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We study sequential shortest path interdiction, where in each period an interdictor with incomplete knowl-

edge of the arc costs blocks at most k arcs, and an evader with complete knowledge about the costs traverses

a shortest path between two fixed nodes in the interdicted network. In each period, the interdictor, who

aims at maximizing the evader’s cumulative cost over a finite time horizon, and whose initial knowledge is

limited to valid lower and upper bounds on the costs, observes only the total cost of the path traversed by

the evader, but not the path itself. This limited information feedback is then used by the interdictor to refine

her knowledge of the network’s costs, which should lead to better decisions. Different interdiction decisions

lead to different responses by the evader, and thus to different feedback. Focusing on minimizing the number

of periods it takes a policy to recover a full information interdiction decision (that taken by an interdictor

with complete knowledge about costs), we show that a class of greedy interdiction policies requires, in the

worst case, an exponential number of periods to converge. Nonetheless, we show that, under less stringent

modes of feedback, convergence in polynomial time is possible. In particular, we consider different versions

of imperfect randomized feedback that allow establishing polynomial expected convergence bounds. Finally,

we also discuss a generalization of our approach for the case of a strategic evader, who does not necessarily

follow a shortest path in each period.

Key words : network interdiction, shortest path, learning, incomplete information, limited feedback

1. Introduction

Background and Motivation. In the shortest path interdiction problem (SPI), an interdictor

blocks a subset of arcs on a network with the objective of maximizing the length (total cost) of

the path chosen by an evader, who in turn selects such a path so as to minimize its length (Smith

et al. 2013). Interdiction actions are limited by a budgetary constraint, typically expressed in

terms of the (weighted) number of arcs that can be interdicted simultaneously, and the evader

1



Yang, Borrero, Prokopyev and Sauré: SPI with Incomplete Information and Limited Feedback
2

is assumed to select paths between two fixed and known nodes in the interdicted network. SPI

arises naturally in various application areas (Smith and Song 2019), such as defense of critical

infrastructure, infectious disease, and hazardous materials transportation control, as well as

counter-terrorism, where two adversarial players compete in zero-sum games (see below for the

details on an application to smuggling interdiction).

The traditional single-period, full-information version of SPI, where the interdictor has complete

knowledge of the network’s structure and costs, has been studied extensively in the past. Fulkerson

and Harding (1977) model a variant of SPI where arcs can be partially blocked, via linear pro-

gramming, and Israeli and Wood (2002) develop a mixed-integer programming (MIP) formulation

of SPI, and develop decomposition algorithms for its solution. When the interdictor’s budgetary

constraint is expressed in terms of the number of arcs that can be blocked, SPI is also known as

the k-most-vital-arcs problem, see, e.g., Malik et al. (1989), Corley and Sha (1982) and Ball et al.

(1989), where k denotes the maximum number of arcs blocked. More recently, Morton et al. (2007)

study SPI in the context of nuclear material smuggling where the evader’s origin-destination pair

is random, and the interdictor focuses on maximizing the expected length of the chosen path.

Various extensions of the traditional setting have been studied. For example, Sefair and Smith

(2016) consider a setting where the interdictor selects her1 actions as the evader traverses through

a path, and, as a response, the evader can alter such path in an adaptive fashion. Also, Song and

Shen (2016) study risk-averse SPI, where the network’s costs are stochastic and the interdictor

focuses on maximizing the probability that the length of the path chosen is above some threshold.

In the work above, the agents’ interaction is limited to a single period. In contrast, we focus our

attention on settings where the interdictor and the evader interact sequentially over time. This

setting is motivated in part by applications in smuggling interdiction, where an interdictor (e.g.,

a U.S. law-enforcement or military task force) has to periodically reallocate resources (e.g., ships,

helicopters, drones) to maximize the probability of detecting and capturing smugglers, minimize

the flow of illegal materials, among others; see, e.g., the discussion and references in Gift (2010).

In such settings, the interdictor typically is not initially aware of all possible options that evaders

may have at their disposal (e.g., smuggling routes). Moreover, the interdictor becomes aware of

said options only when the evader makes use of them, and even then, the information collected on

said options might only be partial (e.g., only a portion of a smuggling route might be revealed).

Thus, it can be argued that learning plays a key role in practical settings, where the interdictor

might (partially) observe the evader’s actions (e.g., by interpreting satellite images, or by obtaining

data from informants), but might not act upon them immediately (i.e., in the same period).

1 In the remainder of the paper, we refer to the interdictor and the evader as she and he, respectively.
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Sequential settings have been studied in the context of attacker-defender and defender-attacker

problems using game-theoretical approaches, see Hausken and Zhuang (2011), Xu and Zhuang

(2016), Zhuang et al. (2010) and the references therein. For example, Hausken and Zhuang (2011)

consider how the government should balance resource allocation between attempting to downgrade

a terrorist’s resources and defending against a terrorist attack in a multi-period attacker-defender

game. Zhuang et al. (2010) study multi-period attacker-defender games, where the defender can

be deceptive, while the attacker has incomplete information but may have learning capabilities.

In terms of the availability of information, the class of problems we consider can be viewed

as network interdiction with asymmetric information, as the decision-makers do not “have the

same perception of their problem data” (Smith and Song 2019). For example, Bayrak and Bailey

(2008) study the bilevel problem where the interdictor’s and the evader’s arc costs are different.

Salmerón (2012) considers a setting, where the interdictor can be deceptive. In contrast, in our

setting, arc costs coincide for both decision-makers and all interdiction actions are known to the

evader; however, only the evader has full information about the underlying network, while the

interdictor’s initial information is limited, as also emphasized in our discussion above.

The key feature that separates our study from most of the extant literature in SPI is the inter-

dictor’s online learning ability to adapt as new information is collected by observing the evader’s

actions in multiple time periods. Indeed, the comprehensive survey by Smith and Song (2019) iden-

tifies only two other studies that involve some form of learning. The first study, Zheng and Castañón

(2012), focuses on information collection (e.g., by sensor placement) when the interdictor and evader

interact only once. The second study, Borrero et al. (2016), considers a setting with incomplete

knowledge and learning where the evader and the interdictor interact repeatedly over time.

The setting of Borrero et al. (2016) is close to ours in that the agents interact sequentially

over time, the evader has complete knowledge of the network, and the interdictor has incomplete

information about the network’s structure and costs. Borrero et al. (2016) assume that in each

period the interdictor observes the full path used by the evader, as well as the costs of all arcs

included in the path. There, performance is measured in terms of a policy’s time-stability, which

is defined as the number of periods until the interdictor’s actions coincide with those taken by an

interdictor with full prior knowledge of the network’s structure and costs. In Borrero et al. (2016),

the authors propose a class of greedy and pessimistic policies, where in each period the interdictor

(greedily) implements a solution to the k-most vital arcs problem2 in the observed network, under

the worst-case realizations for the evader (pessimistic) of the currently unknown costs. In our work

we adopt such a setting (including the performance criterion) with one major distinction: we first

2 A set of k-most vital arcs in graph G consists of (at most) k arcs whose removal from G results in the greatest
increase of the length (total cost) of the shortest path between two specified nodes.
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consider the setting of standard feedback, where only the length of the chosen path is revealed

to the interdictor; then we consider the setting of imperfect feedback, where only some arcs in

the chosen path might be revealed with certain probability. In addition, we also depart from the

setting above by extending our analysis to settings where the evader might act strategically and

not necessarily choose a shortest path in every time period.

Incomplete Information and Limited Feedback. Borrero et al. (2019) extend the aforemen-

tioned framework to a general class of max-min bilevel linear mixed-integer optimization problems

that model the interactions between an upper-level leader (interdictor) and a lower-level follower

(evader). Along the way, it formalizes the notion of feedback, i.e., the information revealed to the

interdictor by the evader’s actions in each period. We use such a notion here.

Specifically, in the context of SPI, Borrero et al. (2019) define feedback as standard if in each

period the interdictor learns the total cost incurred by the evader; standard feedback is called

response-perfect if, in addition, the path chosen by the evader is revealed to the interdictor as

well, and value-perfect if the cost of each arc on said path is also revealed. In this regard, Borrero

et al. (2019) generalize the greedy and pessimistic policies of Borrero et al. (2016) (which assume

feedback is both response- and value-perfect) to be greedy and robust, under the assumption that

standard feedback is either value- or response-perfect. In practice, the notion of feedback being

either response- or value-perfect is rather strong. For example, in the context of smuggling inter-

diction, it implies that the interdictor observes the details of the smuggler’s route, along with the

itemized costs (per arc). In practice, only partial information might be obtained from interrogat-

ing smugglers if caught, and limited resources (e.g., satellite images) might reveal the passage of

smugglers only on a limited set of passage points.

The goal of this paper is to relax the rather stringent assumptions about feedback in sequential

SPI. Specifically, we consider settings with standard feedback, where the interdictor observes only

the total cost incurred by the evader in each period but neither the arcs used, nor their costs. In

addition, we introduce the notions of response-imperfect and value-imperfect feedback: under the

former notion, the interdictor learns only a subset of the arcs in the path chosen by the evader

with some probability; under the latter notion, the interdictor learns the costs of arcs on a further

subset of arcs, also with some probability. (See Section 2.2 for formal definitions.)

Contribution. The main contribution made by this paper consists of relaxing the assumption

of perfect feedback in the context of sequential SPI. In doing so, we generalize the greedy and

pessimistic policies of Borrero et al. (2016). Because the term “pessimistic” has already a known

connotation in bilevel optimization terminology (see, e.g., Sinha et al. (2018)) we use the term

“greedy and robust”, as in Borrero et al. (2019), and propose a family of greedy, robust and
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non-repetitive (GRN) policies. As in Borrero et al. (2019), GRN policies are greedy and robust

in that they implement a solution to the k-most vital arc problem in the observed network, by

assuming the worst-case cost realization for the evader. In addition, the policies make sure not to

repeat interdiction solutions implemented in previous periods if their observed costs do not match

the interdictor’s beliefs. This requirement has the effect of inducing exploration of alternative

solutions. Not surprisingly, under standard feedback, GRN policies are guaranteed to converge to

the full-information solution. However, we show that these policies have exponential time-stability

in the worst case. Considering this, we introduce the notion of imperfect feedback, a compromise

between perfect and standard feedback, and show that under such a feedback, time-stability for

GRN policies admits polynomial expected convergence bounds.

Our second contribution follows from noting that exact computation of GRN policies is hard

in general, even in settings where feedback allows for tractable (polyhedral) representation of

the interdictor’s knowledge. Hence, we provide an approximation to GRN policies, which we

show: preserves theoretical convergence guarantees; is exact for a particular type of uncertainty

representation; and can be computed by solving an MIP formulation using off-the-shelf solvers.

An additional noteworthy contribution made by the paper is the extension of the analysis to

settings where the evader does not necessarily respond by choosing to traverse a shortest path in

the interdicted network, and might instead react, for example, strategically. To do so, we generalize

the concept of time-stability, so as to account for the time periods in which the evader effectively

takes advantage of the interdictor’s initial uncertainty to increase her regret (and discards periods

in which the evader’s actions are clearly sub-optimal; see the details in Section 6).

The remainder of the paper is organized as follows. Section 2 outlines the mathematical model

for sequential SPI under limited feedback, including our key assumptions, the formal definition

of the feedback we consider, and the proposed GRN policies. In Section 3, we analyze conver-

gence of time-stability for GRN policies under standard feedback. Section 4 analyzes GRN polices

under imperfect feedback, and provides a polynomial upper bound on the expected time-stability

under value-imperfect feedback. Section 5 presents our approximate GRN policies, and the MIP

formulation for their computation; we also discuss special cases when our approximations coincide

with GRN policies. In Section 6 we present an extension that addresses possible strategic behavior

on the evader’s behalf. Section 7 presents a set of computational experiments that illustrate the

performance of the proposed policies. Finally, Section 8 presents concluding remarks and outlines

directions for future research. All proofs and supporting material are relegated to the appendices.

2. Mathematical Model and Interdiction Policies

This section introduces our model for sequential SPI with incomplete information and limited

feedback. First, we model the interaction between the interdictor and the evader and describe our
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key assumptions. Then we define different notions of feedback and introduce the GRN policies.

Table 1 below summarizes the main notation used in the paper.

Table 1 Brief Summary of Key Notation

k Maximum number of interdicted arcs in a period zt,∗R Cost that the GRN interdictor expects to see in period t
G(I) Subgraph resulting from removing the arcs in I zR(I t) Approximate cost that a robust interdictor expects the evader to
S(I) Set of all 1−n shortest paths in graph G(I) incur using I t

z(I) Cost of the shortest 1−n path in G(I) ẑR(I t) Approximate cost that a robust non-repetitive interdictor expects to
z∗ Optimal cost of the k-most vital arcs problem on G see using I t

T Time horizon zt,∗R Cost that the approximate GRN interdictor expects to see in period t
C0 Initial information about the cost vectors z̃R(I t) Cost that a robust non-repetitive interdictor expects to see using I t

(`a, ua) Lower and upper bounds on cost of arc a∈A under general evader

Ct Cost vectors consistent with information up to period t z̃t,∗R Cost that the GRN interdictor expects to see in period t
P t Path chosen by the evader in period t under general evader
P t
r Arcs learned in response-imperfect feedback Rt,π Regret of policy π until period t
P t
v Arcs learned in value-imperfect feedback τπ Time-stability for policy π
I t Set of arcs blocked by the interdictor in period t ξπ Earliest time when the cost expected by the interdictor equals
F t,π History up to period t under policy π the observed cost
zt,π Cost incurred by the evader given interdiction decision I t,π ξπ ξπ adjusted by the approximate interdictor

zR(I t) Cost that a robust interdictor expects the evader to incur using I t R̃t,π Generalized regret (for general evader) of policy π until period t
ẑR(I t) Cost that a robust non-repetitive interdictor expects to see using I t τ̃π Generalized time-stability (for general evader) for policy π

2.1. Problem Description

Preliminaries. Let G := (N,A) be a directed network with node and arc sets N and A, respec-

tively, and define n = |N | and m = |A|. Also, let ca denote the cost of traversing arc a ∈ A, and

define c := (ca : a ∈ A). Assume for simplicity that nodes 1 and n are the evader’s fixed source

and destination nodes, respectively. For a set of arcs I ⊆ A, we define G(I) := (N,A \ I) as the

interdicted graph arising from G when the arcs in I are blocked. With this, we define z(I) as the

cost of the shortest 1−n path in the interdicted graph G(I), i.e.,

z(I) := min

{∑
a∈P

ca : P is an 1−n path in G(I)

}
, (1)

and S(I) as the set of all shortest 1−n paths in G(I), i.e.,

S(I) := arg min

{∑
a∈P

ca : P is an 1−n path in G(I)

}
.

We assume that the evader has complete knowledge about the graph, including its arc costs. For

an example of settings where costs are uncertain to both the interdictor and the evader, see Song

and Shen (2016). We also assume that the interdictor knows the graph G, and that she knows c

only up to valid lower and upper bounds for its components. That is, she knows that c∈ C0, where

C0 :=
{

(ĉ1, ĉ2, . . . , ĉm)∈Rm+ : `a ≤ ĉa ≤ ua, ∀a∈A
}
,

and where `a and ua denote some finite lower and upper bounds of the cost for arc a, respectively.

We refer to C0 as the initial information available to the interdictor, as it contains her initial

knowledge about the network’s cost vector.3

3 Note that, unlike in Borrero et al. (2016), we assume that the interdictor initially knows all arcs in the network.
The assumption is made without loss of generality, as one can always assume that the network is complete and
lower/upper bounds for unknown arcs are set at zero/a (sufficiently) large constant.
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In each period t∈ T := {0,1, . . . , T}, within a finite horizon of T periods, the following sequence

of events takes place:

(i) For the duration of period t, the interdictor blocks the arcs in a set It ⊆A with |It| ≤ k, where

k denotes the interdiction budget.4

(ii) After observing the interdictor’s action, the evader travels through a shortest path P t ∈ S(It),

incurring on a cost zt ≡ z(It).

(iii) The interdictor obtains feedback F t from the evader’s actions (we define and discuss the notion

of feedback in the next section).

Note that, following prior work, (ii ) above assumes that the evader acts greedily in each period,

thus preventing any strategic consideration on his behalf (see, e.g., Johnson et al. (2014) for a

setting with an adaptive evader). We keep such an assumption for now, so as to streamline the

exposition, and extend our analysis to more general settings in Section 6. Note that (ii ) also

assumes that the evader observes the interdictor’s actions: as outlined in Borrero et al. (2016), we

can interpret this assumption in the context of repeated interactions in a stochastic setting, where

such monitoring might arise naturally from a learning process of trial-and-error by the evader.

Finally, we assume there are no 1−n cuts in G with k or fewer arcs, and hence, there is no trivial

solution to the interdictor’s problem; we also restrict our attention to policies with I0 = ∅. These

two assumptions are rather technical and made to simplify our analysis, and thus the exposition.

2.2. Feedback

We define the notion of feedback F := (F t : t ∈ T ) as the sequence of information collected by

the interdictor when observing the follower’s evasion decisions in each period. We first consider the

notion of standard feedback in Borrero et al. (2019).

