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Abstract

The use of floating-point calculations limits the accuracy of solutions obtained by standard LP software. We present
a simplex-based algorithm that returns exact rational solutions, taking advantage of the speed of floating-point
calculations and attempting to minimize the operations performed in rational arithmetic. Extensive computational

results are presented.
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1. Introduction

Standard linear programming (LP) solvers can
report different “optimal” objective values for the
identical problem on different computer architec-
tures. This inconsistency is primarily due to the use
of floating-point numbers in LP software. Floating-
point computations can lead to nontrivial errors
in the context of LU factorization or Cholesky
factorization—operations used by most solvers.

Although good approximate solutions are satis-
factory in many LP applications, there are scenarios
that require exact values, such as when LP is used
to compute theoretical bounds for various problems.
Moreover, in some cases industrial customers re-
quest exact solutions (Zonghao Gu, personal com-
munication, 2005). This interest in accurate LP re-
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sults has prompted recent studies by Géartner [9],
Jansson [14], Dhiflaoui et al. [5] and Koch [16].

In this paper we present an implementation of
the simplex algorithm that provides exact solutions
to LP instances, while attempting to minimize
the arithmetic operations performed using rational
arithmetic. We report test results for benchmark LP
instances and for computations of exact solutions
for the subtour relaxation of the traveling salesman
problem (TSP) and exact solutions to small mixed-
integer programming (MIP) problems. Our code [3]
is available to the academic community.

2. A first approach

A natural method to obtain exact LP solutions
is to implement a solver that computes entirely in
rational arithmetic. To achieve this we began with
the source code for the QSopt [2] implementation of
the simplex algorithm, changed every floating-point
type to the rational type provided by the GNU-MP
(GMP) library [11], and changed every operation in
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Table 1
Running times for rational solver on 170 small problems

Table 2
Running times for pilot4

Instance  Size Pivots Time (s) Encoding Ratio Number Representation Time (s)
brandy 3746 205 52.39 425 2619.5 double 0.20
grow7 3914 185 55.13 1294 2756.5 GMP-float (64 bits) 5.57
€226 4257 320 27.55 437 1317.5 GMP-float (128 bits) 5.82
bandm 4963 297 20.84 642 833.6 GMP-float (256 bits) 8.12
forplan 6210 154 6.98 309 807.5 GMP-float (384 bits) 11.37
stair 6570 366 653.52 4051 7261.3 GMP-float (1,024 bits) 30.59
danoint 7594 990 289.56 479 1206.5 GMP-rational 5547.03
small002 8791 991 26.38 1380 858.5

small008 8870 1099 36.06 855 876.7 3. USil’lg ﬂoating-point arithmetic

small005 8882 1110 28.60 550 817.9

small007 8908 1102 78.51 771 1121.6

pilot4 9191 1041 5547.03 5606 27715.2 Dhiflaoui et al. [5] pioneered an alternative ap-
modszkl 9843 e 458.43 826  2865.2 proach for obtaining exact LP solutions, using the
others 6858 562 5.31 120 108.4 output of a ﬂoating—point solver as a starting point

the original code to use GMP operations. (See [15]
for another implementation of the simplex algorithm
in full rational arithmetic.)

We tested this rational solver on a set of 170 in-
stances taken from the union of benchmark exam-
ples described in Section 4.1. (The selected subset
consists of all problems whose MPS input file is no
larger than that of the NETLIB problem pilot4.)
A summary of these results can be found in Ta-
ble 1, where the second column reports the number
of non-zeros in the constraint matrix plus the num-
ber of constraints and variables, the third column
gives the number of simplex pivots, and the fourth
column gives the running time of the code in sec-
onds. The fifth column gives the average number of
bits needed to represent each nonzero entry of the
optimal primal and dual solutions, and the last col-
umn gives the ratio between the running time of the
rational code and the time needed for the original
QSopt code. Table 1 shows the details for all prob-
lems whose running-time ratio was above 800, and
an average for all other instances. All runs were car-
ried out on a Linux workstation with a 2.4GHz AMD
Opteron 250 CPU and with 8GB of RAM.

