screening modules using epidemiological data

associated with different epidemiological settings, or with other endemic diseases, such as influenza.

Indeed, beyond the context of the pandemic, the IP-based methodology developed for serology

surveillance can be applied to conducting population studies in other context so as to overcome

the logistical challenges associated with obtaining a geographically representative sample of the

population.

More broadly, the analysis of the mobility data, as in this project, could provide key input to

help improve a number of public services. For example, IP methods could help decide where to

https://www.minsal.cl/subsecretaria-de-redes-asistenciales-y-universidad-de-chile-presentan-resultados-de-investigacion-publicada-en-prestigiosa-revista-medica-the-lancet/
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allocate temporary resources, such as the mobile vehicle-registration stations that are used at the

beginning of every year close to the annual registration deadline, so as to maximize coverage or

minimize travel time. Similarly, a different processing of the raw mobility data could help to assign

each registered citizen to a voting site, so as to minimize travel time and maximize turnout.

The potential for developing useful tools alluded to above led, in early 2022, to a new collabora-

tion agreement for research and innovation between ISCI and ENTEL, going beyond the pandemic

response. This new alliance aims at leveraging the use of mobility data in public and commercial

projects. An early example of this new collaboration effort is a grant funded by a state-run agency,

already in progress, to produce origin–destination matrices to help improve planning of freight

transport within cities.

Another situation where we foresee future applications of the efforts we have carried out is in the

forecast of ICU occupancy during the winter season, when influenza and other viruses circulate.

It is almost always the case that during winter in Chile, the ICU system is stressed; we deem it

possible, and will indeed do research on it, that with some knowledge of the circulation of the

different viruses, we could predict peaks of ICU demand.

7. Conclusions

In this work, we describe the collaboration between the Chilean government, Instituto Sistemas

Complejos de Ingenieŕıa (ISCI), ENTEL, and other partners in specific projects, such as the faculty

of medicine at University of Chile, in developing a data-driven and science-based proactive approach

to decision-making that helped the people of Chile better endure the Covid-19 pandemic.

There are many aspects of this collaboration that go beyond traditional practical applications

of analytics and operations research and that, we believe, set this project apart.

This project had real-life, nationwide implementation: all modules of the project had a national

reach, including the fact that health-care workers were on the ground, working at places that were

specifically identified by our advanced analytics models.

This project had a profound impact, by providing scientific evidence supporting the decision-

making behind the three pillars of the Chilean strategy. This helped to provide transparency and

objectivity to decision makers and the general population. But, of course, the most important

measure of impact is that thousands of lives were saved: without the project, the death toll in

Chile could have been at least 5% higher. Also, millions of dollars were saved. All this was achieved

because the project offer technical solutions that contributed to each of the three main strategic

pillars in the fight against Covid.

The technical solutions provided were innovative, crafted specifically for each challenge, mixing

all the tools we had at hand in OR, and interacting with other disciplines such as with geography
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and epidemiology. The fact that many of our solutions were eventually published in top journals

is a manifestation of their novelty.

The project faced a large number of difficulties. First, the project was carried out in, possibly,

one of the most complicated medical emergencies in living memory, where solutions were needed

urgently. Second, the only way the project and its four initiatives had any chance to succeed

was through the joint work of a quite heterogeneous group of people, ranging from engineers and

researchers, to political authorities, to health care workers on the ground, who were facing huge

amounts of stress. Building trust among everyone was fundamental, so that the efforts of one

group of people were followed up by the next group in the line of work. It is actually fairly easy

to envision many ways in which the project could have failed. Third, it required a huge amount

of coordination between institutions and its officials. And fourth, as it dealt with very delicate

information, the results had to be communicated with care, a task that required further interaction

between authorities and scientists, and had them both explaining on national media. In fact, the

media coverage of the project was vast.

The project and the solutions have a high potential for transportability. Indeed, a new agree-

ment between Entel and ISCI has been signed in order to explore further uses of the mobility data,

while large scale population studies following the framework used in the IgG surveillance program

can be attempted. We may also adapt our ICU demand prediction model for when influenza and

other winter viruses hit the population and the health care system.