Definition 1. [Standard feedback.] Feedback F is standard if for each period t ∈ T the

interdictor observes the total cost incurred by the evader, zt. �

Standard feedback might arise, for example, in the context of smuggling interdiction, when the

interdictor aims at maximizing (minimizing) the probability of detection (evasion). There, each arc

cost can be interpreted as (minus the logarithm of) the probability of evasion at different arcs (see,

e.g., details in Morton et al. (2007)), in which case standard feedback corresponds to observing

the overall probability of evasion. While such a probability can not be observed directly, it can

be inferred through repeated interactions between the evader and the interdictor by investigating

various types of available data (e.g., prices in illegal markets, enforcement and punishment records

4 This is, the maximum number of arcs that can be blocked in any period.
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Figure 1 Network G used in Example 1. The labeling of the arcs is given by [`a, ua], ca.

from the law-enforcement agencies); see examples of the related studies in Buehn and Eichler (2009),

Gathmann (2008), Magliocca et al. (2019), Yürekli and Sayginsoy (2010) and the references therein.

Hereafter, unless otherwise noted, we assume that feedback is always standard. In the sequel,

we argue that this form of feedback imposes a high toll in terms of time-stability convergence (as

defined later in this section). Thus, we define two additional types of feedback with somewhat

stronger assumptions on the amount of information collected.

Definition 2. [Response-imperfect feedback.] We say standard feedback F is response-

imperfect if for each period t∈ T , the interdictor learns that the evader used arc a∈ P t with some

probability pr ∈ [0,1], independently across all arcs and periods. �

Definition 3. [Value-imperfect feedback.] We say response-imperfect feedback F is value-

imperfect if for each period t∈ T , the interdictor learns the cost of arc a∈ P t with some probability

pv ∈ [0,1], independently across all arcs and periods. �

We assume that, for a given arc, the feedback above is nested, and let P t
r ⊆ P t and P t

v ⊆ P t
r denote

the sets of arcs that the interdictor observes and learns their costs under response-imperfect and

value-imperfect feedback, respectively. We note that while probabilities pr and pv are the same for

all arcs, one could consider arc-dependent probabilities at the expense of having a more convoluted

notation. Here, we opt to maintain simplicity of exposition and keep arc-independent probabilities.

Also, note that if pr = 1, then response-imperfect feedback reduces to response-perfect feedback

in Borrero et al. (2019), and if pr = pv = 1, then value-imperfect feedback reduces to value-perfect

feedback in Borrero et al. (2019). The next example illustrates the difference between these notions.

Example 1. Consider graph G depicted in Figure 1. Assume that k= 2 and T = 2, and suppose

that the interdiction decisions are I0 = ∅, I1 = {(1,4), (1,7)} and I2 = {(1,7), (3,6)}. In such a

case, the evader’s decisions in each period are given by P 0 = 1→ 7, P 1 = 1→ 3→ 6→ 7 and

P 2 = 1→ 4→ 7, with costs z0 = 3, z1 = 4 and z2 = 6, respectively. The information collected by

the interdictor from the evader’s actions under different feedback types is as follows.
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• Under value-perfect feedback, the interdictor observes the total cost and the arcs used by the

evader along with their costs in each time period. That is, in period t= 0 the interdictor observes

P 0, c(1,7) and z0; for t= 1, the interdictor observes P 1, c(1,3), c(3,6), c(6,7), and z1; and for t= 2, the

interdictor observes P 2, c(1,4), c(4,7) and z2.

• Under response-perfect feedback, in each period the interdictor observes the total cost along

with the arcs used by the evader, but not the individual arc’s costs. That is, for t = 0, the

interdictor learns P 0 and z0; for t= 1, she observes that P 1 and z1; and for t= 2, the interdictor

observes P 2 and z2.

• Under standard feedback, the information revealed for the interdictor is limited to only the

costs of the evasion paths in each period. That is, in periods t= 1, t= 2 and t= 3, the interdictor

observes z0, z1 and z2, respectively, but not the actual evasion paths taken.

• Under response-imperfect feedback, for t= 0, in addition to z0, the interdictor observes that

arc (1,7) is contained in P 0 with probability pr; for t= 1, in addition to z1, the interdictor may

learn, for example, that (1,3), (3,6) and (6,7) are part of P 1 (each with probability pr).

• Under value-imperfect feedback, in addition to the costs of P 0, P 1, and P 2, the arc cost

information of the evasion paths can be obtained by the interdictor. For example, for t = 0,

the interdictor might observe that (1,7) is part of P 0 with probability pr, and given that the

interdictor observes (1,7), she also learns c(1,7) with probability pv. �

Next, we define the notion of an interdiction policy, and present the class of greedy, robust and

non-repetitive policies, which are the main focus of this paper.

2.3. GRN Policies

Preliminaries. An interdiction policy π := (πt : t∈ T ) is a deterministic sequence of set functions

such that, for each t∈ T , It,π := πt(Fs,π : s < t) represents the set of arcs blocked in period t, where

Fs,π represents the feedback obtained under policy π in period s∈ T (for notational convenience,

we include the interdictor’s actions within such a feedback).5 For example, in the case of standard

feedback, we have that

F t,π :=
{
z(It,π), It,π

}
, t∈ T .

In order to measure the performance of a policy, we focus on minimizing the number of periods

that the policy takes to implement solutions that coincide with those taken by an oracle with

full-information on the network’s costs. Hence, we define time-stability of policy π as:

τπ := min
{
t∈ T : z∗ = z(Is,π), for all s≥ t

}
,

5 In the remainder of the paper whenever necessary we use the superscript π to denote the dependency on policy π.
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where

z∗ := max
{
z(I) : I ⊆A s.t. |I| ≤ k

}
. (2)

Observe that z∗ is the maximum cost for the evader that can be induced by the interdictor. We use

zt,π to denote the cost incurred by the evader under interdiction It,π in policy π at time t. Note that

because the evader solves for a shortest path problem in each time period, we have zt,π = z(It,π).

Remark 1. In the online optimization literature, performance is typically measured in terms of

a policy’s regret, which is defined as the cumulative loss in cost incurred by the policy relative to

that achieved by an oracle decision-maker with complete prior information about the underlying

problem data, see Cesa-Bianchi and Lugosi (2006). In the network interdiction setting, regret of

policy π until time t is given by Rt,π :=
∑

s≤t(z
∗−zs,π). The concept of time-stability is introduced

in Borrero et al. (2016), where it is observed that an upper bound on time-stability implies an

upper bound on regret, i.e., Rt,π ≤ µτπ, where µ is an upper bound for z∗− zs,π for any s≤ t. �

Information Update. For any t∈ T , set Ct denotes the interdictor’s belief regarding the possible

cost vectors (i.e., at t the interdictor knows that c∈ Ct). Starting from C0, the interdictor updates

this belief set using feedback F t. For example, under standard feedback she could update Ct as:

Ct+1 = Ct ∩
{
ĉ∈Rm+ : ∃P ∈ Sĉ(It) s.t.

∑
a∈P

ĉa = z(It)
}
, t∈ T \ {T}, (3)

where, in a slight abuse of notation, Sĉ(I
t) refers to the set of shortest paths on the network G(It)

when costs are given by vector ĉ. Note that the update (3) implies that:

(i) For any ĉ ∈ Ct, all the paths in the remaining graph have a cost of at least z(It), i.e.,∑
a∈P ĉa ≥ z(It), for all 1−n paths P ∈G(It);

(ii) there is at least one 1−n path with cost z(It).

While the update mechanism above is the “best” in settings with standard feedback (in the sense

that it reduces Ct the most), we consider alternative mechanisms that are more tractable from an

algorithmic point of view. The underlying reason for considering less efficient updates follows from

the non-convex nature of the update (3), which we illustrate in the following example.

Example 2. Consider the instance in Figure 2(a). Let k= 1. Note that C0 = [0,4]× [0,5]× [5,5]×

[5,5]. Suppose that I0 = ∅, so that P 0 = 1→ 2→ 4 and the interdictor observes z0 = 6. Using update

(3) results in C1 = C0 ∩ {ĉ(1,2) = 1 and ĉ(1,3) ≥ 1} ∪ {ĉ(1,2) ≥ 1 and ĉ(1,3) = 1}. Figure 2(b) depicts

feasible values for ĉ(1,2) and ĉ(1,3) in C1 that form two line segments. Clearly, C1 is non-convex. �

Unless otherwise specified, we refer to performance of policies with respect to a generic update

mechanism. The latter is assumed to satisfy the following properties:

A1 : c∈ Ct for all t∈ T .
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(a) Network G used in Example 2
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(b) Illustration of non-convexity of C1 in Example 2

Figure 2 The labeling of arcs in Figure 2(a) is given by [`a, ua], ca. Figure 2(b) illustrates non-convexity of C1 in

Example 2: the feasible values for ĉ(1,2) and ĉ(1,3) in C1 form two line segments.

A2 : Ct+1 ⊆Ct for all t∈ T \ {T}.

Assumption A1 indicates that information updates do not rule out the actual cost vector, and A2

that “uncertainty” surrounding c does not increase in time. Because update mechanisms do not

necessarily incorporate all relevant information in F t, the interdictor cannot rule out the possibility

of “getting stuck” on implementing a sub-optimal interdiction action. With these ideas in mind,

next we propose a family of policies that ensures that the interdictor does not “get stuck” in such

situations independent of the update mechanism used.

GRN Policies. In this paper we focus on greedy, robust and non-repetitive (GRN) interdiction

policies. These policies are greedy in the sense that, at each period, the interdictor seeks to maximize

the immediate cost for the evader; they are robust in that they assume the worst-case (for the

evader) arc costs realizations in Ct; and are non-repetitive in a sense that their goal is to avoid

solutions implemented previously by the interdictor unless they are optimal.

In order to introduce the GRN policies, define zR(It) as the cost that the interdictor would

expect to observe in the worst case scenario (for the evader) when interdicting the set It. That is,

zR(It) := min
P t

{
max
ĉ

{∑
a∈P t

ĉa : ĉ∈ Ct
}

: P t is a 1−n path in graph G(It)

}
. (4)

Remark 2. The right-hand side (r.h.s.) of (4) belongs to the class of robust shortest path

problem with absolute robust objective (Yu and Yang 1998). Initially, when Ct = C0, it belongs to

the class of robust shortest path problems with interval cost, and as such, its inner maximization

can be solved simply by setting ĉ = u. When Ct is either finite or a polyhedron, the problem is
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NP -hard; see Buchheim and Kurtz (2018), Bertsimas and Sim (2003), Poss (2013). In our setting

Ct is not necessarily convex (recall Example 2) and, to the best of our knowledge, such formulations

has not been studied so far, with the notable exception of Borrero and Lozano (2020). �

From the previous section, the information update mechanism determining Ct might not neces-

sarily incorporate all available information on the cost vector. Thus, the interdictor’s expectations

should be corrected to account for the fact that, if It has been implemented in the past, then

she should expect to see the cost z(It) if she implements It again. Define ẑR(It) as the cost the

interdictor would expect to see, accounting for the aforementioned correction. That is,

ẑR(It) :=

{
zR(It) if It 6= Is ∀s < t,
z(Is) if It = Is for some s < t.

(5)

The proposed GRN policies are such that, in each period t∈ T , the interdictor greedily implements

a solution It that maximizes ẑR(It). That is, the GRN policies implement a solution to the problem

zt,∗R := max
{
ẑR(It) : |It| ≤ k, It ⊆A

}
, t∈ T . (6)

For any policy π, let ξπ denote the earliest time at which the interdictor’s expectations, as given

in (6), match the observed cost. That is,

ξπ := min{t∈ T : zt,∗R = zt,π}, (7)

where one needs to recall that zt,π := z(It,π), i.e., the cost incurred by the evader given interdiction

decision It,π. We are ready to define Λ, the set of the GRN policies.

Definition 4. Policy λ belongs to the class of GRN policies Λ if and only if

It,λ ∈ arg max
{
ẑR(It) : |It| ≤ k, It ⊆A

}
∀ t≤ ξλ,

and It,λ = Iξ
λ,λ for all ξλ < t≤ T . �

Computing a policy λ∈Λ requires solving (6) for each t∈ T . At first glance, such a formulation

is a bilevel optimization problem that is difficult to solve in general. However, in Section 5 we

show that for some class of update mechanisms, (6) can be either reduced to, or approximated

by, a single-level mixed-integer program, and hence, solved using standard MIP solvers.

Finally, we note that the GRN policies are similar to those proposed in Borrero et al. (2016, 2019),

where perfect feedback is assumed. In their setting all information from the (stronger) feedback can

be included into Ct without compromising its convexity, while in our setting it is impossible to do so.

Therefore, GRN policies instead “penalize” the interdictor if she repeats a solution that is not opti-

mal (which amounts to a crude but easy way to implement “correction” on expectations). In Sec-

tions 3 and 4, we showcase the related properties of GRN policies under different types of feedback.
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3. GRN Policies under Standard Feedback

In this section, we analyze the GRN policies under standard feedback. In Section 3.1, we show

that time-stability of the GRN policies is guaranteed to converge. Then, in Section 3.2 we justify

the greedy, robust and non-repetitive nature of policies in Λ by showing that these qualities are

required in order to attain efficiency in a specific sense.

3.1. Convergence

Consider a setting with standard feedback so that, in each period, the interdictor only observes

the cost incurred by the evader. The following “sandwich” result, whose proof can be found in

Appendix A, provides a stopping criteria for the GRN policies by exploring the relationship between

what the interdictor expects to see and what she actually observes.

Theorem 1. For t∈ T \ {0} given and λ∈Λ, one has that zt,λ ≤ z∗ ≤ zt,∗R .

Theorem 1 provides a certificate of optimality for policies in Λ. That is, whenever what the inter-

dictor observes matches her expectations, her decision is guaranteed to be optimal. Thus, from the

interdictor’s perspective, the decision-making process at period t ∈ T under GRN policies Λ can

be described as follows:

(i) The interdictor uses ((zs,λ, Is,λ) : s < t) to formulate and solve (6), thus finding zt,∗R and It,λ.

(ii) The evader incurs on a cost zt,λ, which is observed by the interdictor.

(iii) The process is repeated until zt,∗R = zt,λ, and It,λ gets implemented from there on.

By construction, the GRN policies do not repeat solutions unless there is a guarantee about

their optimality. This observation is formalized in the next corollary, whose proof follows directly

from (5) and (6) and thus is omitted.

Corollary 1. For any λ∈Λ, if at time period t It,λ = Is,λ for some s < t, then zt,λ = zt,∗R .

The next result establishes that for any policy λ ∈Λ, time-stability is reached in finite time. In

particular, it establishes an upper bound on time-stability that is a function of the number of arcs

in the network and the interdiction budget.

Proposition 1. Consider λ∈Λ and standard feedback. Then,

τλ ≤ ξλ ≤
(
m

k

)
+ 1.

Proposition 1 shows that under standard feedback, policies in Λ (which do not necessarily update

the set Ct) may need an exponentially large number of periods to find the full-information solution,

in the worst case. In Section 4 we show how different updating mechanisms can be used to improve

the performance of the proposed policies in Λ.
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(b) Network G2

Figure 3 Networks used in Remark 3, the labeling of the arcs is given by [`a, ua], ca

Remark 3. The next example suggests that the bound in Proposition 1 is tight. Consider graphs

G1 and G2 depicted in Figure 3.

Consider k = 2, and note that in network G1 a policy λ ∈ Λ satisfies τλ = 5. Indeed, when

t = 0 we have that I0,λ = ∅, z0,λ = 2; then when t = 1, I1,λ = {(1,2), (1,3)}, z1,∗R = 5, z1,λ = 4;

t = 2, I2,λ = {(1,2), (3,5)}, z2,∗R = 5, z2,λ = 4; t = 3, I3,λ = {(1,3), (2,5)}, z3,∗R = 5, z3,λ = 4; t = 4,

I4,λ = {(2,5), (3,5)}, z4,∗R = 5, z4,λ = 4; t= 5, I5,λ = {(1,2), (1,3)}, z5,∗R = 4, z5,λ = 4, and up to this

point, the optimal solution is obtained.

In network G2, on the other hand, time-stability is exactly the upper bound in Proposition 1,

which is
(
m
k

)
+ 1 = 16. (See Appendix B for the sequence of interdiction and evasion actions.) �

The next result formalizes the tightness of the bound in Proposition 1.

Proposition 2. For any k≥ 0 and n≥ k+ 3, there exist α∈ (0,1], a graph G and information

update mechanism such that, if T >
(
m
k

)
, then τλ ≥ α(

(
m
k

)
+ 1).

3.2. Necessity of Being Greedy, Robust and Non-repetitive

In this section we argue that it is necessary for the interdictor to act consistently in a greedy,

robust, and non-repetitive manner. Our starting point here is a policy that is greedy, robust and

non-repetitive, all at the same time; we show that removing one of such features might deteriorate

policy performance. Formally, we say that a policy π 6∈ Λ is non-consistently greedy if for every

instance there exist time periods (which might depend on the instance) such that It,π does not

solve (6). Define in an analogous way non-consistently robust and non-consistently non-repetitive

policies. Next, we give counter-examples showing that for any non-consistent policy π there exist

instances such that τλ < τπ for all λ∈Λ.

Necessity of Being Greedy. Assume π is a non-consistently greedy policy and consider an

instance where the upper bound and the real cost are the same for each arc. Thus, the optimal

solution is to directly block the k-most vital arcs, which is the solution for the GRN policies because
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ua = ca for all a∈A. Consequently, the GRN policies can find an optimal solution in the first time

period, that is, τλ = 1. However, under π at time s the interdictor tries other non-greedy solution

which implies that a non-k-most vital solution is implemented at time s. In other words, zs,πR < z∗

and hence, in this instance τπ > τλ = 1 for any λ∈Λ .

