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SUMMARY

In this thesis we address three related topics in the field of Operations Research.

Firstly, we discuss a problem and limitations of most common solvers for linear pro-

gramming, namelly, precision. We then present a solver that generates rational optimal

solutions to linear programming problems by solving a succession of (increasingly more

precise) floating point approximations of the original rational problem until the rational op-

timality conditions are achieved. This method is shown to be (on average) only 20% slower

than the common pure floating point approach, while returning true optimal solutions to

the problems.

Secondly, we present an extension of the Local Cut procedure introduced by Applegate

et al. 2001, for the Symmetric Traveling Salesman Problem (TSP), to the general setting

of MIP problems. This extension also proves finiteness of the separation, facet and tilting

procedures in the general MIP setting, and provides conditions under which the separation

procedure is guaranteed to generate cuts that separate the current fractional solution from

the convex hull of the mixed-integer polyhedron. We then move on to explore some con-

figurations for local cuts, including extensive testing on the instances from MIPLIB. These

results show that this technique may be useful in general MIP problems, while the expe-

rience of Applegate et al., shows that the ideas can be successfully applied to structured

problems as well.

Thirdly, we present extensive computational experiments on the TSP and Domino Parity

inequalities as introduced by Letchford, 2000. This work includes a safe-shrinking theorem

x



for domino parity inequalities, heuristics to apply the planar separation algorithm intro-

duced by Letchford to instances where the planarity requirement does not hold, and several

practical speed-ups. Our computational experience shows that this class of inequalities

effectively improves the lower bounds from the best relaxations obtained with Concorde,

which is one of the state of the art solvers for the TSP. As part of these experience, we

solved to optimality the (up to now) largest TSP instance, and one of the open problems

from TSPLIB, they have 18,512 and 33,810 cities respectively.

xi



CHAPTER 1

Linear Programming, The Simplex Algorithm, and

Exact Solutions

1.1 Introduction

Linear programming (LP) problems are optimization problems in which the objective func-

tion and all the constraints are linear. Linear programming is an important field of opti-

mization for several reasons. G. B. Dantzig [31] writes:

“These problems occur in everyday life; they run the gamut from some very sim-

ple situations that confront an individual to those connected with the national

economy as a whole. Typically, these problems involve a complex of different

activities in which one wishes to know which activities to emphasize in order to

carry out desired objectives under known limitations.”

Nowadays, LP is an extensively used tool, both in industry and in academic research,

with an extensive literature devoted to it. From an historical point of view, linear pro-

gramming has inspired many of the central concepts of optimization theory, such as duality,

decomposition, and the importance of convexity and its generalizations.

One of the most well known algorithms for linear programming is the simplex algorithm,

introduced (as we know it today) by Dantzig [31, 32] in 1947. According to Schrijver [94],

one of the earliest references of a simplex-like algorithm is due to Fourier [41] in 1826, where

1



he described a rudimentary version of the simplex algorithm for the problem

min z

s.t. z ≥ |aix + biy + ci| i ∈ {1, . . . , m}.

According to Fourier’s notes, his description is enough to extend his algorithm to the n

dimensional case. Schrijver mentions yet another early reference for a simplex-like method,

this one is due to de la Vallée [34] in 1911, where a simplex-like method is proposed to solve

min ‖Ax− b‖∞.

This is known as the Chebyshev approximation problem. de la Vallée’s method is for

A of general dimension, but it is for the particular type of objective of the Chebyshev

approximation problem, and also makes the assumption that all sets of n rows of A are

linearly independent.

The simplex algorithm solves LP problems by constructing an admissible solution at

a vertex of the polyhedron, and then walking along edges of the polyhedron to vertices

with successively better values of the objective function until the optimum is reached, or

unboundedness is detected. Although this algorithm is quite efficient in practice, and can

be guaranteed to find the global optimum if certain precautions against cycling are taken, it

has poor worst-case behavior. In fact, for most pivot rules, it is possible to construct a linear

programming problem for which the simplex method takes a number of steps exponential

in the problem size. The existence of a polynomial-time version of the simplex algorithm

remains an open problem to this day.