The test results show a wide variance in the length
of the solution encoding, together with a strong
correlation between these lengths and the average
time needed in each simplex iteration. These fac-
tors lead to highly unpredictable behavior for the
overall code, making this naive method impractical
for most applications.

for rational computations. Rather than consider-
ing the primal and dual solutions provided by the
floating-point computation, Dhiflaoui et al. take the
description of the proposed optimal basis and com-
pute the corresponding rational solution. Working
with the simplex algorithm as implemented in ILOG
CPLEX [13], they found that in many cases the ra-
tional solution is indeed optimal, and in other cases
a small number of additional pivots in rational arith-
metic could be used to arrive at an optimal solution.
Their tests were carried out on a subset of NETLIB
instances having at most 2,400 rows. For larger or
more numerically difficult examples, however, the
rational pivot steps needed to repair a non-optimal
basis can lead to behavior similar to what we saw
in the previous section, making the overall process
challenging to carry out in practice.

Koch [16] modified this approach to compute op-
timal solutions for the full set of NETLIB instances.
Koch [16] writes the following:

“The current development version of SOPLEX

using 1079 as tolerance finds true optimal bases

to all instances besides d2q05c, etamacro, nesm,
df1001, and pilot4. Changing the representation
from 64 to 128 bit floating point arithmetic allows
also to solve these cases to optimality.”
Thus, rather than attempting to repair a non-
optimal basis with rational pivots, Koch recomputed
a floating-point solution using greater precision in
the floating-point representations. In personal com-
munication, Koch explained that in these calcula-
tions he employed the long double type provided on
a computer architecture that uses 128-bit values.

We extend Koch’s methodology with an imple-
mentation that dynamically increases the precision
of the floating-point computations until we obtain a



Algorithm 1. Exact_LP_Solver
Require: c € Q", b e Q™, A € Qm*n
1: Start with the best native floating-point precision p
(number of bits for floating-point representation).
2: Set B « 0.
3: Compute approximations &, b, A of the original input in
the current floating-point precision.
4: Solve min{éx : Az < b} using B (if it is not empty) as
the starting basis.
: B < ending basis of the simplex algorithm.
Test result in rational arithmetic.
: if Test fails then
Increase precision p
goto step 3
: end if
: return z*

— =

basis that yields rational primal and dual solutions
satisfying the optimality, unboundedness, or infeasi-
bility conditions. The GMP library allows us to per-
form floating-point calculations with arbitrary (but
fixed) precision, and moreover, to adjust this preci-
sion at running time.

Motivation for our method can be seen in the re-
sults for the pilot4 LP problem given in Table 2,
where we display the total solution time for increas-
ing levels of precision. We aim to take advantage of
the fast times for small precision to limit the num-
ber of pivots required at higher levels. An overview
of the method is presented in Algorithm 1. In our
code, called QSopt_ex, we increase the precision p
to 128 bits in the second iteration, and to approx-
imately 1.5p in each following round (keeping p a
multiple of 32 to align with the typical word size).

Our rational tests for optimality, unboundedness,
and infeasibility are based on the QSopt LU fac-
torization routines but implemented with rational
arithmetic. This means that every test involves a
time-consuming rational factorization of the con-
straint matrix; an alternative strategy is to employ
Wiedemann’s method [22] for directly solving the
rational systems, as discussed briefly in [5]. In an at-
tempt to avoid the rational solve altogether, we first
find rational approximations of the floating-point
primal and dual solutions using continued fractions,
and test the optimality conditions on these approx-
imations before computing the factorization. This
approach works well on easier LP examples, such as
those in our TSP subtour tests in Section 4.3, as the
rational primal and dual values given by the opti-
mal basis do not have large denominators, and the
continued fraction method correctly identifies these
values from the floating point approximations.

Table 3
Ratios of QSopt_ex vs. QSopt running times

Set Alg.  Geometric Mean  Total  QSopt (s)
Small primal 5.7 237.0 15.8
Small dual 5.1 131.8 10.1
Medium  primal 5.2 6.3 414.6
Medium dual 6.9 5.8 361.8
Large primal 1.8 2.2 3621.5
Large dual 2.4 3.3 2529.1

4. Computational experience

We describe our computational experiments with
four classes of LP problems, testing a range of as-
pects of the QSopt_ex code.

4.1. Benchmark LP instances

We begin with a study of 625 instances taken from
the GAMS World library [8], including the MIPLIB,
Miscellaneous, NETLIB, Problematic, and Stochas-
tic collections. A full listing of the problems and our
complete results are available in [6].

We do not report on problems where the sum of
the running times of the primal and dual simplex
algorithm for both the exact LP solver and the orig-
inal QSopt code is less than one second; this leaves
364 problems. Furthermore, problems nug20, nug30,
contll, contl, contll_l, and contl.l could not be
solved in less than five days of running time and
were removed from the overall list of problems that
we report.