Necessity of Being Robust. Consider the network G1 depicted in Figure 4(a) and let k= n− 3

(n≥ 4). Under any GRN policy, at time t= 1 the interdictor blocks I1,λ = {(1,2), (1,3), . . . , (1, n−

2)}, which coincides with the solution under full information I∗ of value n. Moreover, it follows

that τλ = 1 for any λ. Suppose next that the interdictor is not robust, and instead assumes that

at some time s≥ 1 the cost vector is a convex combination between the lower and upper bounds

such that It,π 6= It,λ. For instance, assume that the interdictor uses the weight σ ∈ (0,1) to combine

lower and upper bounds, with σ such that σ(n−1)<σ(n−2) + 1−σ, i.e., 0<σ < 1
2
. Then we can

see that the path 1→ (n− 1)→ n is evaluated by a lower cost, and since π is greedy, we have that

Is,π = {(1,2), (1,3), . . . , (1, n− 3), (1, n− 1)}, zs,∗R = σ(n− 2) + 1−σ+σ= σ(n− 2) + 1, zs,π = n− 1.

It can be concluded that τπ > s≥ 1 = τλ, as desired.

1
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· · ·

n− 2

n
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],2

[1,
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,1
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(a) Network G1
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[0,M ],M − 2
[0,M

+
1],M
−

2

[0,1],1

[0,1],1

[0,
1],1

[0,
1],

1

(b) Network G2

Figure 4 Networks used in the discussion in Section 3.2, the labeling of the arcs is given by [`a, ua], ca

Necessity of Non-repetitiveness. Consider graph G2 in Figure 4(b), and note that the cost for

every path is M − 1 except for that of path 1→ 2→ n, which is M + 1. The robust cost for every

path is M + 1 except for that of path 1→ (n− 1)→ n, which is M + 2. Let k = n− 3. Thus, the

full-information optimal solution is I∗ = {(1,3), (1,4), . . . , (1, n− 1)} and z∗ =M + 1.
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At t= 0, I0,λ = ∅, P 0 = 1→ 3→ n, and the interdictor observes z0,π =M − 1. At t= 1, a GRN

policy interdicts paths 1→ 2→ n,1→ 3→ n, . . . ,1→ n − 2→ n and expects to observe z1,∗R =

M + 2. This decision results in P 1 = 1→ (n− 1)→ n and the interdictor observes z1,λ = M − 1.

Note that in the next time period, with (5) and (6), if the interdictor repeats I1,λ, then z2,λ =

z1,λ =M − 1. However, there are other better solutions given by not repeating I1,λ; for example, if

I2,λ = {(1,2), (1,3), . . . , (1, n−3), (1, n−1)}, z2,∗R =M+1> z1,λ. Therefore, the solution is improved

by forcing the interdictor to explore different solutions.

Finally, we note that a non-consistently non-repetitive policy that solves (6), without the non-

repetitiveness constraints, always have It,π = I1,λ = {(1,2), (1,3), . . . , (1, n− 2)} for all t≥ 2. This

solution is suboptimal under full information.

4. GRN Policies under Imperfect Feedback

In this section, we consider the properties of the policies in Λ under imperfect feedback. Recall

from Definition 2 that under response-imperfect feedback, the interdictor observes a set P t
r ⊆ P t,

and that under value-imperfect feedback, the interdictor also learns the costs of the arcs in a

further subset P t
v ⊆ P t

r . Because there is uncertainty surrounding the feedback, we measure the

performance of the GRN policies using the expected time-stability criterion.

We begin analyzing how the feedback in each setting can be used to update the beliefs on the cost

vector. Let Rt denote the cost vectors at time t that agree with the information of the response-

imperfect feedback. Recalling that P t
r is the subset of arcs in P t observed by the evader, we have that

Rt :=
{
ĉ∈Rm : ∃P ∈ Sĉ(It) s.t. P t

r ⊆ P and
∑
a∈P

ĉa = z(It)
}
,

where we recall that Sĉ(I
t) refers to shortest paths in G(It) when costs are given by vector ĉ. In

this case, the “best” (most informative) update mechanism is given by Ct+1 = Ct ∩Rt.
Similarly, let Vt denote the set of cost vectors in period t which satisfy the additional information

given by value-imperfect feedback, i.e.,

Vt :=
{
ĉ∈Rm : ĉa = ca, ∀a∈ P t

v

}
, (8)

thus, we have that, in this setting, the best update mechanism is given by Ct+1 := Ct ∩Rt ∩Vt.
The next result establishes an upper bound on the expected time-stability for the case when Ct

is updated only with the information contained in Vt. In particular, it shows that E(τλ) =O(m)

for fixed values of pr and pv.

Proposition 3. Let λ ∈ Λ and consider value-imperfect feedback, where pr > 0 and pv > 0. If

the interdictor updates the uncertainty set by Ct+1 = Ct ∩Vt for all t∈ T , then

E(τλ)≤ m

prpv
.
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The upper bound for E(τλ) in Proposition 3 may be loose. However, the next result establishes

a lower bound on the probability that the time-stability is of the same order as the upper bound.

Corollary 2. Let λ∈Λ and consider value-imperfect feedback, where pr > 0 and pv > 0. If the

interdictor updates the uncertainty set by Ct+1 = Ct ∩ Vt for all t ∈ T , then there exists 0< α < 1

such that

Pr
(
τλ >γα

m

prpv

)
≥ (1− γ)2α2/2,

for any 0≤ γ ≤ 1.

We end this section by noting that, just as in the case of standard feedback, updates involving

Rt in settings under response-imperfect and value-imperfect feedback result in sets that are not

necessarily convex. Such non-convexity implies that problem (6) cannot be reformulated or approx-

imated in a straightforward way into a single-level MIP problem, which is a common approach to

solving multi-level optimization problems, see, e.g., Audet et al. (1997), Zare et al. (2019) and our

further discussions in Section 5.

With these considerations in mind, we explore the “weak” update Rtw (that is weaker than

Rt). In particular, under response-imperfect feedback, because P t
r ⊆ P t, we consider the following

alternative update mechanism

Ct+1 = Ct ∩Rtw := Ct ∩
{
ĉ∈Rm :

∑
a∈P tr

ĉa ≤ zt,λ
}
. (9)

Similarly, we define a “weak” update mechanism under value-imperfect feedback as follows

Ct+1 = Ct ∩Rtw ∩Vt

= Ct ∩
{
ĉ∈Rm :

∑
a∈P tr

ĉa ≤ zt,λ
}
∩
{
ĉ∈Rm : ĉa = ca for a∈ P t

v

}
= Ct ∩

{
ĉ∈Rm :

∑
a∈P tr\P tv

ĉa ≤ zt,λ−
∑
a∈P tv

ca, ĉa = ca for a∈ P t
v

}
.

(10)

Under these weak update mechanisms, the uncertainty set Ct is a polyhedron, in which case the

r.h.s. of (4) belongs to the class of robust shortest path problems with a polyhedral uncertainty set,

which are NP -hard (see Remark 2). While, the three-level problem (6) remains computationally

difficult in general, it is better suited for approximation methods. For this reason, in Section 5 we

propose computing a certain approximation of (6) in each time period, which can be implemented

using an off-the-shelf MIP solver.
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5. Computing GRN Policies and Their Approximations

The ability to solve problem (6) depends on the update mechanism used: we know that under

the strongest update, uncertainty sets are not necessarily convex, and said problem is in general

intractable. Hence, in this section we focus on polyhedral uncertainty sets, which arise, for

example, when considering the weak updates introduced in the previous section. As mentioned in

Remark 2, robust shortest path problems with polyhedral uncertainty are also NP -hard in general

and require specialized solution approaches. Thus, we focus on the development of approximate

policies that are more tractable and can be implemented using off-the-shelf MIP solvers. Note

that the approximate nature of the proposed policies arise from approximately solving (6), in the

context of Definition 4, rather than from focusing on providing approximability guarantees with

respect to zt,∗R . We show that the resulting approximate GRN policies enjoy the same theoretical

properties as GRN policies, in particular, with respect to their convergence.

5.1. Preliminaries

Consider decision variable xt to denote the interdictor’s decisions in period t. That is,

xta =

{
1 if arc a is interdicted,

0 otherwise,

thus It = {a∈A : xta = 1}. (In the sequel we use xt,π and It,π interchangeably when it is clear from

the context.) We impose that xt ∈X, where X :=
{
xt ∈ {0,1}m :

∑
a∈A x

t
a ≤ k

}
. For each node

i∈N , we define the sets of outgoing and incoming arcs as δ+(i) and δ−(i), respectively. For a given

decision xt, the evader traverses through a 1−n shortest path, which admits the following linear

programming formulation:

z(It) = min
y

c>y (11a)

s.t. ya ≤ 1−xta ∀a∈A, (11b)

∑
a∈δ+(i)

ya−
∑

a∈δ−(i)

ya =


1 i= 1,

−1 i= n,

0 i∈A \ {1, n},
(11c)

ya ≥ 0 ∀a∈A. (11d)

Constraints (11b) ensure that the evader cannot use interdicted arcs. Constraints in (11c) corre-

spond to a network flow formulation of the shortest path problem, see Ahuja et al. (1993). For

brevity, we write constraints (11c) as By = b, where B is the node-arc adjacency matrix induced

by the graph and b= [1,0, . . . ,0,−1]> ∈Rn.

Consider now reformulating (6). For s < t, define decision variable vs as:

vs =

{
0 if xt = xs

1 otherwise.
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Note that by time t > s, xs is known and fixed, as well as is z(Is). Then, defining zR(xt)≡ zR(It),

we can write (6) as follows:

zt,∗R = max
xt,f,vs

f (12a)

s.t. f − z(Is)≤M vs ∀s < t, (12b)

f − zR(xt)≤M
∑
s<t

(1− vs), (12c)∥∥xt−xs∥∥
1
≤ nvs ≤ n

∥∥xt−xs∥∥
1

∀s < t, (12d)

xt ∈X,vs ∈ {0,1} ∀s < t, (12e)

where ‖·‖1 denotes an `1 norm, and M is a sufficiently large constant; for example, we can set M =

(n−1)maxa∈A{ua}. Constraints (12b)-(12d) encourage the interdictor to explore new solutions not

implemented previously. Formally, if xt = xs for some s < t, then vs = 0 from (12d) and constraints

(12b) ensure that f is equal to zs. However, if vs = 1 for all s < t, then constraints (12c) force f to

take the value of zR(xt).

Two observations are due. First, while constraints (12d) are nonlinear, they can be linearized

using standard techniques. Second, the term zR(xt) in constraints (12c) admit the following refor-

mulation:

zR(xt) = min
y

{
max
ĉ
{(ĉ+M xt)>y : ĉ∈ Ct} : By= b, y ∈ {0,1}m

}
. (13)

Note that this formulation has an additional penalty term (M xt) in its objective function, so

that ya is forced to be 0 whenever xta = 1 (see Israeli and Wood (2002) for more details on this

reformulation approach). Thus, a constraint similar to (11b) is not needed in problem (13).

5.2. Approximate GRN Policy under Polyhedral Uncertainty Sets

Consider settings where Ct can be written as a polyhedron. In particular, assume that

Ct = {ĉ∈Rm+ : Gt ĉ≤ gt},

where C0 = {ĉ ∈ Rm+ : G0 ĉ ≤ g0}, G0 = [I;−I], g0 = [u1, . . . , um,−`1, . . . ,−`m]> and I is the

identity matrix in Rm×m. Polyhedral uncertainty sets arise, for example, when using the weak

update mechanisms (9) and (10) from Section 4, under response- and value-imperfect feedback,

respectively. In these settings, (13) is a robust shortest path problem with polyhedral uncertainty,

which is known to be NP -hard (Buchheim and Kurtz 2018). Furthermore, because of (13),

standard techniques in bilevel optimization that reformulate (12) as a single-level problem (see,

e.g., Audet et al. (1997), Zare et al. (2019)), cannot be applied. While it is customary to solve

such difficult problems using tailored decomposition methods (see, e.g., Zeng and Zhao (2013)),
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here we focus on policies that can be implemented using off-the-shelf MIP solvers. With that in

mind, consider a relaxation of (13), where we drop the integrality restrictions for y, i.e.,

zR(xt) = min
y

{
max
ĉ
{(ĉ+M xt)>y : ĉ∈ Ct} : By= b, y ∈Rm+

}
. (14)

We propose the use of approximate GRN policies that replace ẑR(xt) in (5) with

ẑR(xt) :=

{
zR(xt) if xt 6= xs ∀s < t,
z(Is) if xt = xs for some s < t.

(15)

Thus, the approximate policy implements an interdiction solution xt that solves the problem

zt,∗R = max
xt
{ẑR(xt) : xt ∈X}

in each time period t. That is, the approximate GRN policies solve (12) after replacing zR(xt)

in constraint (12c) with its relaxed version zR(xt) as defined above, resulting in the following

optimization problem:

zt,∗R = max
xt,f,vs

f (16a)

s.t. f − zs ≤M vs ∀s < t, (16b)

f − zR(xt)≤M
∑
s<t

(1− vs), (16c)∥∥xt−xs∥∥
1
≤ nvs ≤ n

∥∥xt−xs∥∥
1

∀s < t, (16d)

xt ∈X,vs ∈ {0,1} ∀s < t. (16e)

Formally, we define the set of approximate GRN policies Λ as follows.

Definition 5. Policy λ belongs to the set of approximate GRN policies Λ if and only if xt,λ

solves (16) for t≤ ξλ, and xt,λ = xξ
λ,λ for all ξλ < t≤ T , where for a policy λ we define

ξλ := min{t∈ T : zt,∗R = zt,λ}.

The robust nature of GRN policies can be interpreted as emanating from the assumption that

the follower implements a solution to the Stackelberg game in (13) between the follower and the

nature: once the follower selects an 1− n path, the nature responds by selecting the cost vector

that is least favorable for the follower. Under this interpretation, approximate GRN policies can

be viewed as policies that allow the follower to commit to a mixed strategy; see, e.g. von Stengel

and Zamir (2010) for an analysis of Stackelberg games with mixed strategies.

We show next that the theoretical properties discussed in Sections 3 and 4 continue to hold for

the case of the proposed approximate GRN policies. For that, we first establish that the inequalities

in Theorem 1 continue to hold:
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Proposition 4. For t∈ T \ {0} given and λ∈Λ, one has that zt,λ ≤ z∗ ≤ zt,∗R .

This result implies that the convergence results (e.g., Propositions 1 and 3, and Corollary 2)

established for GRN policies also hold for their approximations in Definition 5.

Under the game-theoretic interpretation of approximate GRN policies, Proposition 4 says that,

while the follower’s commitment to mixed strategies should improve its position, it does not lead

to unattainable costs (in optimality). In this regard, the results holds more generally, independent

of the properties of Ct, as long as A1 (c∈ Ct) holds (and nature’s problem is well defined).

Next, we reformulate (16) as a single-level MIP for the case of polyhedral uncertainty sets, which

enables implementation of approximate GRN policies using off-the-shelf solvers. Our starting point

is (14), which for polyhedral uncertainty sets becomes:

zR(xt) = min
y

{
max
ĉ
{(ĉ+M xt)>y : Gtĉ≤ gt} : By= b, y ∈Rm+

}
.

For any given y, the inner maximization of the objective function above is a linear program. Thus,

we can use strong duality to obtain the following single-level reformulation:

zR(xt) := min
y,p

(gt)>p+ (Mxt)>y

s.t. (Gt)>p= y,

By= b,

y ∈Rm+ , p∈R
|gt|
+ .

Defining Q as the feasible region in the formulation above, we have that constraints (16c) become

min{(gt)>p+ (Mxt)>y : (y, p)∈Q} ≥ f −M
∑
s<t

(1− vs).

Noting that the formulation in the l.h.s. above is a linear program, we use strong duality once

again, and conclude that f and vs satisfy constraints (16c) if and only if there exist vectors ĉ and

w satisfying the following constraints:

b>w≥ f −M
∑
s<t

(1− vs), Gtĉ≤ gt, BTw− ĉ≤Mxt.

Thus, summarizing the above, we have that for the case of polyhedral uncertainty sets, formu-

lation (16) admits the following MIP reformulation:

MIP(Gt, gt) := max
xt,f,vs,p

f (17a)

s.t. f − zs ≤Mvs ∀s < t, (17b)

f − b>w≤M
∑
s<t

(1− vs), (17c)
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Gtĉ≤ gt (17d)

B>w− ĉ≤Mxt, (17e)∥∥xt−xs∥∥
1
≤ nvs ≤ n

∥∥xt−xs∥∥
1

∀s < t, (17f)

xt ∈X,vs ∈ {0,1} ∀s < t. (17g)

Next, we show that under some conditions, approximate GRN polices coincide with GRN polices,

i.e., Λ≡Λ, and the latter set can also be computed using single-level MIPs.

5.3. Special case: GRN Policies without Uncertainty Set Updates

Consider a setting without any uncertainty set update, i.e., Ct = C0 for all t ∈ T . Recall that

C0 = {ĉ ∈ Rm : `a ≤ ĉa ≤ ua ∀a ∈ A}. Then the inner maximization problem of (13) admits an

optimal solution u := (u1, . . . , um)T , where u is the vector of arc costs’ upper bounds. Thus, problem

(13) reduces to the following single-level MIP:

zR(xt) = min
y
{(u+Mxt)>y : By= b, y ∈ {0,1}m}.

Moreover, recall that B is the node-arc adjacency matrix induced by graph G(N,A). Hence, B is

totally unimodular and zR(xt) can be computed as the following linear program (LP):

zR(xt) = min
y
{(u+Mxt)>y : By= b, y ∈Rm+},

where the integrality restrictions for y are relaxed. This observation also implies that approximate

GRN policies coincide with GRN policies whenever Ct = C0 for all t∈ T .

