(P1) Mixed Integer Non-Linear model for equipment siz-

 ingObjective function

$$
\begin{align*}
\min \operatorname{cost}=\sum_{j \in E^{1}} & c_{j}^{1} \exp \left(\mathbf{x}_{\mathbf{j}}^{1}+\mathbf{x}_{\mathbf{j}}^{2}+\mathbf{y}_{\mathbf{j}}^{1} \gamma_{j}^{1}\right) \\
& +\sum_{j \in\left(E^{2} \cup E^{3}\right)}\left[c_{j}^{1} \exp \left(\mathbf{x}_{\mathbf{j}}^{2}+\mathbf{y}_{\mathbf{j}}^{1} \gamma_{j}^{1}\right)+\right. \\
& \left.c_{j}^{3} \exp \left(\mathbf{x}_{\mathbf{j}}^{1}+\mathbf{x}_{\mathbf{j}}^{\mathbf{2}}+\mathbf{y}_{\mathbf{j}}^{\mathbf{3}} \gamma_{j}^{3}\right)\right] \tag{1}\\
& +\sum_{j \in\left(E^{\left.2^{\prime} \cup E^{3}\right)}\right.} c_{j}^{2} \exp \left(\mathbf{x}_{\mathbf{j}}^{\mathbf{2}}+\mathbf{y}_{\mathbf{j}}^{\mathbf{2}} \gamma_{j}^{2}\right)+\mathbf{r} \rho \delta
\end{align*}
$$

Restrictions

Batch stages

$$
\begin{gather*}
\mathbf{y}_{\mathbf{j}}^{\mathbf{1}}+\mathbf{x}_{\mathbf{j}}^{1} \geq s_{i j}^{1}+\mathbf{y}_{\mathbf{i}}^{4} \quad \forall i \in I, j \in E^{1} \tag{2}\\
\mathbf{y}_{\mathbf{i}}^{\mathbf{5}}+\mathbf{x}_{\mathbf{j}}^{\mathbf{2}} \geq t_{i j}^{0} \quad \forall i \in I, j \in E^{1} \tag{3}
\end{gather*}
$$

Semi-continuous stages

$$
\begin{gather*}
\mathbf{y}_{\mathbf{j}}^{1} \geq s_{i j}^{1}+\mathbf{y}_{\mathbf{i}}^{4} \quad \forall i \in I, j \in E^{2} \tag{4}\\
\mathbf{y}_{\mathbf{j}}^{2} \geq s_{i j}^{2}+\mathbf{y}_{\mathbf{i}}^{4} \quad \forall i \in I, j \in E^{2^{\prime}} \tag{5}\\
\mathbf{y}_{\mathbf{i}}^{\mathbf{5}}+\mathbf{x}_{\mathbf{j}}^{\mathbf{2}} \geq t_{i j}^{1}+\mathbf{y}_{\mathbf{i}}^{4}-\mathbf{x}_{\mathbf{j}}^{1}-\mathbf{y}_{\mathbf{j}}^{3} \quad \forall i \in I, j \in E^{2} \tag{6}
\end{gather*}
$$

Chromatographic stages

$$
\begin{array}{cl}
\mathbf{y}_{\mathbf{j}}^{1} \geq s_{i j}^{1}+\mathbf{y}_{\mathbf{i}}^{4} \quad & \forall i \in I, j \in E^{3} \\
\mathbf{y}_{\mathbf{j}}^{2} \geq s_{i j}^{2}+\mathbf{y}_{\mathbf{i}}^{4} \quad \forall i \in I, j \in E^{3} \\
\mathbf{y}_{\mathbf{j}}^{\mathbf{3}}+\mathbf{x}_{\mathbf{j}}^{1} \geq s_{i j}^{3}+\mathbf{y}_{\mathbf{i}}^{4} \quad \forall i \in I, j \in E^{3} \\
\mathbf{y}_{\mathbf{i}}^{\mathbf{5}}+\mathbf{x}_{\mathbf{j}}^{\mathbf{2}} \geq \ln \left[\exp \left(t_{i j}^{0}\right)+\exp \left(t_{i j}^{1}+\mathbf{y}_{\mathbf{i}}^{4}-\mathbf{x}_{\mathbf{j}}^{1}-\mathbf{y}_{\mathbf{j}}^{\mathbf{3}}\right)\right] \quad \forall i \in I, j \in\left(E^{3} \backslash E^{3^{\prime}}\right) \\
\mathbf{y}_{\mathbf{i}}^{\mathbf{5}}+\mathbf{x}_{\mathbf{j}}^{2} \geq t_{i j}^{0} \quad \forall i \in I, j \in E^{3^{\prime}} \tag{11}
\end{array}
$$