For some time it was not known whether the linear programming problem was NP-

complete or solvable in polynomial time. The first worst-case polynomial-time algorithm

for the linear programming problem was proposed by L. Khachiyan [65], however, the

practical performance of Khachiyan’s algorithm is very disappointing. Later, in 1984, N.

Karmarkar [64] proposed the projective method algorithm. This was the first algorithm

performing well both in theory and in practice. Its worst-case complexity is polynomial and

experiments on practical problems showed that it is reasonably efficient compared to the

simplex method (for more details in LP algorithmic history see Bixby [15]).
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Modern versions of Karmarkar’s algorithm are now the most effective method to solve

large linear programming problems. However, there is one major advantage that the simplex

algorithm still has over its interior point cousins; namely, when re-optimizing a slightly

modified problem, the simplex algorithm can use the solution to the previous problem to

compute the solution to the new one, and if the modifications are small, the amount of extra

work is in fact very little. While some research has been done to improve these capabilities

for interior point algorithms (and some improvements have been done), they remain far

inferior to those of the simplex algorithm.

One prominent area where several iterations of similar LP problems are solved is in

(Mixed) Integer Programming or MIP. The most successful approach to date to exactly

solve MIP problems is a mixture of the branch-and-bound algorithm and the cutting-plane

algorithm (also called branch-and-cut algorithms). This algorithm starts with an LP re-

laxation of the real MIP problem, and successively strengthens this relaxation by adding

valid inequalities for the MIP problem, or branches by creating two LP relaxations which

differ in only a few constraints from the original LP relaxation. In this setting the simplex

algorithm remains of crucial importance.

A second important example, where this advantage plays a role, is when using Column

Generation to solve really large LP problems. In this setting we add (and delete) variables

from the current LP description until we find an optimal solution. Applications that use

this approach range from the airline crew-scheduling problem, to the cutting-stock problem.

In this chapter we address one special question regarding LP and the simplex algorithm:

How can we obtain exact solutions for a given LP problem, while still maintaining the re-

optimization properties of the simplex algorithm?.

The rest of this chapter is organized as follows. In Section 1.2 we explain the relevance

and context for this question, as well as some previously known results. In Section 1.3 we

detail our implementation. In Section 1.4 we present some hard LP instances (from the

point of view of optimality) and numerical results for a range of instances including the

NETLIB and MIPLIB problems. Finally, in Section 1.5 we discuss some of the questions

that were not answered in this research and also some related topics.

3



1.2 Why Exact Solutions?

Before answering the question of this section, we must explain what we mean by a solution

to a LP problem. Since all but the most trivial problems need a computer code to be solved,

we must also consider what are the limitations of computer implementations.

While we can represent any rational number in a computer without any error (under

the memory constraints), the representation of choice for rational numbers in most LP

solvers are floating point numbers. We start by defining a floating point number and a

small discussion on its limitations. We then give some arguments as to why floating point

representation is used in most LP solvers. Then we define what is an exact solution to a

LP problem and give the context of when an exact solution to a LP problem is needed. We

finish this section by providing some previously known results.

1.2.1 Binary Floating Point Representation

Floating-point representation basically represents rationals in scientific notation. Scientific

notation represents numbers as a base number and an exponent. For example, 123.456 could

be represented as 1.23456×102 . In hexadecimal, the number 123.abc might be represented

as 1.23abc× 162.

Floating-point solves a number of representation problems. Fixed-point has a fixed

window of representation, which limits it from representing very large or very small numbers.

Also, fixed-point is prone to a loss of precision when two large numbers are divided.

Floating-point, on the other hand, employs a sort of sliding window of precision appropri-

ate to the scale of the number. This allows it to represent numbers from 1,000,000,000,000

to 0.0000000000000001 with ease.