Using strong duality of the above LP formulation, we can further rewrite constraint (12c) as

max
p
{bTp : B>p≤ u+Mxt} ≥ f −M

∑
s<t

(1− vs).

Moreover, f and vs satisfy the above constraint if and only if there exists a vector p ∈ Rm such

that b>p≥ f −M
∑

s<t(1− vs) and B>p≤ u+Mxt. Therefore, formulation (12) reduces to:

MIP(C0) := max
xt,f,vs,p

f (18a)

s.t. f − zs ≤Mvs ∀s < t, (18b)

f − b>p≤M
∑
s<t

(1− vs), (18c)

B>p≤ u+Mxt, (18d)

(12d)− (12e),

which is a single-level MIP model.

Finally, from the above discussion it is also clear that approximate GRN policies coincide with

GRN policies whenever only value-imperfect feedback with Vt, see (8), is used. For the latter,

the same MIP can be applied after replacing ua with the appropriate value of ĉa whenever it is

observed.
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6. The Case of a General Evader

In this section we analyze the implications of relaxing our assumption on the evader’s response,

namely that his response must be a shortest path in the interdicted network. Instead, we consider

settings in which such a response is constrained to be any valid 1−n path. The latter implies that

the evader may commit to implement non-optimal responses to the interdictor’s actions indefinitely.

That is, the cost incurred by the evader and then observed by the interdictor after an interdiction

It,π is not necessarily equal to the shortest path cost in G(It,π), i.e., zt,π ≥ z(It,π) for any policy π.

Thus, it is necessary to revisit the performance criterion used.

When the evader responds with a shortest path, time-stability provides a bound on a policy’s

regret. That is,

Rt,π =
∑
s≤t

(z∗− zs,π)≤ µτπ,

where µ is an upper bound on (z∗− zs,π) for each s; recall Remark 1.

Note that, when the evader’s response is instead a valid 1− n path, there is no guarantee that

z∗ ≥ zs,π. Nonetheless, one can bound the regret by discarding periods on which the evader’s actions

are sub-optimal. Specifically, we have that

Rt,π =
∑
s≤t

(z∗− zs,π)≤ R̃t,π :=
∑
s≤t

(z∗− zs,π)+ ≤ µτ̃π, (19)

where (·)+ denotes the positive part of the argument, and we refer to R̃t,π as the generalized regret.

Similarly, we define the generalized time-stability as:

τ̃π := 1 +
∣∣{t∈ T : z∗ > zt,π}

∣∣ . (20)

Note that the generalized time-stability: (i) coincides with the traditional time-stability when

the evader responds in a greedy fashion, for the proposed policies, as they both indicate the time

it takes the interdictor to achieve the full information solution; and (ii) accounts for the time

periods on which the evader effectively takes advantages of the interdictor’s initial uncertainty to

increase the regret.

Information Update. In this setting, information updates are weaker in the sense that only

the fact of the existence of a response can be incorporated, not its optimality (from the evader’s

perspective). For example, under standard feedback, the update in (3) becomes

Ct+1 = Ct ∩
{
ĉ∈Rm+ : ∃P ∈ Sĉ(It) s.t.

∑
a∈P

ĉa ≤ zt
}
, t∈ T \T. (21)

Note however, that properties A1 and A2 continue to hold under this update. Also, as expected,

the update continues to be non-convex in general, as illustrated next.
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Example 3. Consider the instance in Figure 2(a), and suppose that k = 1. Note that C0 =

[0,4]× [0,5]× [5,5]× [5,5]. Suppose that I0 = ∅, so that P 0 = 1→ 2→ 4 and the interdictor observes

z0 = 6. Using update (21) results in C1 = C0 ∩{ĉ1,2 = 1 or ĉ1,3 = 1}, which is non-convex. �

GRN Policies. The proposed policies operate as in the case of a greedy evader, i.e., the interdictor

assumes that the evader’s response is an 1 − n shortest path; hence, the expected cost zR(It)

continues to be given by (4). However, corrections to such an expectation on solutions implemented

in the past must account for the fact that said solutions might have not been 1−n shortest paths.

With this, (5) is replaced by:

z̃R(It) :=

{
zR(It) if It 6= Is ∀s < t,
min{zs : s < t, Is = It} if It = Is for some s < t.

(22)

Moreover, we define

z̃t,∗R := max{z̃R(It) : It ⊆A, |It| ≤ k}, ∀t∈ T

as the problem that the interdictor solves in each time period. Thus, we define the tailored GRN

policies (ΛG) as follows.

Definition 6. Policy λ∈ΛG if and only if It,λ = It−1,λ when zt−1,λ ≥ z̃t−1,∗R , and

It,λ ∈ arg max
{
z̃R(It) : |It| ≤ k, It ⊆A

}
,

otherwise. �

Convergence under Standard Feedback. As emphasized earlier, unlike in Section 3, the

observed costs do not necessarily provide a lower bound to the expected cost, as the evader might

act suboptimaly at any time. This observation is formalized in Lemma 1, which is the equivalent

of Theorem 1 in this more general setting.

Lemma 1. For t∈ T \ {0} given and λ∈ΛG, one has that z∗ ≤ z̃t,∗R .

Note, however, that because the expected cost z̃t,∗R is a valid upper bound to z∗, if the observed cost

turns out to be not lower than z̃t,∗R , then this implies that the evader is acting suboptimaly. Hence,

such a period does not contribute to increasing the modified regret R̃t,π. Thus, the optimality

certificate alluded in Theorem 1 still applies in the sense that, whenever the observed cost is

greater than the expected one, then the interdictor is sure that the regret is not growing. Similar

to Section 5, when the update mechanism used results in a polyhedral uncertainty set, we can

compute approximate GRN policies via the single-level MIP formulation (17) (see below).

As in Section 3, the non-repetitive nature of the proposed policies ensure the finiteness of the

generalized time-stability τ̃λ, which is formalized next.
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Proposition 5. Consider λ∈ΛG and standard feedback. Then,

τ̃λ ≤
(
m

k

)
+ 1.

The tightness of the bound above follows from Proposition 1, as the greedy evader is a particular

case of the general one.

One can see that information updates under different forms of imperfect feedback admit rather

straightforward extensions to the case of general evader. Also, the bounds derived in Section 4 hold

for the generalized time-stability and the weaker information updates from Section 5.2 are also

applicable for the case of a general evader.

MIP Formulations for approximate GRN Policies. Relative to the case of greedy evader,

computation of approximate policies differ in that the cost expectations and information updates

ought to be adjusted differently. With respect to the the first of these issues, from Section 5 we see

that (6) can be written as

z̃t,∗R = max
xt,f,vs

f (23a)

s.t. f −min{z(Iu) : u≤ t, Iu = Is} ≤M vs ∀s < t, (23b)

(12c)− (12e) hold. (23c)

Thus, similar MIP formulations for approximate policy computation can be derived, provided

that information updates maintain the polyhedral representation of the uncertainty set. This is

certainly the case when there is no update (see Section 5.3). As for the weak update mechanisms

explored for the case of imperfect feedback, as noted above, they are both compatible with the weak

feedback available for the general evader. Thus, the formulations in Section 5.2 still apply to this

more general setting with minor modifications to take into account that (17b) is replaced by (23b).

7. Computational Study

In Section 7.1, we describe our test instances and three benchmark policies, which are

compared against the GRN policies in Section 7.2. In Section 7.3, we explore to what degree

the performance of the approximate GRN policies depends on the information revealed to the

interdictor. Sections 7.4 and 7.5 perform sensitivity analysis of the approximate GRN policies

with respect to the quality of feedback and the initial information available to the interdictor. In

Section 7.6, we study the performance of our policies for a general evader.
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7.1. Test Instances, Benchmark Policies, and Implementation Details

Graph and cost structure. We test our policies on three different graph instances: uniform

random graphs (Erdös and Rényi 1959), layered graphs (Bastert and Matuszewski 2001), and

Watts-Strogatz graphs (Watts and Strogatz 1998). For brevity, we focus our analysis on the results

for uniform random graphs; the results for the latter two types of graphs are fairly similar and

thus, they are provided in Appendices D and E.

The uniform random graphs used in this paper are generated following the model of Erdös and

Rényi (1959).6 Based on the cost structure we divide our instances into four categories: random,

right-skewed, symmetric and left-skewed. For the random cost structure, `a, ca and ua are three

integers randomly generated from [0,50] for each arc a∈A, and then sorted so that `a ≤ ca ≤ ua. For

the other types of the cost structure, for each arc a∈A, we first generate `a and ua randomly from

uniform integer distributions U(0,50) and U(`a,50), respectively. Consequently, cost ca is computed

as `a + (ua − `a)βa, where βa is drawn from a Beta(δ, θ) distribution. We set (δ, θ) to be (2,10),

(10,2) and (10,10) for the left-skewed, right-skewed and symmetric cost structure, respectively.

Benchmark policies. Similar to Borrero et al. (2016), for settings with no uncertainty set

updates, we consider three benchmark policies. For each of them, the interdictor is greedy and

non-repetitive, but does not consider a worst-case realization for the cost, but instead inputs a

(single) value for c based on the known lower and upper bounds. Specifically:

• Lower bound policies ΠL: the interdictor assumes that the cost of each arc is given by

ĉa = `a ∀a∈A.

• Mean bound policies ΠM : the interdictor assumes that the costs of arcs are given as

ĉa = (`a +ua)/2 ∀a∈A.

• Random bound policies ΠR: for each arc a ∈A, the interdictor randomly chooses either lower

or upper bound of the arc as its real cost. That is,

ĉa =

{
`a with probability 1

2
,

ua with probability 1
2
.

Using the techniques in the previous sections, we reformulate the problem faced by the interdic-

tor each period as the single-level MIP (17) where ĉ is evaluated based on the above realizations

and this is no longer a decision variable. Note that when no uncertainty set update is implemented

(Ct = C0 for all t ∈ T ), the problem faced by an interdictor implementing benchmark policies is

6 That is, a uniform random graph with n nodes is generated in a way that for each pair of nodes, there is an arc
between them with probability p. We use p= 0.5 in all our experiments.
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(18) where u is replaced with above realizations of ĉ. Note that as discussed in Section 5.3, when

we assume that Ct = C0 for all t ∈ T , GRN policies reduce to upper bound policies where the

cost vector is composed with upper bounds; i.e. ĉa = ua for all a ∈ A. However, when we have

more information in the update mechanism, e.g., Rtw and Vt, approximate GRN policies are more

effective than the upper-bound policies.

Implementation details. The algorithms are coded in C++ using CPLEX 12.6 as the MIP

solver. The experiments are performed on a Windows PC with 3.7 GHz CPU and 32 GB RAM.

Table 2 Performance of policies in Λ and benchmark policies without information updates (n= 15, uniform random

graph, greedy evader).

Graph
k=2 (T=500) k=4 (T=1000)

λ πL πM πR λ πL πM πR

Right-skewed

Time-stability 42.6 450.218 201.28 450.218 181.91 950.119 501.010 1000.020

MAD 55.9 89.6 239.0 89.6 189.4 94.8 499.0 0.0
Relative difference 0.0% 21.2% 3.8% 21.6% 0.7% 23.6% 4.2% 18.6%

MAD 0.0% 13.5% 4.9% 10.4% 1.3% 14.2% 4.8% 7.4%
Total regret 104.9 4850.0 925.0 5081.5 727.4 13900.0 2350.0 10759.3

MAD 147.6 2835.0 1195.0 2323.4 956.7 8700.0 2655.0 4874.5

Symmetric

Time-stability 244.58 350.614 74.72 400.416 871.417 800.417 232.34 800.616

MAD 178.9 209.2 104.5 159.4 218.6 319.4 329.3 319.1
Relative difference 7.3% 16.7% 0.3% 12.4% 17.5% 16.7% 1.0% 10.3%

MAD 9.3% 13.9% 0.6% 9.7% 10.0% 11.3% 1.6% 7.3%
Total regret 1498.2 3075.0 101.7 2698.4 6857.7 7300.0 442.3 4561.0

MAD 1254.9 2647.5 147.1 2206.9 3016.1 5060.0 656.9 2996.1

Left-skewed

Time-stability 408.415 176.37 243.47 237.38 1000.020 501.012 912.217 729.712

MAD 137.4 226.6 182.1 213.8 0.0 499.0 149.3 327.2
Relative difference 26.9% 4.3% 7.2% 10.2% 36.6% 4.5% 14.6% 18.7%

MAD 18.3% 5.6% 9.4% 12.5% 17.1% 4.9% 24.6% 22.3%
Total regret 3191.8 450.0 1255.9 1317.3 9715.2 1300.0 6268.1 7228.4

MAD 1983.8 585.0 882.2 1175.9 4479.9 1450.0 3309.9 5729.6

Random

Time-stability 338.412 425.317 211.46 401.116 1000.020 850.519 702.013 919.118

MAD 194.0 127.0 217.2 158.2 0.0 254.2 362.4 145.6
Relative difference 16.8% 27.4% 6.8% 17.5% 36.3% 29.5% 15.9% 21.0%

MAD 16.8% 17.5% 9.7% 15.0% 14.0% 17.2% 15.6% 14.9%
Total regret 3066.4 4825.0 1255.9 3210.0 14264.3 13400.0 6849.7 9478.0

MAD 2329.5 3190.0 1474.8 2822.2 5500.0 8440.0 4803.6 6237.4

Notes: Entries in bold denote the best policy in each setting; the numbers in superscript of time-stability denote

the number of instances out of 20 for which the corresponding policy failed to converge within T time periods.

7.2. Comparison of Policies without Information Updates

In our first set of the computational experiments we compare the performance of the GRN

policies λ ∈Λ against the benchmark policies when no information updates are used, i.e., Ct = C0

for all periods t. We test the policy performance using the right-skewed, symmetric, left-skewed
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and random cost structures as outlined in Section 7.1. For each structure we randomly generate 20

instances with n= 15. Finally, we have k ∈ {2,4}, and set either T = 500 or T = 1000, respectively.

We compare the policies’ average time-stability and average total regret, as well as their mean

absolute deviation (MAD). Also, we compute the relative difference between the cost returned by

the full information optimal solution, and the cost observed from the evader under a policy either

at time T or at the time period when the interdictor starts repeating the same solution, i.e.,∣∣∣z t̂,π − z∗∣∣∣
z∗

· 100%,

where t̂ is the time period when z t̂,π = z t̂+1,π = . . . = zT,π holds. We use the average relative

difference and its MAD to measure policy performance. Table 2 summarizes the performance of

policies Λ and the benchmark polices across all cost structures. There, λ, πL, πM and πR denote

the policies in Λ, ΠL, ΠM and ΠR, respectively.

It appears that policies λ and πM outperform the other policies in general as they perform

reasonably well in all of the scenarios and perform best in most of them. In particular, policy λ

performs best in settings with right-skewed costs, and policy πM performs best in settings with

symmetric and random costs. In contrast, policy πL performs reasonably well only with left-skewed

costs which are arguably favorable to πL.

Comparing among different settings, we see that for right-skewed costs, GRN policies perform

significantly better than all other benchmark policies, which is rather intuitive given its robust

nature. However, λ loses its relative advantage for k = 4, especially for networks with left-skewed

and random costs. Furthermore, observe that the benchmark policies fail to find an optimal solution

in at least one of the instances for all cost structures within T steps, see the numbers in superscript

of Table 2. Recall that unless the interdictor performs in a robust manner (as in Λ policies), there

is no guarantee that a policy achieves an optimal solution, see our discussion in Section 3.2.

A similar setting as the one shown above is presented in Borrero et al. (2016). There, the

authors demonstrate that the greedy and pessimistic policies are better than the benchmark policies

and, moreover, that all the instances are solved to optimality. In contrast to our experiments,

in Borrero et al. (2016) the authors assume perfect feedback, which yields the worst-case time-

stability linear upper bound of |A|. Here, given the limited feedback, time-stability for the GRN

policies is exponentially bounded by the number of arcs. As we set T to be small for the sake

of computational tractability, there are some instances where the GRN policies take more than

T periods to find an optimal solution. However, for sufficiently large values T the GRN policies

should outperform the benchmark ones, under standard feedback for at least some test instances.

To summarize the discussion above we conclude that the GRN polices demonstrate overall good

performance across all cost structures for sufficiently small values of k as shown by the results
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in Table 2 for k = 2. On the other hand, the benchmark policies fail to converge for at least one

instance in each of the considered cost structures. The performance of the GRN policies deteriorates

significantly as k increases as shown by the results in Table 2 for k = 4. These observations are

not surprising given the worst-case time-stability result derived in Proposition 2. In addition, the

observed results emphasize that with very limited feedback (i.e., only the total cost of the evader’s

shortest path is revealed to the interdictor) it is rather difficult to converge to a full-information

optimal interdiction solution, in particular, as the value of k increases. Similar results hold for

layered and Watts-Strogatz graphs, see Appendices D.2 and E.2, respectively.

7.3. Improvements When Information Updates Are Applied

In this section, we study the performance of approximate GRN policies under response-

imperfect (λr) and value-imperfect feedback (λv) and compare their performance to that of policies

that assume standard feedback (λ). Recall from Section 5.3 that under standard feedback, when

uncertainty sets are either not updated or updated only through value-imperfect updates with

Vt, then approximate GRN and GRN policies coincide. We implement the weaker versions of the

response- and value-imperfect updates, as defined in (9) and (10), respectively, due to the convexity

requirement for the uncertainty set updates in our MIP models, see Sections 2.3 and 5.2.