In Table 4 the running times are given for the
seven infeasible LP problems in our test set. The
problems were solved with the primal simplex al-
gorithm;the final column reports the floating-point
precision p that was needed to obtain a rational cer-
tificate of infeasibility.

The feasible LP problems are split into three cate-
gories, those with less than 1,000 constraints are con-
sidered small (66 instances), those with 1,000-10,000
constraints are considered of medium size (214 in-
stances), and those with over 10,000 constraints are
considered large (83 instances). Table 3 presents a
summary of our results for these instances, giving
the geometric mean of the running-time ratios for
QSopt_ex versus QSopt and the ratio of the total
running times (for solving all instances in a given
category) for the two codes; the final column gives
the mean number of seconds for QSopt.

Note that the improvement in the running-time



Table 4
Infeasible LP instances

Instance QSopt (s) QSopt_ex (s) Precision
ceria3d 0.8 1.5 double
cplex1 1.0 2.1 double
cplex2 0.1 1.1 128 bit
gosh 4.3 6.4 double
gran 5561.3 714.3 128 bit
greenbea 2.8 5.4 double
klein3 0.7 1.3 double

ratios for larger instances is due in part to the fact
that the number of operations in standard double
arithmetic grows larger compared to the number of
operations in rational arithmetic as the problems
increase in size.

One factor contributing to the increase in running
time (over the standard QSopt code) for some of
the most difficult LP instances is that our double-
precision port of QSopt is not as stable as the orig-
inal code, resulting in failures at the starting level
of precision. In these cases, the final basis is often
numerically ill-behaved and we are thus forced to
restart our algorithm from scratch with increased
floating-point precision, at a large computational ex-
pense.

Of all the optimal solutions collected during our
experiments, the largest encoding occurred in the
problem stat96v3, requiring on average 64,000 bits
to represent each solution coefficient. Fortunately,
most solutions have much smaller representations;
80% of the problems required less than 256 bits to
exactly represent their optimal solution.

Looking at the maximum precision used by
QSopt_ex in obtaining an optimal basis, 51.9% were
solved in plain double arithmetic, 74.0% could be
solved using at most 128-bit representations, 81.6%
could be solved using 192-bit representations, and
98.9% of the problems could be solved using 256-bit
representations.

In Figure 1 we show the empirical distribution of
the percentage relative errors in the objective val-
ues reported by the original QSopt code. Note that
95% of the problems have relative error of less than
0.0001% in the objective value.

4.2. Orthogonal-array bounds

Orthogonal arrays are used in statistical experi-
ments that call for a fractional factorial design. In
such applications, columns correspond to the factors
in the experiment, and the rows specify the levels at

Fig. 1. Relative objective value error distribution
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which observations are to be made.

Consider two sets of factors F and Fy, with |Fy| =
k1, |Fa| = ko, where all factors in F; can have s;
different levels and all factors in F5 can have s, lev-
els. An orthogonal array in this case is a matrix M
where each row is a (k; +kg)-tuple in {1, ..., s }*1 x
{1,...,s2}*2, such that in any submatrix M’ of M
with ¢ columns, all possible t-tuples that could oc-
cur as rows appear equally often. Letting n denote
the number of rows of M, the orthogonal array for
F1 U F5 is said to have strength t and size n.

Sloan and Stufken [21] introduced an LP problem
that produces a lower bound on the size of these ar-
rays. They were able to compute bounds for config-
urations having s; = 2, s = 3, t = 3, k1 <= 60
and k1 + 2ks < 70 using an early implementation of
CPLEX (Version 1.2), but found that “Outside this
range the coefficients in the linear program get too
large.”

Given positive integers si, so, k1, k2, and ¢, the
Sloan-Stufken LP problem SS(s1, k1, $2, k2, 1) is

ki k2
DD g
i=0 j=0
s.t. 20,0 Z 1, Ti 5 Z 0
forOSiSkl, OSJSICQ
k1 k2
Zzpklzz P2(j])le >0
/=0 j'=0
fOfOS’L.Skl, 0§j§k2
k1 k2
ZZP’“ i,i’) Pk2(]])xl/ =0
=04'=0

for1<i+j<t

'M@

where P¥(a,b) = Y- (=1)7(s — 1)*~9 (%) (}=%).