Storage Layout IEEE1 floating point numbers have three basic components: the sign,

the exponent, and the mantissa. The mantissa is composed of the fraction and an implicit

leading digit (explained below). The exponent base (2) is implicit and need not be stored.

Table 1.1 shows the layout for single (32-bit) and double (64-bit) precision floating-point

1The IEEE Standard floating point is the most common representation used today for real numbers on
computers, including Intel-based PC’s, Macintoshes, and most Unix platforms. (See [57] for more detail).
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values.

Table 1.1: Storage layout of IEEE-754 compliant floating point numbers, bit ranges are in
square brackets.

Sign Exponent Fraction Bias

Single Precision 1 [31] 8 [ 30-23] 23 [ 22-00] 127
Double Precision 1 [63] 11 [ 62-52] 52 [ 51-00] 1023

The Sign Bit The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes

a negative number. Flipping the value of this bit flips the sign of the number.

The Exponent The exponent field needs to represent both positive and negative expo-

nents. To do this, a bias is added to the actual exponent in order to get the stored exponent.

For IEEE single-precision floats, this value is 127. Thus, an exponent of zero means that

127 is stored in the exponent field. A stored value of 200 indicates an exponent of 200-127,

or 73. For reasons discussed later, exponents of -127 (all 0s) and +128 (all 1s) are reserved

for special numbers.

For double precision, the exponent field is 11 bits, and has a bias of 1023.

The Mantissa The mantissa, also known as the significand, represents the precision bits

of the number. It is composed of an implicit leading bit and the fraction bits.

To find out the value of the implicit leading bit, consider that any number can be

expressed in scientific notation in many different ways. For example, the number five can

be represented as any of these:

• 5.00× 100

• 0.05× 102

• 5000× 10−3

In order to maximize the quantity of representable numbers, floating-point numbers

are typically stored in normalized form. This basically puts the radix point after the first

non-zero digit. In normalized form, five is represented as 5.0× 100.
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A nice little optimization is available to us in base two, since the only possible non-zero

digit is 1. Thus, we can just assume a leading digit of 1, and do not need to represent

it explicitly. As a result, the mantissa has effectively 24 bits of resolution, by way of 23

fraction bits for single precision floating point.

Putting it All Together To sum up:

1. The sign bit is 0 for positive, 1 for negative.

2. The exponent’s base is two.

3. The exponent field contains 127 plus the true exponent for single-precision, or 1023

plus the true exponent for double precision.

4. The first bit of the mantissa is typically assumed to be 1.f , where f is the field of

fraction bits.

Ranges of Floating-Point Numbers Let us consider single-precision floats. Note that

we are taking essentially a 32-bit number and re-arranging the fields to cover a much broader

range. Something has to give, and it is precision. For example, regular 32-bit integers, with

all precision centered around zero, can precisely store integers with 32-bits of resolution.

Single-precision floating-point, on the other hand, is unable to match this resolution with

its 24 bits. It does, however, approximate this value by effectively truncating from the lower

end. For example:

11110000 11001100 10101010 00001111 32-bit integer

= +1.1110000 11001100 10101010 ×231 Single-Precision Float

= 11110000 11001100 10101010 00000000 Corresponding Value

This approximates the 32-bit value, but does not yield an exact representation. On

the other hand, besides the ability to represent fractional components (which integers lack

completely), the floating-point value can represent numbers around 2127, compared to 32-bit

integers maximum value around 232.

The range of positive floating point numbers can be split into normalized numbers

(which preserve the full precision of the mantissa), and denormalized numbers (discussed
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later) which use only a portion of the fraction’s precision. The actual values can be seen in

Table 1.2.