We consider graphs with a number of nodes n∈ {15,20, . . . ,50} for all four cost structures. The

time horizon is set as T = 500 and for each cost structure we randomly generate 20 instances. For

response-imperfect feedback we set pr = 0.5, and in value-imperfect feedback we set pr = pv = 0.5.

We measure policy performance using the average time-stability and MAD, see Table 3. Further-

more, because the mean-bound policy πM performs better than the other benchmark policies in

Section 7.2, we also choose to explore the performance of πM with the value-imperfect updates,

see the results in the column denoted by πM(+V) in Table 3.

As expected, the performance of the policies improve as more information is revealed to the

interdictor, see the results for λv, λr and πM(+V) in Table 3. We also observe that policies in λv

and λr significantly outperform the other considered policies, which emphasizes the importance of

having sufficiently good information feedback.

Finally, we note that policies πM are outperformed by policies λv and λr even when additional

information is used from value-imperfect feedback as in πM(+V). More importantly, policies πM

and πM(+V) fail to converge for at least one test instances in all cost structures. These observations

are consistent with our theoretical derivations and negative examples discussed in Section 3. Similar

results hold for layered and Watts-Strogatz graphs, see Appendices D.3 and E.3, respectively.



Table 3 Average time-stability and MAD (in parenthesis) for λ∈Λ and πM ∈ΠM policies when information updates are applied (k= 6, T = 500, uniform random graphs, greedy evader).

n
Right-skewed Symmetric Left-skewed Random

λ λr λv πM πM(+V) λ λr λv πM πM(+V) λ λr λv πM πM(+V) λ λr λv πM πM(+V)

15
178.54 33.01 6.4 350.614 325.713 475.319 47.81 13.7 134.35 103.14 500.020 29.1 20.2 476.119 20.8 500.020 33.6 20.7 453.018 231.49

(198.7) (46.7) (3.3) (209.2) (226.6) (52.8) (45.3) (5.7) (182.9) (158.8) (0.0) (7.5) (5.5) (45.5) (8.0) (0.0) (11.0) (6.5) (84.7) (241.7)

20
307.910 11.9 7.1 350.614 350.614 500.020 50.81 16.5 196.87 129.85 500.020 57.61 20.8 500.020 27.6 500.020 41.4 21.5 475.219 113.34

(205.9) (6.1) (3.5) (209.2) (209.2) (0.0) (45.1) (4.8) (212.3) (185.1) (0.0) (44.2) (7.6) (0.0) (8.3) (0.0) (19.7) (4.5) (47.1) (154.7)

25
317.312 11.7 6.0 350.614 350.614 500.020 31.0 17.6 179.47 54.52 500.020 40.6 32.1 500.020 30.6 500.020 40.2 24.7 500.020 260.010

(219.3) (4.7) (2.9) (209.2) (209.2) (0.0) (15.5) (3.7) (224.4) (89.1) (0.0) (12.1) (17.1) (0.0) (9.4) (0.0) (10.6) (7.1) (0.0) (240.1)

30
362.114 15.6 8.8 375.515 375.515 500.020 30.1 16.2 205.87 153.96 500.020 44.3 27.5 500.020 27.9 500.020 35.9 23.8 500.020 96.73

(193.1) (8.2) (3.3) (186.8) (186.8) (0.0) (12.3) (6.0) (235.4) (207.7) (0.0) (10.7) (6.9) (0.0) (6.2) (0.0) (12.2) (5.7) (0.0) (121.0)

35
314.512 18.3 8.4 400.416 375.515 500.020 36.0 15.3 111.17 55.62 500.020 40.3 27.3 500.020 36.5 500.020 39.2 23.3 500.020 239.29

(22.7) (9.9) (7.2) (159.4) (186.8) (0.0) (14.5) (5.6) (155.6) (88.9) (0.0) (8.6) (7.0) (0.0) (7.8) (0.0) (16.2) (5.4) (0.0) (234.7)

40
332.813 12.2 7.23 325.713 400.416 500.020 29.8 16.8 242.97 105.34 500.020 66.11 25.4 500.020 34.9 500.020 65.51 29.2 500.020 167.76

(217.4) (7.8) (4.7) (226.6) (159.4) (0.0) (9.4) (3.8) (231.4) (157.9) (0.0) (47.9) (7.0) (0.0) (8.6) (0.0) (4.5) (6.5) (0.0) (199.4)

45
380.314 22.9 7.3 425.317 400.416 500.020 27.6 17.5 468.618 179.57 500.020 69.5 27.0 500.020 40.6 500.020 42.3 28.4 500.020 166.16

(167.6) (13.9) (2.5) (127.0) (159.4) (0.0) (6.3) (4.1) (56.6) (224.4) (0.0) (46.3) (7.5) (0.0) (9.7) (0.0) (19.9) (8.9) (0.0) (200.3)

50
293.311 21.4 10.8 425.317 425.316 500.020 34.5 17.7 366.212 130.65 500.020 50.2 25.4 500.020 58.71 500.020 50.2 27.3 500.020 195.17

(227.4) (13.9) (4.7) (127.0) (127.0) (0.0) (9.8) (5.3) (166.5) (184.7) (0.0) (22.5) (7.2) (0.0) (44.1) (0.0) (18.8) (9.3) (0.0) (213.4)

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding policy failed to converge within T time periods.
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7.4. Policy Performance: Sensitivity with Respect to pr and pv

We now study the approximate GRN policies’ performance under response-imperfect and value-

imperfect feedback as a function of the probability of learning information. To this end, we set k= 6

and n= 50 for all the experiments and generate 20 instances with the different cost structures.

Figure 5 depicts the behaviour of time-stability for response- and value-imperfect updates with

the right-skewed costs (see Appendix C for the results with the symmetric and left-skewed costs).

As expected, the time-stability of both policies decreases as pr and pv increase. Note that λv policies

have better time-stability than λr policies; moreover, their time-stability also decreases faster than

that of λr. These observations show that the policies are highly sensitive to the availability of

information, and emphasize the importance of having access to a high quality information feedback.

For the results on layered and Watts-Strogatz graphs, see Appendices D.4 and E.4, respectively.

7.5. Policy Performance: Sensitivity with Respect to the Quality of the Bounds

Next, we study the performance of our approximate GRN policies with respect to the quality

of initial information, that is, the magnitude of ua− la for all a ∈A. The value of ca is generated

uniformly from U(500,1000) and, as in Borrero et al. (2016), we divide the test instances into

three categories: (ca − χ−a , ca + χ+
a ), (ca − 5χ−a , ca + 5χ+

a ) and (ca − 25χ−a , ca + 25χ+
a ), where χ−a

and χ+
a are drawn uniformly from [1,20] for all a ∈ A. We refer to these three sets of instances

as “I.1”, “I.2” and “I.3”, respectively. Clearly, I.1 has the best quality bounds, and I.3 has the

worst quality bounds. We generate 20 instances for I.1, I.2 and I.3, and set k= 6 and T = 200. We

consider uniform random graphs with n= 50, and study policy performance for various values for

probabilities pr and pv. Table 4 summarizes the results. The results on layered and Watts-Strogatz

graphs can be found in Appendices D.5 and E.5, respectively.

The results show that policy performance is rather sensitive with respect to the quality of initial

information; particularly, as the width of the intervals increase, the time-stability increases. Note

that the effect is amplified under response-imperfect feedback. In addition, the effect that the

quality of bounds have on policy performance is smaller when pr and pv take larger values, i.e., when

the interdictor can learn more information from the evader’s actions. This behavior is indicative

of an important trade-off, namely, in order to improve the performance of the GRN policies, the

interdictor can either seek to improve the quality of the initial deterministic information, or seek

to improve the probabilities of observing real information from the evader.

7.6. Policy Performance for the Case of a General Evader

In this section we consider the generalization introduced in Section 6 for the case of a general

evader, who may implement a non-optimal response (i.e., a path that is not necessarily shortest)
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Figure 5 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k = 6

and the right-skewed costs (T = 50, uniform random graphs, greedy evader).
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to the interdictor’s actions in each time period. In our experiments we assume that the evader’s

feasible solutions are contained in the path set:

S̃t = S(It)∪{P : P ∈ S(It ∪ a) ∀a such that ∃P ′ ∈ S(It), a∈ P ′}, (24)

that is, S̃t contains shortest paths in the interdicted network along with an additional set of evasion

paths generated in the following manner. For every shortest path in the interdicted graph, we

assume that at least one arc in the path cannot be used by the evader and then generate another

evasion path, namely, the shortest possible one, that does not contain the said arc in the interdicted

graph. We repeat this procedure for each arc in all shortest paths. By construction, the set S̃t
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Table 4 Behaviour of policies in Λ with respect to the cost bound quality (k= 6, T = 200, uniform random graphs,

greedy evader).

pr = pv 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Policy λr

I.1

Time-stability 122.511 76.02 27.4 20.5 9.9 6.9 5.3 4.9 3.8 3.3 2.8
MAD 85.3 58.0 13.6 10.0 5.2 3.4 2.2 2.8 1.3 1.1 0.6

Relative difference 0.6% 0.1% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 0.6% 0.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I.2

Time-stability 200.020 179.517 83.91 44.4 26.4 16.8 11.7 8.5 7.0 6.4 5.2
MAD 0.0 34.9 37.1 16.7 10.3 4.4 4.5 2.0 1.3 1.4 0.6

Relative difference 7.1% 4.7% 0.2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 1.4% 2.6% 0.5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I.3

Time-stability 200.020 194.018 132.03 67.3 36.6 30.9 16.2 19.9 10.2 9.3 7.4
MAD 0.0 10.9 42.3 14.9 11.5 17.4 3.4 10.5 1.6 1.5 0.8

Relative difference 34.6% 28.2% 3.15% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 5.5% 9.0% 5.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Policy λv

I.1

Time-stability 130.412 58.51 23.8 11.7 8.0 5.7 4.3 3.0 3.2 2.1 1.8
MAD 83.5 42.1 11.9 6.8 3.9 2.9 2.0 1.1 1.8 0.8 0.6

Relative difference 0.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 0.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I.2

Time-stability 200.020 161.411 63.2 25.9 17.4 13.8 9.0 6.0 5.9 4.6 4.1
MAD 0.0 44.1 19.0 9.8 5.2 4.5 2.8 1.7 1.5 0.8 0.6

Difference 7.1% 1.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 1.4% 1.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I.3

Time-stability 200.020 197.318 90.9 43.5 27.1 19.9 13.7 10.2 7.7 6.6 5.7
MAD 0.0 5.0 33.1 14.1 7.1 4.0 2.6 2.1 1.2 0.8 0.5

Difference 34.7% 16.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 5.3% 10.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the

corresponding policy failed to converge within T time periods

contains shortest paths and the second shortest paths in G(It), along with some additional evasion

paths, which have at least one arc distinct from a shortest path.

Given S̃t we consider three types of randomized evasion policies:

• “Random–0.9” policy: in each time period t the evader chooses the shortest path from S̃t with

probability 0.9 and the second shortest path from S̃t with probability 0.1.

• “Random–0.5” policy: in each time period t the evader chooses either the shortest path from

S̃t or the second shortest path from S̃t with equal probability.

• “Random–All” policy: in each time period t randomly chooses one of the paths from S̃t with

equal probability.
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As mentioned in Section 7.6, we compute the approximate version of GRN policies based on

its single-level MIP formulation. Because the mean-bound policies ΠM are the only ones that

are comparable to our GRN policies, we compare the performance of tailored approximate GRN

policies λGv ∈ΛG
v (refer to Definition 6) and mean-bound policies πGM ∈ΠG

M , under value–imperfect

feedback. Note that policies ΠG
M follow the same pattern of as those in ΛG except for the calculation

of z̃t,∗R , which evaluates ĉ with `+u
2

.

We summarize the policy performance under Random–All evader in Table 5. The results under

Random–0.9 and Random–0.5 evaders can be found in Table 6 and Table 7, respectively (see

Appendix C.2). Note that we set T = 100 and calculate the generalized time-stability τ̃π as defined

in (20) and generalized total regret R̃T,π as in (19). The results show that the approximate GRN

policies outperform mean-bound policies in many cases, for example, for the graphs with the

right-skewed, left-skewed and random cost structure, only lagging behind πM for some symmetric

instances. These results show that the GRN policies can retain their performance over strategic

evaders, outperforming πM in this class of challenging instances.

8. Conclusions

This paper studies the sequential shortest path network interdiction problem in a directed

graph, where the interdictor has incomplete information about the arc costs and limited feedback

from the evader’s actions. By observing feedback from the evader’s actions, the interdictor adjusts

her decisions so as to maximize the total cumulative cost incurred by the evader.

We study settings with various forms of feedback and propose the GRN policies, a class of

policies that follow some rather simple rules, which can also be approximated by solving mixed

integer optimization programs, for a certain class of tractable uncertainty updates. With the

performance of a policy measured by time-stability, we show that such policies find an optimal

solution within O(
(
m
k

)
) periods under standard feedback. If more information is available in

the feedback, then we show that the interdictor finds an optimal solution with the expected

time-stability that is linear in terms of the number of arcs of the network.

We also extend our analysis to settings where the evader does not necessarily respond optimally.

By generalizing the concept of time-stability, we show that GRN policies can be adapted so that

their theoretical guarantees are preserved. These results imply, for example, that the proposed

policies (and the principles behind them) are robust with respect to possible strategic behaviour

on the evader’s side, and that there is a limit on the advantage that the evader might have because

of the interdictor’s initial limited information.

Our theoretical results are supported by the numerical experiments. Relative to benchmark

policies, GRN policies are guaranteed to find optimal solutions across different types of graphs.
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Table 5 Average time-stability and MAD (in parenthesis) for λGv ∈ΛGv and πGM ∈ΠG
M policies (with

value-imperfect feedback) for the general evader (“Random–all” policy, see Section 7.6) on uniform

random graphs with k= 6 and T = 100. Note that the “Random-all” evader randomly chooses a path

from the set of evasion paths given by S̃t, see (24).

n
Right-skewed Symmetric Left-skewed Random

λGv πGM(+V) λGv πGM(+V) λGv πGM(+V) λGv πGM(+V)

15

Time-stability (τ̃) 21.4 50.6 14.5 6.1 21.7 19.3 18.8 38.2
MAD 23.9 39.6 7.5 5.7 6.1 8.6 6.1 26.1

Total regret (R̃T ) 595.3 717.5 118.3 48.1 161.3 128.7 172.3 245.0
MAD 851.9 874.5 60.8 15.4 49.4 54.0 51.3 122.0

20

Time-stability (τ̃) 29.6 48.8 17.0 19.0 22.0 25.0 18.9 33.8
MAD 35.2 33.5 5.1 18.9 6.6 7.2 7.4 20.6

Total regret (R̃T ) 871.5 948.3 106.1 74.9 143.7 127.3 161.1 176.4
MAD 1200.9 1161.7 30.4 58.8 53.4 29.9 60.5 97.4

25

Time-stability (τ̃) 17.2 40.2 14.8 6.9 22.9 23.0 22.9 35.8
MAD 16.6 30.4 4.5 7.6 6.4 8.2 7.2 22.7

Total regret (R̃T ) 290.7 364.3 91.8 40.0 129.1 108.1 159.9 229.4
MAD 413.9 426.1 29.5 23.8 35.5 41.3 54.6 158.6

30

Time-stability (τ̃) 35.8 60.9 25.1 25.4 20.8 30.6 21.3 27.5
MAD 38.6 39.2 15.7 27.5 5.3 8.1 4.8 12.6

Total regret (R̃T ) 844.1 901.2 236.5 213.1 90.7 101.1 134.8 137.6
MAD 1092.7 1054.5 268.6 272.6 27.1 25.6 35.5 58.4

35

Time-stability (τ̃) 25.8 63.1 16.1 10.7 23.9 28.6 21.2 42.9
MAD 29.7 37.2 5.8 12.7 6.5 9.5 5.9 18.7

Total regret (R̃T ) 597.9 674.6 88.3 33.4 110.2 119.3 145.0 166.5
MAD 859.6 794.7 32.0 21.0 39.5 49.8 61.6 75.7

40

Time-stability (τ̃) 26.4 70.6 14.4 16.6 24.0 27.9 25.3 40.0
MAD 29.4 33.7 4.7 19.0 6.2 9.7 6.3 21.4

Total regret (R̃T ) 445.1 610.2 71.5 43.2 93.6 98.4 138.9 144.7
MAD 634.4 588.9 28.1 35.0 39.8 36.9 47.4 67.6

45

Time-stability (τ̃) 37.1 61.9 20.9 20.7 23.4 26.0 23.1 38.5
MAD 37.8 38.1 10.7 17.4 6.1 8.4 4.9 17.1

Total regret (R̃T ) 647.3 705.6 126.1 50.4 89.7 87.9 134.4 177.3
MAD 831.9 769.7 109.4 28.1 35.2 32.2 43.8 96.6

50

Time-stability (τ̃) 25.9 65.1 23.7 25.0 21.7 29.2 22.3 39.1
MAD 29.6 40.0 15.5 25.5 6.9 6.7 6.8 18.2

Total regret (R̃T ) 311.4 417.7 209.2 181.7 67.3 98.5 122.0 175.7
MAD 412.2 382.1 242.3 249.9 30.0 36.9 44.3 100.6

Also, consistent with intuition and the theoretical results, GRN policies perform significantly better

when the probability of learning more information increases and the quality of bounds improves.