A key aspect for transportability is the fact that, during the project, hundreds of people were

involved and trained, including the support of over a dozen research assistants, most of them grad-

uate students. These human resources now have the knowledge and experience to push further this

successful interaction between engineering and public health. In fact, we are already collaborating

with the new government that took office in March 2022 to extend under their administration the

Covid initiatives presented in this paper and also explore further opportunities for collaboration.

To conclude we quote the current Minister of Health Begoña Yarza: “Our government is just get-

ting started. We are very excited to continue these collaborations using science and analytics to

support decision-making in the pandemic and, why not, in other public health challenges we need

to address.”
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Appendix A: BAC Index

Let us denote by I the set of urban census zones, and by D a set of days. For each urban census zone i∈ I,

we denote its inhabitants by ni and its area by si. In addition, the symptomatic cases in urban census zone

i on day d∈D are denoted by aid. In any census zone, the BAC index is computed as the geometric mean of

the two following elements: (i) the positivity of inflow, and (ii) the inflow density of symptomatic cases. The

intuition for why the index has these two elements is that, on the one hand, we would like to test in those

census zones that have the highest positivity in their floating (i.e., inflow) population. On the other hand,

those symptomatic cases among the inflow population should be normalized by the total area of the census

zone we are looking into. For each census zone j ∈ I on day d∈D, we define the inflow of symptomatic cases

as F a
jd, and the inflow as Fjd; then the BAC index in census zone j ∈ I on day d∈D is defined as

BACjd =

√
F a

jd

Fjd

·
F a

jd

sj

=

√∑
i∈I

aid

ni
fij∑

i∈I
fij

·
∑

i∈I

aid

ni
fij

sj
.

The reason why (i) and (ii), i.e., the positivity of inflow and the inflow density of symptomatic cases, are

averaged geometrically instead of arithmetically, is to penalize (in the sense of lowering their BAC index) those

census zones that either have a very low inflow positivity, or have a very low density inflow of symptomatic

cases. Also, it is worth noting that there is an alternative interpretation we can give to the BAC index:

BACjd =

√
F a

jd

Fjd

·
F a

jd

sj

=
F a

jd

Fjd

√
Fjd

sj
.

Thus, the BAC index can be expressed as the multiplication of the positivity of inflow by the square root of

the density of inflow.

Appendix B: Estimated Parameters for Impact Evaluation

Table 2 shows several epidemiological parameters that were used to estimate the impact of the overall

implementation of the system. In particular, the table shows: R (which denotes the number of infected people

on average by one person with the virus); the number of reported cases, ICU hospitalizations, and fatalities

due to Covid-19; and the ratio of the latter two amounts with respect to the reported cases.

We quantified the financial cost associated with an infection through lost working days. The

average monthly salary in Chile in 2020 was 794 USD, with 21.5 working days per month, and therefore 10

lost working days during the infection induces a cost of 366 USD per infection. To quantify the cost of an

ICU hospitalization, we considered a hospital reimbursement of 37,500 USD per patient (based on Health

Ministry Resolution 194 of June 11, 2020).

https://www.ine.cl/estadisticas/sociales/mercado-laboral/remuneraciones-y-costos-laborales
https://www.bcn.cl/leychile/navegar?idNorma=1143624
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Table 2 Estimated: R, total cases reported, ICU hospitalizations, fatalities, ICU hospitalization ratio, and

fatality ratio. Values are provided for each half-year period (or fraction of a half-year period as the case of 2020 1

and 2022 1), for the whole period of the pandemic (up to January 15, 2022). Source: Products 5, 24, 54, and 91

from https://github.com/MinCiencia/Datos-COVID19

Time Period

Variable 2020 S1 2020 S2 2021 S1 2021 S2 2022 S1 Total

R 1.31 0.99 1.01 0.98 1.52 1.06

Cases 247,971 329,205 947,140 254,505 60,832 1,839,653

ICU Hospitalizations 10,570 14,221 37,254 10,079 406 80,313

Fatalities 5,688 10,920 15,937 6,570 261 39,376

Case ICU Hospitalization Ratio 4.26% 4.32% 3.93% 3.96% 0.67% 4.37%

Case Fatality Ratio (CFR) 2.29% 3.32% 1.68% 2.58% 0.43% 2.14%

Appendix C: Evaluation of ICU Forecasts

To assess, the accuracy of our forecasts, we conducted a detailed analysis of the results of the first wave,