Table 1.2: Ranges of representable floating-point numbers

Single Precision Double Precision

Denormalized 2−149 to (1− 2−23)× 2−126 2−1074 to (1− 2−52)× 2−1022

Normalized 2−126 to (2− 2−23)× 2127 2−1022 to (2− 2−52)× 21023

Approximate Decimal 10−44.85 to 1038.53 10−323.3 to 10308.3

Since the sign of floating point numbers is given by a special leading bit, the range for

negative numbers is given by the negation of the above values.

There are five distinct numerical ranges that single-precision floating-point numbers are

not able to represent:

1. Negative numbers less than −(2− 2−23)× 2127 (negative overflow).

2. Negative numbers greater than −2−149 (negative underflow).

3. Zero

4. Positive numbers less than 2−149 (positive underflow).

5. Positive numbers greater than (2− 2−23)× 2127 (positive overflow).

Overflow means that values have grown too large for the representation, much in the same

way that you can overflow integers. Underflow denotes a loss of precision, which is guaran-

teed to be closely approximated by zero.

Note that the extreme values occur (regardless of sign) when the exponent is at the

maximum value for finite numbers (2127 for single-precision, 21023 for double), and the

mantissa is filled with 1s (including the normalizing 1 bit).

Special Values IEEE reserves exponent field values of all 0s and all 1s to denote special

values in the floating-point scheme.

Zero As mentioned above, zero is not directly representable in the straight format, due to

the assumption of a leading 1 (we would need to specify a true zero mantissa to yield

a value of zero). Zero is a special value denoted with an exponent field of zero and
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a fraction field of zero. Note that −0 and +0 are distinct values, though they both

compare as equal.

Denormalized If the exponent is all 0s, but the fraction is non-zero (else it would be

interpreted as zero), then the value is a denormalized number, which does not have an

assumed leading 1 before the binary point. Thus, this represents a number (−1)s ×

0.f × 2−126, where s is the sign bit and f is the fraction. For double precision,

denormalized numbers are of the form (−1)s × 0.f × 2−1022. From this you can

interpret zero as a special type of denormalized number.

Infinity The values +∞ and −∞ are denoted with an exponent of all 1s and a fraction

of all 0s. The sign bit distinguishes between negative infinity and positive infinity.

Being able to denote infinity as a specific value is useful because it allows operations

to continue past overflow situations2.

Not A Number The value NaN (Not a Number) is used to represent a value that does

not represent a real number. NaN’s are represented by a bit pattern with an exponent

of all 1s and a non-zero fraction.

1.2.2 The Limits and Errors of Floating Point Arithmetic

While floating-point representation effectively allow us to represent a wide range of values,

there are inherent errors while using them. For example, if we represent numbers as double

precision floating-points, then we obtain the representations shown in Table 1.3 for some

common fractions.

Although the relative error between the desired number and the actual represented value

is not more than ε = 2−52 = 1/4, 503, 599, 627, 370, 496 ≈ 10−15.65. This minimum relative

error puts a barrier on the confidence of the results from any computer code that performs

its calculations using floating-point numbers. Note that the existence of this barrier is

regardless of how many bits we use to store the mantissa, the number of bits used in the

mantissa only changes the actual value of this barrier.

2Operations with infinite values are well defined in IEEE floating point, but a program may choose not
to adhere to the strict standard.

8



Table 1.3: Common Fractions as Floating-Points. Mantissa values are written in hexadec-
imal.

1/5 = 1.999999999999a×2−3 1/3 = 1.5555555555555×2−2

1/9 = 1.c71c71c71c71c×2−4 1/7 = 1.2492492492492×2−3

1/13 = 1.3b13b13b13b14×2−4 1/11 = 1.745d1745d1746×2−4

1/17 = 1.e1e1e1e1e1e1e×2−5 1/15 = 1.1111111111111×2−4

1/21 = 1.8618618618618×2−5 1/19 = 1.af286bca1af28×2−5

1/25 = 1.47ae147ae147b×2−5 1/23 = 1.642c8590b2164×2−5

1/29 = 1.1a7b9611a7b96×2−5 1/27 = 1.2f684bda12f68×2−5

These errors in turn generate more errors once we start doing arithmetic in these num-

bers. Take for example an inner product between two vectors x, y ∈ Rn and assume that we

are representing these number using double precision floating-point numbers, and that the

relative error of each represented number is bounded by ε. Then, the absolute error of the

inner product is bounded by nε〈|x|, |y|〉. Note that, on the other hand, the relative error is

essentially unbounded. Although these values are upper bounds on the error, it is possible

to derive lower bounds for some special cases, but such studies are outside the scope of the

present work.