Planning horizon

$$
\begin{equation*}
\sum_{i \in I} \frac{d_{i}}{\delta} \exp \left(\mathbf{y}_{\mathbf{i}}^{\mathbf{5}}-\mathbf{y}_{\mathbf{i}}^{\mathbf{4}}\right) \leq 1+\mathbf{r} \tag{12}
\end{equation*}
$$

Binary variables for duplication of units

$$
\begin{gather*}
\mathbf{x}_{\mathbf{j}}^{\mathbf{1}}=\sum_{k \in K} \mathbf{y}_{\mathbf{j k}}^{\mathbf{6}} \ln (k) \quad \forall j \in E \tag{13}\\
\sum_{k \in K} \mathbf{y}_{\mathbf{j k}}^{\mathbf{6}}=1 \quad \forall j \in E \tag{14}\\
\mathbf{x}_{\mathbf{j}}^{2}=\sum_{k \in K} \mathbf{y}_{\mathbf{j k}}^{7} \ln (k) \quad \forall j \in E \tag{15}\\
\sum_{k \in K} \mathbf{y}_{\mathbf{j k}}^{7}=1 \quad \forall j \in E \tag{16}
\end{gather*}
$$

Variable bounds Each variable has upper and lower bounds set by the user. Using constraints (2) to (10) we can refine y_{i}^{4} upper bound and y_{i}^{5} lower bound.

$$
\begin{align*}
& y_{i}^{4, u p}=\min \left[\min _{(i, j) \in I \times E^{1}}\left(y_{j}^{1, u p}+x_{j}^{1, u p}-s_{i j}^{1}\right), \min _{(i, j) \in I \times\left(E^{2} \cup E^{3}\right)}\left(y_{j}^{1, u p}-s_{i j}^{1}\right),\right. \\
& \left.\min _{(i, j) \in I \times\left(E^{\left.2^{\prime} \cup E^{3}\right)}\right.}\left(y_{j}^{2, u p}-s_{i j}^{2}\right), \min _{(i, j) \in I \times E^{3}}\left(y_{j}^{3, u p}+x_{j}^{1, u p}-s_{i j}^{3}\right)\right] \tag{17}\\
& y_{i}^{5, l o}=\max \left[\max _{(i, j) \in I \times\left(E^{1} \cup E^{\left.3^{\prime}\right)}\right.}\left(t_{i j}^{0}-x_{j}^{2, u p}\right),\right. \\
& \left.\max _{(i, j) \in I \times E^{3}}\left(\ln \left(T_{i j}^{0}+\exp \left(t_{i j}^{1}-y_{j}^{3, u p}-x_{j}^{1, u p}\right)\right)-x_{j}^{2, u p}\right)\right] \tag{18}
\end{align*}
$$

Notations

Indices and sets

$I \quad$ Set of products i
$E \quad$ Set of stages j
$E^{1} \quad$ Set of batch stages j
$E^{2} \quad$ Set of semicontinuous stages j
$E^{2^{\prime}} \quad$ Subset of semicontinuous stages j with permeate units
$E^{3} \quad$ Set of chromatographic stages j
$E^{3^{\prime}} \quad$ Subset of gel filtration chromatographic stages j
K Set of available units operating in-phase or out-of-phase

Variables

logarithmic volumetric capacity for tanks in batch stages and retentate or feed tanks for semicontinuous and chromatographic stages
logarithmic volumetric capacity for permeate or product tanks for semicontinuous and chromatographic stages
logarithmic size of the semicontinuous or chromatographic unit which can be, for
$y_{j}^{3} \quad$ example, a processing rate in the case of an homogenizer or an area in the case of a filter
$y_{i}^{4} \quad$ logarithmic final batch size, in mass units, for product i
$y_{i}^{5} \quad$ logarithmic cycle time for product i
$x_{j}^{1} \quad$ number of units operating in-phase
$x_{j}^{2} \quad$ number of units operating out-of-phase
$y_{j k}^{6}$ binary variables to account for a discrete number of units duplicated and operating in-phase
binary variables to account for a discrete number of units duplicated and operating
$y_{j k}^{7} \quad$ out-of-phase
r Slack variable

Parameters

Constant size factor for batch stages or retentate/feed tank in semicontinuous or chromatographic stages for product i that is processed in stage j
Constant size factor for permeate/product tanks in semicontinuous or chromatographic stages for product i that is processed in stage j
Constant size factor for chromatographic columns for product i that is processed in $s_{i j}^{3}$
$\gamma_{j}^{3} \quad$ cost coefficient for chromatographic column in stage j
ρ appropriate constant comparable to c_{j} parameters
$d_{i} \quad$ overall amount of product i to be made within the time horizon δ
δ time horizon