where we compared our one- and two-weeks ahead forecasts against the number of beds that were actually

needed at each point in time. Figure 10 plots the observed requirements against the forecasts for Santiago

and Valparaiso. These two regions required very different numbers of beds in the first wave. Our numerical

analysis indicates that our forecasts outperformed a variety of benchmarks and correctly anticipated when

the number of ICU beds would reach its peak. Our predictions achieved average forecasting errors of 4%

and 9% for one- and two-week horizons, respectively (Goic et al. 2021), providing a reliable tool to help the

Ministry of Health successfully manage critical care capacity for all hospitals in every region.

Figure 10 Actual and predicted ICU requirements for two selected regions. Lines represent actual requirements

and dots represent forecasts.

https://github.com/MinCiencia/Datos-COVID19
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To assess the impact of using these forecasts on capacity planning, we compare alternative scenarios with

less accurate predictions. We simulate those benchmarks by simulating forecasts with 5% (conservative) and

10% (less conservative) more forecasting errors.

Similar to the newsvendor problem, more precise predictions have asymmetric impacts depending on

whether the actual demand is lower or greater than the forecast. The cost of overestimation is associated

with a larger financial cost of provision of more beds and the cost of delaying other medical procedures. As

we do not access to the monetary cost of converting beds into ICUs and the impact of postponing other

surgeries, we exclusively focus on the cost of the underestimations, which are associated with the availability

of additional beds for those who needed them. By comparing the actual predictions against the less accurate

benchmarks of the simulations, we can compute the number of additional day-beds that were available due

to more precise predictions. To translate this additional number of day-beds into patients, we divide it by

26.8 days, the average length of stay in ICU. Finally, we multiply this figure by the fatality rate in ICUs

(51.3%) and obtain an estimate for the number of lives saved.

In our estimation we assume that the hospital system had some flexibility to accommodate more patients

without converting beds and therefore the forecasts helps only when the utilization surpasses a given thresh-

old. In our more conservative evaluation, we consider that the system did not require additional beds until all

available beds before the pandemic were already used. Realizing, that there were always some beds that were

used for patients not hospitalized for Covid-19, in the less conservative scenario we assume that additional

beds were needed when reaching 90% of the original capacity. Results of these scenarios are displayed in

Table C.

Table 3 Conservative and Less Conservative Evaluations of Impact of ICU Forecast

Gained Accuracy Capacity slack Deaths
Conservative 5% 100% 467

Less Conservative 10% 90% 1,017

Appendix D: Integer Programming Formulation for Testing-Station Allocation

We use data from the census (INE 2019) and mobility patterns as described in Section 2.2 to formulate

the problem of deciding on the location of antibody testing stations in order to maximize the size of a

representative sample. Following Section 5.2, here we consider the formulation for a single administrative

region.

Let I denote the set of urban census zones from whose population we want to form a representative sample

of, and T the set of time blocks (e.g., 10am–1pm and 2–5pm) during which a station can be operating during

the planning horizon. Also, let K denote the set of health services (HS) in the Chilean public health-care

system.
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For i ∈ I, t ∈ T and k ∈K, we let xi,t,k ∈ {0,1} denote the decision regarding whether to install a testing

station in census zone i during time block t, manned by personnel from HS k (xi,t,k = 1), or not (xi,t,k = 0).

Because HS have a limited personnel, we consider the constraint

∑
i∈Ik

xi,t,k ≤Ck, k ∈K, t∈ T, (D-1)

where Ik ⊆ I denotes the subset of census zones that fall under the jurisdiction of HS k, and Ck denotes

the number of stations that can be operated simultaneously by the HS, for k ∈K. From the (normalized)

mobility data, let fi,j,t ∈ [0,1] denote a measure of the flow of people originally from census zone i that spend

time block t in census zone j. Letting z denote the largest size of a geographically representative sample

obtained from operating the testing stations, we impose that

z rj ≤
∑
k∈K

∑
i∈Ik

xi,t,k fi,j,t, j ∈ I, (D-2)

where rj denote the percentage of the population of the region that belong to census zone j, taken from INE

(2019). The formulation is completed by stating the objective of maximizing the size of the representative

sample, z.