1.2.3 Why Floating Point representation is used at all?

Besides the fact that the use of floating point representation allows us to work with a wide

range of valid values, there is a second argument that supports the use of floating point

representation when solving LP:

“The initial data (of LP problems) are in part subject to uncertainty, but even

where a fraction is known it cannot necessarily be expressed in a fixed punching

field. Even should the decimal data be near correct, by the time it has been

converted to binary much has been lost. These errors should not be treated as

having physical reality.” P.M.J. Harris [54].

Nowadays, most state of the art LP solvers take advantage of the floating point nature

of the numbers in an algorithmic way. Some of these algorithmic uses are bound shifting,

the Devex pivot rule and objective perturbation. For details on these ideas see [15, 40, 54].
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Finally, note that all commercial LP solvers are based on floating-point arithmetic, and

none of them provides any mathematically well defined assurance on the quality of the

solutions that they provide (although they do mention tolerances and their default values).

1.2.4 What is an Exact Solution?

Choosing the correct domain The first aspect that we must take care of is to define

the right domain for the input that we need to consider. And the alternatives are clear, we

could choose to work with data either on R or in Q.

While LP theory works in both domains, MIP theory does not. A classical example of

this is the following problem:

(IIP ) max
√

2y − x

s.t.
√

2y ≤ x

x, y ∈ Z+.

Note that (IIP) is both feasible, and bounded, but there is no optimal solution. A second

reason to stay away from irrationals is that the common notions of complexity and poly-

nomial algorithms breaks down if we allow irrationals. For instance, what is the input size

for the number
√

2? These considerations suggest that we restrict our attention to rational

numbers.

Now that the domain question has been settled, we start by stating a purely mathemat-

ical definition of what constitutes an exact solution, and then we make this notion precise

in a computer code context.

Definition 1.1 (Exact solution). Given an LP

P = max c · x

s.t. Ax ≤ b

l ≤ x ≤ u

with A ∈ Qm×n, l, u, c ∈ Qn and b ∈ Qm, we say that (xo, yo) ∈ Qn+m is an exact solution

to P if x is primal feasible, y is dual feasible, and complementary slackness holds.
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Note that since all data is rational, all computations can be carried out (without in-

troducing errors) in rational arithmetic, and thus the conditions of the definitions can be

computed exactly. But there remain some important questions regarding the meaning of

this definition inside a computer code.

Interpreting decimal fractions The first question that needs to be answered is how do

we interpret fractional coefficients in a given LP?.

If the coefficient is integer, then it is clear what the value means, but if we encounter a

coefficient of say 0.3333333333333333 at some point, should we interpret the rational value

to be 1/3 or to be 3333333333333333/10000000000000000 ?.

Note that the question is not just a rhetorical one. In general, given a fractional value

f , we can compute integers a, b such that |f − a/b| ≤ 1
b2

. Such integers can be computed

using the continued fraction method, and if we stop whenever the current approximation

ai/bi is such that bi ≥ 227, then |f − ai/bi| ≤ 2−54, which is less than the smallest number

representable by a normalized double precision floating point. The advantage of such an

interpretation is that the fractions used to represent the fractional number are in general

much smaller than the alternative approach, but one major drawback of this approach is

that if we use such an interpretation of decimal fractions, then the problem to be solved

depends on the actual implementation of the conversion routine, and thus the concept of

an exact solution to the problem is not well defined for a computer code. For this reason

we choose the second (more extended) interpretation of decimal fractional values, and thus

uniquely defining the problem to be solved. Note that this interpretation choice does not

preclude us from representing values like 1/3. To do so, we only need to scale the inequality

by 3 (or by the minimum common denominator among all desired fractions) and write the

inequality with integer coefficients.