0

J



Table 5
Optimal values of Sloan-Stufken LP problems

# LP Value
1 94327730356522658494464
2 13565545013866085831352582144

3 11602917015589596268001195269640543346077925900288

With more recent versions of the CPLEX solver
it is possible to handle larger instances than re-
ported in the Sloane-Stufken tests, but the class
remains challenging. For example, the problem
S55(3,18,5,18,35) is reported as infeasible by the
CPLEX 9.1 primal simplex, dual simplex, and bar-
rier solvers, although a feasible solution exists. This
is typical of instances in this range and would seem
to be a problem inherent in any floating-point LP
code. Moreover, for larger instances the coefficients
of the constraint matrix simply cannot be repre-
sented accurately in double precision.

In our experiments we solved a collection of S.S
instances with QSopt_ex. In Table 5 we present the
optimal objective values for three large examples,

$55(10,18,10,19,18),

S55(10,36,10,37,18),

SS5(15,56, 15,57, 28).
In all three instances, double precision was suffi-
cient to identify the correct solutions. The running
times were 2.53 seconds, 3.87 seconds, and 77.10 sec-
onds respectively. Of course, arrays of the size in-
dicated by the bounds in Table 5 are not of prac-
tical use, but the tests indicate the suitability of
the QSopt_ex solver for instances with extremely
large input data (the test instances have constraint-
matrix coefficients with over 150 bits).

4.3. TSP-related tests

An instance of the TSP can be specified by a com-
plete graph with vertex set V', edge set E, and edge
weights (¢, : e € E) giving the cost of travel between
each pair of vertices. For a proper subset S C V| let
§(S) C E denote the set of edges having one end in
S and one end not in .S. With this notation, the well
known subtour relazation of the TSP is given by the
LP problem

Z(chp ec k)

C Y (@erecd({u})) =2 VveV
Y (ze:ecd(S) =2 VO#£ESCV
0<z

e <1 VeeFE.

Table 6
Exact subtour bounds

Instance Time (s) Subtour Bound
r111849 365 21935527 /24
usal3509 387 79405855/4
brd14051 341 21020743/45
d15112 451 375571207/240
d18512 587 92464823 /144
pla33810 4528 525643505/8
pla85900 32106 141806385
E1M.O 3.8x106 41679386539494215/58810752

Numerous studies report lower bounds obtained by
solving this LP relaxation, but these are typically
carried out with floating-point approximations of
the problem. Using QSopt_ex as a subroutine, we
have computed exact subtour solutions for all in-
stances in the TSPLIB [20]. The results for all ex-
amples having at least 10,000 cities are given in Ta-
ble 6; the instance E1M.0 is a million-city random-
Euclidean example studied in [7].

Our implementation relies on Concorde [1] to ob-
tain a floating-point approximation for the subtour
LP. We then use our exact LP solver, iterating the
cutting-plane and column-generation process in ra-
tional arithmetic, until we prove optimality. To de-
tect violated subtour inequalities we have imple-
mented a version of the Padberg and Rinaldi [19]
minimum-cut algorithm in rational arithmetic.

It should be noted that most of the time is spent in
the routine for pricing the complete edge set in ratio-
nal arithmetic. Indeed, in the case of the million-city
TSP, the operations of solving the current LP re-
laxation and finding minimum-cuts took under 400
seconds of the 3.8x10° total.

4.4. Mized-integer programming

Neumaier and Shcherbina [18] show that, for some
seemingly innocent problems with all variables inte-
ger, state-of-the-art MIP solvers fail to find optimal
solutions.

Using the QSopt_ex library, we created an exact
MIP solver aimed at modest-sized instances. The
solver consists of a branch-and-cut procedure with
exact versions of lifted-cover inequalities [12] and
Gomory mixed-integer cuts [10], including the scal-
ing technique of Cornuéjols et al. [4]. Branching is
carried out with a version of pseudocost variable se-
lection [17]. We adopt the straightforward approach
of using QSopt_ex to solve each LP that is encoun-
tered; a more efficient method would attempt to use



Table 7
Exact values of MIPLIB problems

Problem Value
fiber 20296759/50
fixnet6 3983

gesa2 and gesa2_o 26480487186044893057443711611781/
1027177452203192000000000
manna81 -13164

p2756 3124

approximate dual solutions to prune the branch-
and-bound search tree when possible.

In Table 7 we report the optimal values for six
instances from the MIPLIB 2003 collection. Other
problems from MIPLIB can also be solved with this
code, but, in general, running times are larger than
commercial branch and bound implementations by
two or three orders of magnitude. The running times
for the six instances in Table 7 ranged from 58 sec-
onds for mann81 to 23 hours for gesa2_o.
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