Appendix E: Measuring Impact of Booster Shots on Preventing Infections, ICU

Hospitalizations, and Deaths

We used data published by the Chilean Ministry of Science reporting infections, ICU hospitalizations, and

deaths for different age groups and vaccination schemes. We focused on subjects that had at least two vaccine

doses, in order to measure the differential impact of the booster shot.

Define Nigt as the number of subjects that in week t from age group g (20–50, 50–70, or older than

70) that completed vaccination scheme i (two doses or booster). Let yigt denote the incidence of infections

in this group, defined as the number of infections divided by Nigt. Figure 11 shows the weekly incidence

of infections, ICU hospitalizations, and deaths during September–December 2021, by age group. The data

suggest a substantial reduction in case incidence for all the health outcomes and age groups (the sample

includes pairs week–groups with Nigt ≥ 300 thousand subjects).

We build an econometric model to estimate the effect of the booster shot in reducing the incidence of

these health outcomes. Let Digt = 1 if i corresponds to the booster shot vaccination scheme. We estimate a

generalized linear model using a Poisson link function through the following panel-data regression:

log(E(yigt)) = δg + θt +βgDigt + ϵigt, (E-3)

where the coefficient βg measures the effect of the booster shot on the incidence of health outcome y. The

fixed effects δg capture differences in outcome incidence across age groups and the week dummy variables θt

capture temporal variation in the transmission of the virus and other seasonal effects. Regression (E-3) was

https://github.com/MinCiencia/Datos-Covid19/tree/master/output/producto89
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Figure 11 Incidence of health outcomes (infections, ICU hospitalizations, and deaths) during September–

December 2021, for different age groups with and without booster shots. Graph excludes weeks that

had fewer than 300 thousand subjects in the sample.

estimated by changing the dependent variables to ICU hospitalizations, and deaths in order to measure the

effect of the booster on those outcomes.

Table 4 shows the estimation results, which are also illustrated in Figure 12. The coefficient estimates

suggest that booster shots had a significant impact on reducing infections and ICU hospitalizations for all

three age groups. The impact on deaths was significant for the 50–70 and older than 70 age groups but for

the younger group the estimate is more imprecise and has lower statistical significance. Figure 13 plots the

fitted values of the model (at the 95% confidence interval) against the actual data. We also estimated the

model using a negative binomial regression and splines to capture seasonality (instead of week fixed effects)

and the results were similar.
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Figure 12 Estimated coefficients from the Poisson Regression model of the effect of booster on infections, ICU

hospitalizations, and deaths for different age groups.

Figure 13 Fit (solid lines) vs. actual data (dots) of the Poisson regression models. Shaded areas indicate the

95% confidence interval of the prediction and colors indicate the prediction with and without booster

shot.
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Table 4 Estimation results of the regression to estimate the effect of booster shot on the incidence of

infections, ICU hospitalizations. and deaths.

Dependent variable:

Infections ICU Deaths

(1) (2) (3)

age.group50-70 −0.264∗∗ 1.837∗∗∗ 3.209∗∗∗

(0.105) (0.162) (0.342)

age.group>70 −0.375∗∗∗ 2.526∗∗∗ 5.341∗∗∗

(0.108) (0.156) (0.336)

age.group20-50:booster −0.955∗∗∗ −2.751∗∗∗ −2.616∗

(0.137) (0.687) (1.499)

age.group50-70:booster −1.235∗∗∗ −2.556∗∗∗ −2.609∗∗∗

(0.171) (0.241) (0.281)

age.group>70:booster −1.330∗∗∗ −2.180∗∗∗ −2.397∗∗∗

(0.188) (0.144) (0.088)

Constant 3.792∗∗∗ −1.208∗∗∗ −3.023∗∗∗

(0.309) (0.220) (0.348)

Observations 129 129 129

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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