One the main conclusions of our analysis is that policies that ignore the repeated interaction

with the evader (and therefore act greedily in each period) and are optimistic to their own benefit,
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regarding the evader’s costs, are efficient, provided that: (i) previous feedback is incorporated

into the decision-making process in each period; (ii) results from optimization models are not

followed blindly and are contrasted against the actual feedback obtained from the evader in the

previous time periods. Surprisingly, this insight still holds in settings where the evader might act

strategically. This latter feature, and (ii) above distinguish our work from extant literature.

While the GRN policies focus on minimizing the number of opportunities an (strategic) evader

has to increase the regret, it is not clear that such policies are efficient in terms of minimizing said

regret. In this regard, designing policies that are robust with respect to regret minimization is an

interesting and promising direction for future research.

Our results show that implementing approximate policies is possible by solving a series of MIPs,

whenever policy updates maintain the polyhedral structure of the uncertainty set. Furthermore,

our results show that the strongest update does not necessarily maintain such structure. Thus, a

promising direction for future research amounts to propose tight approximations to this strongest

update that maintain such a polyhedral structure, and to study their practical performance.

Alternatively, it might be possible to propose non-linear approximations to the strongest update

that allows for implementation of the GNR-like policies by solving a series of structured (possibly

non-linear) MIP problems.
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Appendix A: Proofs for Theoretical Results

Proof of Theorem 1. The left-most inequality follows directly from the definitions, see equations (1) and

(2). For the right-most inequality, let Ît ∈ arg max{ẑR(It) : |It| ≤ k, It ⊆ A} and I∗ be an optimal solution

under full information, i.e., I∗ is such that z(I∗) = z∗. Then, according to (6), zt,∗R = ẑR(Ît)≥ ẑR(I∗). Using

(5) we have that

ẑR(I∗) =

{
zR(I∗) if I∗ 6= Is, ∀s < t
zs for some s < t, otherwise.

Next, we consider two cases: I∗ = Is for some s < t; and I∗ 6= Is for all s < t. In the first case, we have that

zt,∗R ≥ ẑR(I∗) = z(Is) = z(I∗) = z∗. For the second case, observe that zt,∗R ≥ ẑR(I∗) = zR(I∗). Because c ∈ Ct,
then z(I∗)≤ zR(I∗) from (4). Therefore, z∗ = z(I∗)≤ zR(I∗). Accordingly, we have that zt,∗R ≥ z∗. �

Proof of Proposition 1. First, we show that τλ ≤ ξλ. Suppose that t= ξλ, then from equation (7) we have

that zt,λ = zt,∗R . Thus, by Theorem 1 we know that zt,λ = z∗. We claim that zs,λ = z∗ for s > t (note that this

would imply that τλ ≤ t). We prove this claim by contradiction.

Suppose that zs,λ < z∗. By construction one has that Is,λ = It,λ for all s≥ t. Thus, the shortest path P s,λ

must satisfy that P s,λ ∈ S(It,λ). This in turn implies that z(It,λ)≤ z(Is,λ) and thus, zt,λ ≤ zs,λ < z∗, which

contradicts the assumption that zt,λ = z∗. Therefore, we conclude that τλ ≤ t= ξλ.

The second inequality follows directly from noting that policy λ does not repeat solutions unless an optimal

interdiction solution is found, and that there are
(
m

k

)
different interdiction decisions. Thus, a solution is

repeated with certainty by period
(
m

k

)
+1. �

Proof of Proposition 2. Consider graph G, depicted in Figure 6, that generalizes graph G2 in Figure 3.

Note that G is such that m= 2(k+ 1). We consider the worst possible update mechanism consistent with

Assumptions A1-A2, i.e. Ct = C0 for all t∈ T . Also, without loss of generality we assume that k is odd.

In the first period, I0,λ = ∅ and the evader uses path P 0 = 1→ 2→ (k+ 3). Then the interdictor blocks

I1,λ = {(1,3), (1,4), . . . , (1, k+ 2)}, because this solution is optimal for problem (6) with z1,∗R = 2k+ 3. Con-

sequently, the interdictor blocks different combinations of the arcs from paths {1→ 3→ (k + 3),1→ 4→
(k+ 3), . . . ,1→ (k+ 2)→ (k+ 3)} and each of them returns the same objective function value as z1,∗R . Note

that there are 2k possible solutions corresponding to blocking paths {1→ 3→ (k+3),1→ 4→ (k+3), . . . ,1→
(k+ 2)→ (k+ 3)}. Every time after these solutions are implemented, the evader traverses through the same

path P = 1→ 2→ (k+ 3) whose total cost is 2.

For t= 2k + 1, due to (5) and (6), repeating the previous solutions returns an objective function value of

2, which is no longer optimal. Therefore, the interdictor explores a new solution that makes path 1→ 3→
(k + 3) available to the evader, which gives zt,∗R = 2k + 2. Observe that there are two ways to make path

1→ 3→ (k+ 3) available: either blocking paths {1→ 2→ (k+ 3),1→ 4→ (k+ 3), . . . ,1→ (k+ 2)→ (k+ 3)}
or blocking paths {1→ 4→ (k+ 3),1→ 5→ (k+ 3), . . . ,1→ (k+ 2)→ (k+ 3)}. There are 2k and

(
k−1
1

)
2k−2

possible solutions corresponding to the above two path sets, respectively.

Proceeding in this fashion, in the next period, the interdictor makes path 1→ 4→ (k+ 3) available for the

evader. Then paths 1→ 5→ (k+ 3), . . . ,1→ (k+ 2)→ (k+ 3) are available in the subsequent periods. Next,
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1

Figure 6 Network G used in the proof of Proposition 2. The labeling of the arcs is given by [`a, ua], ca.

we assume that the interdictor blocks exactly k arcs in each period. (Otherwise, other feasible interdiction

solutions may need to be explored which can only increase time-stability.) Thus, the process described above

ends when the interdictor makes k+1
2

paths available to the evader because, by blocking exactly k arcs,

she can make at most k+1
2

paths open for the evader in order to maximize zt,∗R , see the graph structure in

Figure 6. The reason why the interdictor attempts to proceed through all of these aforementioned steps is

that all paths have their expected (by the interdictor) costs (based on the known upper bounds) strictly

greater than their actual costs.

Implementing all these interdiction solutions results on a time-stability of at least

k+1
2∑
i=1

(
k+ 1

i

)(
k+ 1− i
i− 1

)
2k−2i+2 =

(
2k+ 2

k

)
.

At this point, the interdictor repeats a solution corresponding to the maximum zt,λ until time horizon T .

Therefore, τλ ≥
(
2k+2
k

)
+ 1 and the result follows. �

Proof of Proposition 3. First, we show that the shortest path used by the evader in each period before

an optimal solution is found contains at least one arc whose cost is not known by the interdictor, i.e.,

|P t \∪s<tP s
v | ≥ 1 for t < τλ. We prove this statement by contradiction.

Suppose that t < τλ and that the interdictor knows with certainty the cost of all the arcs in P t. It follows

that ĉa = ca for all a∈ P t. Therefore, we have that∑
a∈P t

ĉa = zt,λ. (25)

Note that because P t ⊆A \ It,λ, by (4) we have
∑

a∈P t ĉa ≥ zR(It,λ). Moreover, from Corollary 1, we have

that zR(It,λ) = ẑR(It,λ) as t < τλ and there is no repetition until time t. Thus,∑
a∈P t

ĉa ≥ zR(It,λ) = ẑR(It,λ) = zt,∗R .

According to Theorem 1, zt,∗R > zt,λ =
∑

a∈P t ca for all t < τλ. Thus, we have that
∑

a∈P t ĉa ≥ zt,∗R > zt,λ,

which contradicts (25).
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Note now that before τλ, because in each period there is at least one arc whose cost has not been observed,

the probability of observing at least one new arc is lower bounded by (pr pv). Because the number of arcs

observed before τλ is at most m, we conclude that

Pr(τλ ≥ r)≤ Pr(m+X ≥ r), r≥ 0,

where X denotes the number of trials until m arcs’ costs are learned. Note that X is a random variable with

a negative binomial distribution of parameters pr pv (probability of success, i.e., probability of learning an

arc’s cost) and m (number of successes). Therefore, m+X is greater than τλ, in the first-order stochastic

dominance sense. Given that the expected number of trials until learning m arcs’ costs is m(1−prpv)/(prpv),
we conclude (see Shaked and Shanthikumar (2007)) that

E[τλ]≤m+E[X] =m+m

(
1− pr pv
pr pv

)
=

m

pr pv
.

This concludes the proof. �

Proof of Corollary 2. Given that E[τλ]≤m/(prpv) from Proposition 3, there exists a constant α ∈ (0,1]

such that E[τλ] = α m
prpv

. By the Paley-Zygmund inequality (Petrov 2007), we have that

Pr(τλ >γE[τλ])≥ (1− γ)2E[τλ]2

E[(τλ)2]
,

for any 0≤ γ ≤ 1. It follows that,

Pr
(
τλ >γα

m

prpv

)
≥ (1− γ)2E[τλ]2

E[(τλ)2]
.

Now, from the proof of Proposition 3, we know that τλ is lower (in the first-order stochastic dominance

sense) than a m plus a random variable X with negative binomial distribution with parameters pr pv and

m. This implies (see Shaked and Shanthikumar (2007)) that

E[(τλ)2] ≤ E
[(
m+X

)2]
= E[m2] + 2mE[X] +E[X2]

= m2 + 2m2

(
1− pr pv
pr pv

)
+E[X2]

= m2 + 2m2

(
1− pr pv
pr pv

)
+ Var(X) +E[X]2

= m2 + 2m2

(
1− pr pv
pr pv

)
+m

(
1− pr pv
(pr pv)2

)
+m2

(
1− pr pv
pr pv

)2

=
m2 +m(1− pr pv)

(pr pv)2
≤ 2m2

(pr pv)2
.

The first inequality above satisfies from the results in Shaked and Shanthikumar (2007)) given that m+X

is greater than τλ in the first-order stochastic dominance sense, and that φ(x) = x2 is an increasing function

with x≥ 0.

Because E[τλ] = α m
prpv

, we have that

Pr
(
τλ >γα

m

prpv

)
≥ (1− γ)2

(α m
prpv

)2 1

E[(τλ)2]

≥ (1− γ)2
(α m
prpv

)2 (prpv)
2

2m2
= (1− γ)2α2/2
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as desired. �

Proof of Proposition 4. The left-most inequality follows directly Theorem 1. For the right-most inequality,

let xt ∈ arg max{ẑR(x) :
∑

a∈A xa ≤ k, x ∈ {0,1}m} and x∗ be an optimal solution under full information.

That is, z(x∗) = z∗. Then, zt,∗R = ẑR(xt)≥ ẑR(x∗). Using (15), we have that

ẑR(x∗) =

{
zR(x∗) if x∗ 6= xs, ∀s < t
zs for some s < t, otherwise.

Next, we consider two cases: x∗ = xs for some s < t; and x∗ 6= xs for all s < t. In the first case, following

from the proof of Theorem 1, we have zt,∗R ≥ ẑR(x∗) = z(xs) = z(x∗) = z∗. For the second case, since xt 6= xs

for all s < t, we have zt,∗R ≥ ẑR(x∗) = zR(x∗).

Note that real cost vector c is never cut from our uncertainty set update Ct+1 = Ct ∩Rtw ∩Vt, that is,

c∈ Ct, ∀t∈ T .

Therefore, for any xt and y, we have

max
ĉ
{(ĉ+Mxt)T y : ĉ∈ Ct} ≥ (c+Mxt)T y.

Now recall that

zR(xt) = min
y

{
max
ĉ
{(ĉ+Mxt)T y : ĉ∈ Ct} : By= b, y≥ 0

}
,

and after the interdiction solution xt in each time period t∈ T , the evader solves for z(xt):

z(xt) = min{(c+Mxt)T y : By= b, y≥ 0}.

Suppose yR ∈ arg min{max{(ĉ+Mxt)T y : ĉ ∈ Ct} : By = b, y ≥ 0} and y∗ ∈ arg min{(c+Mxt)T y : By =

b, y≥ 0}. Then we have

zR(xt) = max{(ĉ+Mxt)T yR : ĉ∈ Ct} ≥ (c+Mxt)T yR ≥ (c+Mxt)T y∗ = z(xt).

Thus, zR(x∗)≥ z(x∗). Hence, zt,∗R ≥ ẑR(x∗) = zR(x∗)≥ z(x∗) = z∗. �

Proof of Lemma 1. Let Ĩt ∈ arg max{z̃R(It) : |It| ≤ k, It ⊆ A}, where z̃R(It) is tailored for the general

evader as defined in equation (22). Also, let I∗ be an optimal solution under full information. That is,

z(I∗) = z∗. Then, z̃t,∗R = z̃R(Ĩt)≥ z̃R(I∗). Using (22) we have that

z̃R(I∗) =

{
zR(I∗) if I∗ 6= Is, ∀s < t
min{zs : I∗ = Is, s < t} otherwise.

Next, we consider two cases: I∗ = Is for some s < t; and I∗ 6= Is for all s < t. In the first case, we have

that z̃t,∗R ≥ z̃R(I∗) = min{zs : I∗ = Is, s < t}. Note that the general evader can be suboptimal, thus the cost

observed by the interdictor is at least z∗ for all s∈ {s′ : I∗ = Is
′}, that is zs ≥ z∗. Therefore zt,∗R ≥ z̃R(I∗) =

min{zs : I∗ = Is, s < t} ≥ z∗. The proof for the second case directly follows the proof of Theorem 1. �

Proof of Proposition 5. We define Ssub as the set of time periods where the cost observed by the interdictor

is less than the optimal cost, that is, Ssub = {t≥ 0 : zt,λ < z∗}. Then we claim that for any two distinct time
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periods s1, s2 ∈ Ssub, we have that Is1,λ 6= Is2,λ. In other words, under policy λ, the solutions Is,λ are all

distinct for t∈ Ssub. We prove the claim by contradiction. Suppose that the interdictor repeats Is1,λ at time

s2, that is, Is2,λ = Is1,λ. By Lemma 1, we have that z∗ ≤ z̃t,∗R . Therefore, we have that z̃s2,∗R = min{zs′,λ : s′ ≤

s1, I
s′,λ = Is1,λ} according to (22). Putting this together, get the following contradiction:

zs2,λ < z∗ ≤ z̃s2,∗R = min{zs′,λ : s′ ≤ s1, Is
′,λ = Is1,λ} ≤ zs1,λ < z∗ ≤ z̃s1,∗R .

Because for all t∈ Ssub, zt,λ < z∗, solutions It,λ are all suboptimal. Notice that the total number of solutions

is
(
m

k

)
. Then given that It,λ are distinct for all t∈ Ssub, we have the following results:

|Ssub|= |{t≥ 0 : zt,λ < z∗}| ≤
(
m

k

)
+ 1,

which implies the required result. �

Appendix B: Decision-making process for network G2 in Figure 3

• Step 0: I0,λ = ∅, z0 = 2;

• Step 1: I1,λ = {(1,3), (1,4)}, and the interdictor would expect the evader to traverse path 1− 2− 5.

This implies that z1,∗R = 7 and that the evader would go through path 1− 2− 5, implying that z1,λ = 2.

• Step 2: I2,λ = {(1,3), (4,5)}, z2,∗R = 7, z2,λ = 2;

• Step 3: I3,λ = {(1,4), (3,5)}, z3,∗R = 7, z3,λ = 2;

• Step 4: I4,λ = {(3,5), (4,5)}, z4,∗R = 7, z4,λ = 2;

• Step 5: I5,λ = {(1,2), (1,4)}, z5,∗R = 6, z5,λ = 3;

• Step 6: I6,λ = {(1,2), (4,5)}, z6,∗R = 6, z6,λ = 3;

• Step 7: I7,λ = {(1,4), (2,5)}, z7,∗R = 6, z7,λ = 3;

• Step 8: I8,λ = {(2,5), (4,5)}, z8,∗R = 6, z8,λ = 3;

• Step 9: I9,λ = {(1,4), (4,5)}, z9,∗R = 6, z9,λ = 2;

• Step 10: I10,λ = {(1,2), (1,3)}, z10,∗R = 5, z10,λ = 4;

• Step 11: I11,λ = {(1,2), (3,5)}, z11,∗R = 5, z11,λ = 4;

• Step 12: I12,λ = {(1,3), (2,5)}, z12,∗R = 5, z12,λ = 4;

• Step 13: I13,λ = {(2,5), (3,5)}, z13,∗R = 5, z13,λ = 4;

• Step 14: I14,λ = {(1,2), (2,5)}, z14,∗R = 5, z14,λ = 3;

• Step 15: I15,λ = {(1,3), (3,5)}, z15,∗R = 5, z15,λ = 2;

• Step 16: I16,λ = {(1,2), (2,3)}, z16,∗R = 4, z16,λ = 4.

We can see that after 16 steps, the interdictor finally identifies an optimal solution for the full information

problem.

Appendix C: Supplementary Computational Results for Uniform Random Graphs

C.1. Policy Performance: Sensitivity with Respect to pr and pv

In Section 7.4, we test the performance of the approximate GRN policies on uniform random graphs

with right-skewed costs. For left-skewed and symmetric cost structures, we use the same graph size as in

Section 7.4, i.e. n= 50 and probability of having an arc between any two nodes is 0.5. We set T = 50.
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Figure 7 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k = 6

and the symmetric costs (T = 50, uniform random graphs, greedy evader).
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The results for symmetric and left-skewed costs are shown in Figure 7 and 8, respectively. We observe

that for both response-imperfect and value-imperfect feedback, GRN policies obtain optimal solutions in less

time steps as pr or pv increases. Moreover, under value-imperfect feedback, the policies converge faster than

under response-imperfect feedback.

C.2. Performance under a General Evader

In Section 7.6, we test policy performance when we relax the assumption on the greedy nature of the

evader and consider the setting introduced in Section 6, where the evader’s response is constrained to a

1− n (not necessarily shortest) path on the interdicted graph. Policy performance under Random–0.9 and

Random–0.5 in depicted in Tables 6 and 7, respectively. The definitions of Random–0.9 and Random–0.5
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Figure 8 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k = 6

and the left-skewed costs (T = 50, uniform random graphs, greedy evader).
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evader can be found in Section 7.6. Observe that with less randomness, for example under Random–0.9

evader, there are more cases where the approximate GRN policies outperform the mean-bound policies.

Appendix D: Computational Results for Layered Graphs

D.1. Graph generation

We generate layered graphs using parameters (θ,φ), where φ and θ denote the number of layers and

nodes in each layer, respectively. We add a source node before the first layer and a destination node after

the last layer. Thus, the total number of nodes is θ×φ+ 2. There is an arc from source node to all the nodes

in the first layer and from all the nodes in the last layer to the destination node. Moreover, there is an arc

with probability 0.5 from every node in layer i to nodes in layers i+ 1, i+ 2, . . . , φ.
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Table 6 Average time-stability and MAD (in parenthesis) for λGv ∈ΛGv and πGM ∈ΠG
M policies (with

value-imperfect feedback) when evader type is Random–0.9 on uniform random graphs with k= 6 and

T = 100. Note that a Random-0.9 evader chooses the shortest path with probability 0.9 and the second

shortest path with probability 0.1.

n
Right-skewed Symmetric Left-skewed Random

λGv πGM(+V) λGv πGM(+V) λGv πGM(+V) λGv πGM(+V)

15

Time-stability (τ̃) 20.2 70.9 13.7 23.5 20.0 19.0 20.6 59.7
MAD 23.9 35.0 5.5 31.7 6.9 8.0 5.2 41.6

Total regret (R̃T ) 580.8 806.8 106.6 62.5 166.5 140.3 221.0 310.6
MAD 895.8 850.1 35.1 29.2 47.3 45.7 61.5 154.7

20

Time-stability (τ̃) 32.9 71.3 19.8 21.6 18.9 24.4 19.5 34.7
MAD 40.1 35.2 7.7 28.7 7.1 8.0 6.5 30.5

Total regret (R̃T ) 1065.5 1189.9 132.4 54.8 118.8 130.5 164.8 181.1
MAD 1438.0 1334.1 50.5 36.6 39.0 43.4 67.6 117.1

25

Time-stability (τ̃) 15.3 70.6 15.2 12.9 25.3 22.3 21.8 60.8
MAD 17.0 34.8 4.9 16.4 7.1 7.7 4.4 38.8

Total regret (R̃T ) 315.4 549.0 96.3 42.0 149.3 115.2 168.7 314.5
MAD 491.4 529.7 28.4 26.1 39.0 35.9 53.9 210.8

30

Time-stability (τ̃) 34.8 77.0 19.8 35.9 24.9 28.0 20.3 38.8
MAD 39.2 30.4 9.7 41.3 5.8 12.4 4.4 25.7

Total regret (R̃T ) 965.0 1091.0 122.3 253.4 118.9 118.6 144.8 178.2
MAD 1290.7 1190.3 68.3 332.5 36.7 49.0 39.1 76.4

35

Time-stability (τ̃) 24.6 78.2 13.9 21.2 20.1 28.0 28.7 57.4
MAD 30.2 30.8 5.8 29.1 5.4 7.7 10.5 37.3

Total regret (R̃T ) 676.4 824.5 87.4 44.9 103.7 140.8 225.7 216.4
MAD 1023.0 965.9 31.6 34.1 47.2 76.2 128.0 112.6

40

Time-stability (τ̃) 24.6 86.5 15.3 22.3 28.6 28.4 22.8 42.9
MAD 30.2 17.6 4.0 29.0 8.8 6.3 7.8 31.9

Total regret (R̃T ) 473.8 754.8 80.7 53.8 118.9 101.8 137.8 165.0
MAD 699.4 631.7 20.5 50.3 46.3 27.9 45.6 77.6

45

Time-stability (τ̃) 36.1 86.6 15.5 35.8 23.0 30.5 25.3 46.8
MAD 38.4 17.0 5.2 40.8 7.4 11.0 6.9 30.6

Total regret (R̃T ) 739.2 942.7 74.5 69.4 91.1 104.9 163.1 206.0
MAD 979.6 873.2 24.0 60.9 31.9 43.3 62.1 125.1

50

Time-stability (τ̃) 29.4 77.7 24.3 34.8 24.6 28.5 22.4 53.1
MAD 34.3 30.7 15.5 40.9 7.4 9.4 5.6 32.9

Total regret (R̃T ) 506.4 636.6 222.4 197.1 74.9 96.5 122.0 179.4
MAD 708.0 595.1 263.5 265.9 25.5 39.2 41.0 68.9

D.2. Comparison of Policies without Information Updates

We compare policy performance when no information updates are used, i.e., Ct = C0 for all periods

t. We test policy performance using the right-skewed, symmetric, left-skewed and random cost structures

on layered graphs. For each structure we randomly generate 20 instances with (θ,φ) = (7,3). Finally, we
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Table 7 Average time-stability and MAD (in parenthesis) for λGv ∈ΛGv and πGM ∈ΠG
M policies (with

value-imperfect feedback) when evader type is Random–0.5 on uniform random graphs with k= 6 and

T = 100. Note that a Random–0.5 evader randomly chooses from the shortest path and the second

shortest path.

n
Right-skewed Symmetric Left-skewed Random

λGv πGM(+V) λGv πGM(+V) λGv πGM(+V) λGv πGM(+V)

15

Time-stability (τ̃) 20.9 57.0 13.5 14.5 20.1 19.1 17.7 45.3
MAD 23.7 30.9 6.3 19.1 5.6 5.8 5.2 33.2

Total regret (R̃T ) 570.5 738.6 99.1 49.0 163.4 134.4 177.1 241.2
MAD 855.2 820.1 36.2 18.1 56.9 42.4 66.7 120.2

20

Time-stability (τ̃) 30.7 58.5 17.1 16.6 20.9 26.6 19.0 28.2
MAD 34.7 29.1 6.8 17.5 5.6 7.9 5.4 22.2

Total regret (R̃T ) 912.0 1022.5 113.0 55.1 124.0 135.0 153.3 163.1
MAD 1285.0 1223.6 42.9 31.3 36.7 44.1 61.8 97.3

25

Time-stability (τ̃) 16.3 47.6 17.0 8.0 23.8 26.9 23.4 42.9
MAD 16.8 24.8 5.5 8.6 6.1 8.2 5.6 27.9

Total regret (R̃T ) 327.6 421.3 109.9 36.8 132.7 146.6 165.1 268.4
MAD 474.2 468.4 42.5 19.8 34.2 47.5 44.3 184.2

30

Time-stability (τ̃) 35.2 68.8 24.9 28.8 25.4 30.7 20.6 36.2
MAD 38.9 34.4 16.6 32.1 6.4 7.6 4.8 21.4

Total regret (R̃T ) 844.7 932.0 232.5 214.1 109.9 118.3 136.8 165.3
MAD 1096.3 1056.8 261.8 274.0 31.6 35.2 49.7 53.3

35

Time-stability (τ̃) 25.7 67.9 16.0 15.3 24.9 31.0 22.2 45.5
MAD 29.7 35.3 5.0 20.0 7.0 9.4 5.6 23.2

Total regret (R̃T ) 594.5 703.0 86.2 44.9 122.2 138.4 158.3 195.6
MAD 871.4 829.1 28.7 36.8 56.4 52.7 65.6 80.0

40

Time-stability (τ̃) 25.1 68.2 15.3 20.0 24.1 27.2 21.7 45.9
MAD 30.0 31.8 4.3 23.3 5.4 10.1 7.0 25.7

Total regret (R̃T ) 435.2 602.3 68.8 51.4 98.2 108.1 127.9 172.0
MAD 632.7 574.8 17.7 42.5 34.2 46.4 48.2 80.0

45

Time-stability (τ̃) 37.3 71.3 17.5 25.6 25.3 33.0 24.7 39.5
MAD 37.7 31.6 5.2 25.6 8.5 9.9 5.7 21.4

Total regret (R̃T ) 643.5 768.0 73.5 57.2 104.2 118.5 135.9 180.1
MAD 832.5 771.3 18.1 38.2 47.4 45.3 54.1 98.2

50

Time-stability (τ̃) 26.2 68.1 29.9 28.9 23.3 28.2 24.6 37.5
MAD 29.5 35.1 14.3 31.4 7.7 6.1 7.6 20.1

Total regret (R̃T ) 372.2 482.7 239.5 192.3 77.6 89.2 131.8 159.3
MAD 518.8 459.0 240.2 258.5 31.5 27.3 49.0 76.3

use k ∈ {2,4}, and set either T = 500 or T = 1000, respectively. Table 8 summarizes the results, which are

similar to those for uniform random graphs, see Table 2.
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D.3. Improvements When Information Updates Are Applied

We consider layered graphs with 7 nodes (θ = 7) in each layer and number of layers φ ∈ {3,4, . . . ,10}
for all four cost structures. We set T = 500 and for each cost structure we randomly generate 20 instances.

For response-imperfect feedback we set pr = 0.5, and for value-imperfect feedback we set pr = pv = 0.5. Note

that in this section and the following two sections, since we have polyhedral cost update mechanism, the

approximate GRN policies are implemented. We measure policy performance using the average time-stability

and MAD, see Table 9. As in Section 7.3, we observe that policy performance improves as more information

revealed in the feedback. However, note that there is no significant improvement for policies in Π, even if

the interdictor learns more information. On the other hand, GRN policies outperform mean bound policies

under response- and value-imperfect feedback.

D.4. Policy Performance: Sensitivity with Respect to pr and pv

We set (θ,φ) = (7,10) for all the experiments, and generate 20 instances with different cost structures

(right-skewed, symmetric and left-skewed). Interdictor’s resource limit and time horizon are set as k = 6

and T = {0,1, . . . ,50}. Figure 9, 10 and 11 depict the behaviour of time-stability for response- and value-

imperfect updates with the right-skewed, symmetric and left-skewed costs, respectively. As in the case of

uniform random graphs in Section 7.4, performance of policies Λr and Λv improves as pr and pv increase.

We observe that time-stability of policies Λv decreases faster than that of Λr.

D.5. Policy Performance: Sensitivity with Respect to Quality of Arc Cost Bounds

We generate 20 instances for I.1, I.2 and I.3 as in Section 7.5, and set k = 6. Test instances are layered

graphs with (θ,φ) = (7,10) and we set T = 200. We test policy performance for various values of probabilities

pr and pv. Table 10 summarizes the results obtained. There, we observe similar results to those presented in

Section 7.5, which indicate that the quality of the initial bounds has a significant affect on policy performance.

Appendix E: Computational Results for Watts-Strogatz Graphs

E.1. Graph generation

We generate Watts-Strogatz graphs following the model in Watts and Strogatz (1998), using parameters

(n,d,β). Mean degree of nodes and rewiring probability are denoted as d and β, respectively. Note that β

denotes the graph instances’ degree of randomness. Through all the experiments, we set β = 1.

E.2. Comparison of Policies without Information Updates

For each structure we randomly generate 20 instances with (n,d) = (15,8). Finally, we have k ∈ {2,4},
and use T ∈ {500,1000}. Table 11 summarizes the results, which are similar to those for uniform random

and layered graphs, see Table 2 and Table 8, respectively.

E.3. Improvements When Information Updates Are Applied

We consider Watts-Strogatz graphs with

(n,d)∈ {(15,8), (20,15), (25,14), (30,16), (35,22), (40,22), (45,28), (50,30)},

for all four cost structures. We set T = 500 and for each cost structure we randomly generate 20 instances.

For response-imperfect feedback we set pr = 0.5, and in value-imperfect feedback we set pr = pv = 0.5. Note
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that similar in Appendix D, in this section and the following two sections, since we have polyhedral cost

update mechanism, the approximate GRN policies are implemented. Table 12 depicts our results, which are

similar to those obtained for uniform random and layered graphs.

E.4. Policy Performance: Sensitivity with Respect to pr and pv

We set (n,d) = (50,30) for all the experiments, and generate 20 instances with different cost structures

(right-skewed, symmetric and left-skewed). Interdictor’s resource limit and time horizon are set as k = 6

and T = {0,1, . . . ,50}. Figure 12, 13 and 14 depict the behaviour of time-stability for response- and value-

imperfect updates with the right-skewed, symmetric and left-skewed costs, respectively.

E.5. Policy Performance: Sensitivity with Respect to Quality of Arc Cost Bounds

We generate 20 instances for I.1, I.2 and I.3 as in Section 7.5, and set k= 6. We set (n,d) = (50,30) and

T = 200. We test policy performance for various values of probabilities pr and pv. Table 13 summarizes the

results obtained, which are similar results to those in Section 7.5 and Appendix D.5.

Table 8 Performance of policies in Λ and benchmark policies without information updates (7× 3, layered graphs,

greedy evader).

Graph
k= 2 (T = 500) k= 4 (T = 1000)

λ πL πM πR λ πL πM πR

Right-skewed

Time-stability 82.01 450.218 201.28 450.218 445.37 900.218 600.812 950.218

MAD 116.1 89.6 239.0 89.6 420.3 179.6 479.0 94.7
Relative difference 0.2% 18.5% 3.7% 18.2% 2.9% 19.9% 5.6% 17.0%

MAD 0.3% 11.9% 4.4% 12.6% 2.6% 9.1% 5.6% 9.5%
Total regret 242.3 4925.0 1025.0 5082.5 2002.4 12700.0 3650.0 11103.4

MAD 360.4 3167.5 1237.5 3575.8 1973.0 5140.0 3680.0 6306.9

Symmetric

Time-stability 381.612 350.614 133.44 378.515 946.417 900.218 153.23 691.214

MAD 142.1 209.2 167.2 182.3 91.1 179.6 246.5 401.5
Relative difference 10.6% 11.9% 0.5% 10.6% 17.4% 15.3% 0.3% 10.5%

MAD 9.5% 12.2% 0.8% 10.8% 8.4% 11.3% 0.6% 9.5%
Total regret 2343.3 2450.0 146.8 2259.4 10055.2 7750.0 382.7 5945.2

MAD 1516.7 2580.0 185.5 2249.0 3969.8 6025.0 641.3 4763.7

Left-skewed

Time-stability 411.915 151.46 337.59 324.49 978.619 351.37 867.615 876.016

MAD 132.2 209.2 146.3 165.7 40.8 454.1 206.9 198.5
Relative difference 27.4% 3.5% 14.1% 9.1% 34.4% 3.2% 19.4% 22.2%

MAD 19.2% 4.9% 15.8% 10.0% 13.5% 4.3% 15.7% 18.8%
Total regret 4085.8 425.0 2247.8 2334.9 10635.1 1050.0 7860.9 8042.5

MAD 2592.7 595.0 1377.0 1811.9 3858.9 1370.0 3827.3 5773.4

Random

Time-stability 425.215 226.19 290.69 350.914 974.119 850.317 781.214 950.518

MAD 115.3 246.5 189.9 208.7 49.3 254.5 306.3 94.1
Relative difference 29.5% 9.0% 8.1% 14.8% 32.0% 22.3% 18.6% 25.9%

MAD 18.9% 10.4% 9.2% 12.6% 15.4% 13.6% 14.3% 17.5%
Total regret 4912.9 1850.0 1719.5 2895.8 16014.8 11600.0 9979.1 14468.1

MAD 2889.4 2170.0 1587.4 2365.4 7935.9 7500.0 6205.8 9943.2

Notes: Entries in bold denote the best policy in each setting; the numbers in superscript of time-stability denote

the number of instances out of 20 for which the corresponding policy failed to converge within T time periods.



Table 9 Average time-stability and MAD (in parenthesis) for λ∈Λ and πM ∈ΠM policies when information updates are used (k= 6, T = 500, layered graphs, greedy evader).

Size
Right-skewed Symmetric Left-skewed Random

λ λr λv πM πM(+) λ λr λv πM πM(+) λ λr λv πM πM(+) λ λr λv πM πM(+)

7× 3
341.611 12.7 7.3 325.713 325.713 50020 31.3 19.2 226.97 128.55 50020 43.8 24.7 489.419 27.0 50020 37.5 23.0 330.117 329.1613

(195.8) (5.6) (2.4) (226.6) (226.6) (0.0) (12.0) (6.2) (232.7) (185.8) (0.0) (19.9) (6.7) (20.2) (6.0) (0.0) (14.9) (5.3) (208.6) (222.2)

7× 4
383.215 11.4 8.5 375.515 375.515 50020 33.1 16.7 155.06 176.67 50020 39.1 33.6 50020 31.6 50020 40.9 22.6 50020 282.311

(175.2) (5.6) (3.3) (186.8) (186.8) (0.0) (12.0) (6.0) (207.0) (226.4) (0.0) (17.1) (15.7) (0.0) (7.7) (0.0) (13.8) (4.9) (0.0) (239.5)

7× 5
383.615 15.4 8.4 300.812 300.812 50020 29.8 43.41 281.911 153.36 50020 43.2 50.01 50020 29.7 50020 35.2 24.4 50020 212.88

(174.7) (8.5) (3.4) (239.04) (239.0) (0.0) (15.4) (45.7) (239.91) (208.0) (0.0) (16.7) (45.0) (0.0) (8.9) (0.0) (9.7) (6.4) (0.0) (229.8)

7× 6
345.713 13.5 11.6 350.613 350.614 50020 60.11 67.93 308.511 228.19 50020 68.91 36.1 50020 34.1 50020 74.61 52.11 50020 283.311

(200.7) (7.6) (7.2) (209.2) (209.2) (0.0) (45.1) (86.4) (229.9) (244.8) (0.0) (44.5) (10.4) (0.0) (9.5) (0.0) (44.9) (47.5) (0.0) (238.4)

7× 7
430.216 17.9 14.7 400.416 400.416 50020 55.91 45.71 259.89 106.44 50020 77.21 76.82 50020 37.5 50020 73.21 29.1 50020 307.812

(117.3) (6.9) (9.1) (159.4) (159.4) (0.0) (47.0) (45.8) (240.2) (157.4) (0.0) (53.5) (84.7) (0.0) (10.0) (0.0) (46.7) (5.5) (0.0) (230.7)

7× 8
382.514 38.9 9.2 350.615 400.416 50020 122.84 93.53 335.712 231.49 50020 53.6 28.1 50020 36.0 50020 128.93 30.6 50020 190.67

(176.3) (46.1) (3.4) (209.2) (159.4) (0.0) (150.9) (122.0) (213.6) (241.7) (0.0) (15.8) (9.1) (0.0) (11.7) (0.0) (117.2) (6.3) (0.0) (216.6)

7× 9
453.217 22.8 11.5 325.713 300.812 50020 101.43 46.2 295.111 82.43 50020 83.81 31.6 50020 38.1 50020 41.8 53.0 50020 214.58

(84.2) (11.0) (3.3) (226.6) (239.0) (0.0) (119.6) (45.4) (225.4) (125.3) (0.0) (50.3) (7.3) (0.0) (9.0) (0.0) (10.5) (44.7) (0.0) (228.4)

7× 10
379.015 11.1 8.4 400.416 400.416 50020 114.93 69.22 299.010 155.66 50020 138.44 77.62 50020 107.53 50020 46.5 52.01 50020 166.98

(181.6) (4.7) (4.5) (159.4) (159.4) (0.0) (115.5) (86.2) (221.2) (206.7) (0.0) (144.6) (84.5) (0.0) (117.8) (0.0) (9.7) (44.8) (0.0) (199.9)

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding policy failed to converge within T time periods.
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Figure 9 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k = 6

and the right-skewed costs (T = 50, layered graphs, greedy evader).
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Figure 10 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k= 6

and the symmetric costs (T = 50, layered graphs, greedy evader).
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Figure 11 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k= 6

and the left-skewed costs (T = 50, layered graphs, greedy evader).
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Table 10 Behaviour of policies in Λ with respect to the cost bound quality (k= 6, T = 200, layered graphs, greedy evader).

pr = pv 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Policy λr

I.1

Time-stability 150.3 107.1 44.4 19.0 10.5 8.2 6.1 5.0 4.1 7.8 2.7
MAD 54.7 60.8 36.8 8.3 3.9 3.8 2.9 2.0 1.7 9.3 0.6

Total regret 6102.0 5447.0 3063.7 126.4 56.3 32.7 26.6 17.3 19.7 43.2 7.5
MAD 5112.9 5995.8 4908.5 142.8 52.5 34.3 25.9 17.0 23.1 65.1 7.2

I.2

Time-stability 193.3 181.0 112.7 53.6 31.3 15.3 12.4 14.0 11.8 15.6 4.9
MAD 12.8 30.5 58.0 26.9 14.4 6.6 4.0 10.3 9.7 18.0 1.1

Total regret 13827.2 12969.3 8212.0 2822.1 1632.5 658.1 575.2 582.5 610.3 567.9 183.2
MAD 9674.3 7633.7 6920.5 2336.6 1251.9 460.8 446.1 422.9 601.8 621.1 113.1

I.3

Time-stability 200.0 198.1 155.1 70.2 54.4 30.4 27.6 13.7 14.4 9.0 7.1
MAD 0.0 3.6 44.3 29.3 30.2 8.8 17.5 3.7 9.5 1.3 0.1

Total regret 33018.8 21630.7 11753.0 5899.6 4605.6 2515.5 2334.1 1109.2 981.0 772.8 546.4
MAD 12001.0 7696.5 5683.3 2858.8 2406.5 1113.8 1575.9 412.2 648.2 360.3 208.9

Policy λv

I.1

Time-stability 161.5 75.4 28.8 13.1 6.6 6.2 4.9 4.3 4.4 3.5 3.2
MAD 57.8 55.2 16.5 7.0 2.7 2.7 2.0 1.7 1.3 1.3 1.1

Total regret 12643.3 3461.0 361.0 53.2 38.5 28.6 17.0 18.7 19.7 17.7 16.6
MAD 12171.1 4513.4 417.7 58.4 39.6 27.1 16.6 19.8 20.0 19.4 17.8

I.2

Time-stability 193.3 163.9 81.6 30.8 17.6 20.3 9.5 8.1 15.7 5.4 4.9
MAD 12.8 49.0 51.2 15.5 6.5 18.0 3.4 2.9 18.4 1.3 1.2

Total regret 13894.5 9782.2 5299.3 1174.7 691.5 968.0 317.4 327.8 573.2 189.0 171.3
MAD 8683.5 5049.2 5479.6 934.9 380.5 1181.5 196.9 238.3 667.4 119.4 102.0

I.3

Time-stability 200.0 197.3 123.3 49.2 29.1 30.6 15.7 21.9 9.9 8.6 7.1
MAD 0.0 5.0 29.8 12.0 6.0 18.0 3.5 17.8 1.4 0.9 0.1

Total regret 33589.3 22066.9 11660.3 4200.6 2533.7 2043.9 1333.5 1285.0 795.4 637.6 546.4
MAD 13519.1 9613.6 4940.6 1440.0 1143.8 956.6 611.9 809.8 345.0 262.4 208.9

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding

policy failed to converge within T time periods
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Table 11 Performance of policies in Λ and benchmark policies without information updates (n= 15,

Watts-Strogatz graphs, greedy evader).

Graph
k= 2 (T = 500) k= 4 (T = 1000)

λ πL πM πR λ πL πM πR

Right-skewed

Time-stability 28.4 325.713 101.65 400.416 280.03 850.317 311.88 850.617

MAD 37.8 226.6 159.4 159.4 303.2 254.5 412.9 254.1
Relative difference 0.0% 13.8% 3.4% 17.9% 1.4% 23.2% 1.9% 21.0%

MAD 0.0% 12.6% 5.3% 11.8% 2.4% 11.3% 2.1% 12.4%
Total regret 90.9 3775.0 875.0 4978.4 1629.1 17050.0 1772.4 15650.2

MAD 145.2 3425.0 1350.0 3328.4 1997.1 8255.0 1949.6 9414.9

Symmetric

Time-stability 182.04 375.515 87.33 195.27 843.915 800.416 178.53 690.012

MAD 143.2 186.8 135.3 220.7 234.2 319.4 267.5 412.4
Relative difference 2.6% 14.1% 0.6% 4.7% 14.9% 13.9% 1.0% 10.2%

MAD 4.2% 13.2% 1.0% 6.1% 11.2% 9.0% 1.7% 8.9%
Total regret 749.2 3025.0 155.4 1048.9 8347.9 7350.0 655.9 5715.5

MAD 622.0 2935.0 247.1 1263.6 4912.7 4985.0 973.4 4588.0

Left-skewed

Time-stability 315.410 176.37 246.27 88.61 1000.020 401.28 702.213 723.713

MAD 184.6 226.6 191.8 99.4 0.0 479.0 387.2 359.2
Relative difference 12.4% 4.9% 7.6% 0.5% 33.9% 5.2% 18.6% 13.1%

MAD 13.2% 6.3% 9.9% 1.0% 13.2% 6.6% 14.3% 13.3%
Total regret 2362.7 850.0 1543.6 646.0 14373.8 2150.0 7452.3 6734.9

MAD 1687.4 1105.0 1373.7 798.4 6177.3 2710.0 4383.1 4523.3

Random

Time-stability 281.49 350.617 216.67 301.612 940.918 900.218 342.26 751.115

MAD 196.8 209.2 206.0 238.1 106.4 179.6 404.1 373.4
Relative difference 10.7% 15.8% 4.5% 11.4% 31.6% 20.3% 5.0% 15.1%

MAD 12.8% 8.8% 6.1% 12.1% 10.9% 10.9% 7.1% 13.9%
Total regret 2715.5 3250.0 1293.3 2540.2 16614.3 11900.0 2985.4 9675.5

MAD 2411.5 1925.0 1442.2 2825.9 4588.5 7190.0 3706.1 8355.2

Notes: Entries in bold denote the best policy in each setting; the numbers in superscript of time-stability denote

the number of instances out of 20 for which the corresponding policy failed to converge within T time periods.



Table 12 Average time-stability and MAD (in parenthesis) for λ∈Λ and πM ∈ΠM policies when information updates are used (k= 6, T = 500, Watts-Strogatz graphs, greedy evader).

n
Right-skewed Symmetric Left-skewed Random

λ λr λv πM πM(+V) λ λr λv πM πM(+V) λ λr λv πM πM(+V) λ λr λv πM πM(+V)

15
218.6 36.6 20.3 215.4 251.0 500.0 66.3 15.1 74.2 123.0 500.0 82.1 68.6 500.0 157.0 500.0 89.8 20.8 364.7 337.6

(211.2) (11.0) (26.5) (243.9) (249.0) (0.0) (8.5) (3.6) (121.7) (170.0) (0.0) (4.8) (79.5) (0.0) (196.0) (0.0) (9.1) (8.4) (193.3) (208.8)

20
363.4 41.5 32.8 251.0 251.0 500.0 123.5 18.8 152.0 103.5 500.0 72.5 48.9 500.0 202.4 500.0 94.6 53.0 410.1 354.5

(191.3) (54.3) (46.7) (249.0) (249.0) (0.0) (149.2) (5.1) (208.8) (158.6) (0.0) (47.6) (45.1) (0.0) (208.3) (0.0) (84.0) (54.8) (143.9) (203.7)

25
347.2 43.1 11.1 251.0 251.0 500.0 59.5 45.0 220.9 61.1 500.0 61.6 26.8 500.0 143.3 500.0 58.4 52.6 476.8 333.3

(200.3) (45.8) (4.1) (249.0) (249.0) (0.0) (45.9) (45.5) (231.2) (87.8) (0.0) (21.4) (4.9) (0.0) (156.3) (0.0) (22.3) (44.7) (44.2) (216.7)

30
475.8 41.3 9.9 275.9 275.9 500.0 43.4 19.7 129.7 153.1 500.0 63.4 26.7 500.0 128.5 500.0 61.7 28.2 452.1 354.0
(46.1) (47.9) (2.9) (246.5) (246.5) (0.0) (23.1) (5.6) (185.2) (208.1) (0.0) (27.2) (6.0) (0.0) (148.6) (0.0) (21.7) (7.7) (81.5) (204.4)

35
428.9 21.0 10.1 350.6 375.5 500.0 61.4 21.2 257.1 179.4 500.0 72.8 37.4 500.0 180.8 500.0 50.5 29.6 479.6 253.3

(121.0) (10.7) (4.0) (209.2) (186.8) (0.0) (44.1) (5.1) (242.9) (224.5) (0.0) (34.3) (9.1) (0.0) (191.5) (0.0) (18.9) (7.2) (38.9) (233.8)

40
427.4 73.7 60.1 375.5 350.6 500.0 38.2 25.6 159.5 80.9 500.0 90.1 56.4 500.0 223.8 500.0 98.0 75.9 500.0 236.2

(123.5) (85.3) (88.0) (186.8) (209.2) (0.0) (9.8) (6.4) (204.3) (125.7) (0.0) (53.2) (44.4) (0.0) (221.0) (0.0) (82.5) (84.8) (0.0) (237.4)

45
377.9 46.7 10.3 350.6 350.6 500.0 65.6 48.3 304.0 83.2 500.0 93.6 62.7 500.0 271.1 500.0 94.9 35.5 500.0 288.1

(183.2) (47.0) (3.4) (209.2) (209.2) (0.0) (48.8) (45.4) (235.3) (125.0) (0.0) (53.7) (45.8) (0.0) (228.9) (0.0) (49.4) (6.7) (0.0) (233.1)

50
403.0 17.0 11.5 400.4 400.4 500.0 70.3 21.4 205.6 276.9 500.0 93.1 34.0 500.0 270.9 500.0 111.7 31.2 500.0 358.0

(155.2) (5.7) (3.1) (159.4) (159.4) (0.0) (50.4) (4.8) (235.5) (245.5) (0.0) (51.7) (7.6) (0.0) (229.2) (0.0) (78.5) (7.9) (0.0) (198.9)

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding policy failed to converge within T time periods.
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Figure 12 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k= 6

and the right-skewed costs (T = 50, Watts-Strogatz graphs, greedy evader).
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Figure 13 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k= 6

and the symmetric costs (T = 50, Watts-Strogatz graphs, greedy evader).
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Figure 14 Average time-stability for policies in Λ for different types of feedback as pr and pv increase for k= 6

and the left-skewed costs (T = 50, Watts-Strogatz graphs, greedy evader).

0 0.2 0.4 0.6 0.8 1
20

25

30

35

40

45

50

Value-imperfect
Response-imperfect

pv

T
im

e-
st

a
b
il
it

y

pr = 0.5, pv vs. time-stability, left-skewed

0 0.2 0.4 0.6 0.8 1
10

10.5

11

11.5

12

12.5

13

pv

T
im

e-
st

ab
il
it

y
pr = 1.0, pv vs. time-stability, left-skewed

0 0.2 0.4 0.6 0.8 1

10

15

20

25

30

35

40

45

50

55

pr

T
im

e-
st

ab
il
it

y

pv = 0.5, pr vs. time-stability, left-skewed

0 0.2 0.4 0.6 0.8 1

10

15

20

25

30

35

40

45

50

55

pr

T
im

e-
st

ab
il
it

y

pv = 1.0, pr vs. time-stability, left-skewed
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Table 13 Behaviour of policies in Λ with respect to the cost bound quality (k= 6, T = 200, Watts-Strogatz graphs, greedy

evader).

pr = pv 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Policy λr

I.1

Time-stability 105.5 77.2 31.6 16.3 12.4 6.4 5.8 3.6 3.6 2.7 2.5
MAD 70.1 65.3 17.3 7.7 7.8 3.0 2.5 1.4 1.4 0.8 0.6

Total regret 1572.6 909.9 390.3 236.4 151.6 19.6 18.0 10.7 6.7 7.1 5.2
MAD 2193.9 1306.2 600.4 338.4 217.5 27.0 25.3 15.4 9.1 10.1 7.1

7.7

I.2

Time-stability 200.0 151.6 84.6 41.5 21.3 17.3 9.0 7.8 6.3 5.1 4.3
MAD 0.0 48.2 44.2 21.7 6.5 12.3 2.7 2.4 1.6 1.2 0.8

Total regret 10297.9 9986.2 5490.7 1881.5 832.8 852.7 350.9 268.7 202.4 158.5 126.2
MAD 6342.5 7238.2 4813.5 1731.2 490.5 946.4 265.6 190.0 139.6 98.0 76.3

7.7

I.3

Time-stability 200.0 200.0 138.9 81.6 46.2 29.7 22.6 20.1 11.6 8.1 7.0
MAD 0.0 0.0 39.7 31.4 18.7 13.4 11.9 10.4 2.1 0.7 0.0

Total regret 27668.4 20968.8 14129.3 7069.2 3950.6 2552.3 2177.5 1744.6 797.9 591.7 502.2
MAD 10027.8 10213.1 5741.8 3264.7 1774.7 1528.0 1648.3 1211.4 253.4 173.5 129.0

Policy λv

I.1

Time-stability 109.1 60.5 22.3 15.4 6.2 6.1 3.4 3.8 3.1 2.6 2.5
MAD 74.1 36.5 8.5 9.7 2.6 2.7 1.0 1.5 0.6 0.6 0.5

Total regret 2244.2 1163.8 46.1 23.3 15.4 13.3 9.0 10.0 5.7 5.2 5.2
MAD 3268.4 1874.0 64.4 32.9 22.0 19.0 12.8 13.9 7.7 7.1 7.1

7.7

I.2

Time-stability 200.0 144.5 58.4 22.4 15.1 9.7 8.3 6.0 5.6 4.7 4.3
MAD 0.0 38.7 28.6 7.7 6.2 3.8 3.1 1.6 1.4 1.1 0.7

Total regret 10785.2 6594.4 3361.4 742.1 517.2 341.1 228.6 180.5 156.7 142.6 132.9
MAD 6942.5 4936.1 3504.3 549.0 409.9 263.9 138.1 106.9 95.1 89.4 84.3

7.7

I.3

Time-stability 200.0 198.0 108.6 68.7 29.1 20.3 15.0 11.7 10.4 8.4 7.3
MAD 0.0 3.5 31.4 33.2 8.0 3.6 2.4 1.9 1.3 0.9 0.5

Total regret 27200.2 20596.5 9600.6 5408.1 2264.0 1610.5 1214.1 844.4 753.8 578.3 513.7
MAD 11068.9 6487.9 4343.4 2991.2 1072.0 372.5 414.4 300.8 235.1 133.8 129.9

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding

policy failed to converge within T time periods