Representing arbitrary numbers in a computer One pressing question remains.

Although in theory we can represent arbitrarily large integers (and thus rationals) on a

computer, is there any efficient computer implementation for arbitrary precision rationals?.

Fortunately, the answer is yes. In fact, there is a wide range of possible choices that provide
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a callable library C interface. The following list contains just a few possibilities:

mp Multiple Precision package that comes with some Unix systems.

This library provides +, -, *, /, gcd, exponentiation, sqrt.

PARI by Henri Cohen, et al., Universite Bordeaux I, Paris, FRANCE.

Multiple precision desk calculator and library routines. Contains optimized assembly

code for Motorola 68020, semi-optimized code for SPARC, and a generic C version.

Arithmetic in Global Fields (Arith) by Kevin R. Coombes, David R. Grant.

Package of routines for arbitrary precision integers or polynomials over finite fields.

Includes basic +, -, *, / and a few others like gcd.

Arbitrary Precision Math Library by Lloyd Zusman, Los Gatos, CA.

C package which supports basic +, -, *, /. It also provides for radix points (i.e.,

non-integers).

BigNum by J. Vuillemin, INRIA, FRANCE, and others, and distributed by Digital Equip-

ment Paris Research Lab (DECPRL).

A “portable and efficient arbitrary-precision integer” package. C code, with generic C

“kernel”, plus assembly “kernels” for MC680x0, Intel i960, MIPS, NS32032, Pyramid,

and VAX.

Lenstra’s LIP package by Arjen Lenstra, Bellcore.

Portable unsigned integer package written entirely in C. Includes +, -, *, /, exponen-

tiation, mod, primality testing, sqrt, random number generator, and a few others.

MIRACL (Shamus Software, Dublin, Ireland).

Integer and fractional multiple precision package. MIRACL is a portable C library.

Full C/C++ source code included (in-line assembly support for 80x86). C++ classes

for Multiprecision Integers, Modular arithmetic, and Chinese Remainder Theorem.

Implementation in C/C++ of all modern methods of integer factorization, viz Brent-

pollard, p-1, p+1, Elliptic Curve, MPQS.

GNU Multiple Precision (GMP) GNU (Free Software Foundation) multiple precision

package.

This library is completely written in C, with assembler implementation for many of the
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most critical parts for several common architectures. It provides integer, rational and

multiprecision floating point numbers and is actively being developed and maintained.

For our computational purposes, we choose the GNU Multiple Precision library

because of its availability, high performance, and its license restrictions (GNU-MP is released

under the Lesser GNU license).

1.2.5 When do we need exact LP solutions?

There are several reasons why one would like to consider exact solutions to a given LP.

First, there are some cases from industry where the customers demand an exact solution

for a given LP problem3.

A second setting where getting exact solutions is of importance is when LP is used to

compute theoretical bounds on different problems. LP-based bounds are widely used (see [3,

71, 92]) for many problems, but almost always authors just report the values obtained from

some commercial solver without ever questioning or checking the quality of the obtained

results. This is a serious weak point for any conclusions drawn from these LP-based bounds.

A third setting where inaccuracies in LP solutions are of major importance is in the

realm of mixed integer programming. The first reason for this is that in many instances

there are no inaccuracies whatsoever in the original data nor in the representability of such

data inside a computer (all problems in TSPLIB fit this description), and thus one of the

key arguments for using floating-point representation is no longer valid. A second reason is

that in many cases the formulation of the problem naturally forces small values for the LP

solution. For example, consider the following problem:

min x1 + x2 + y

s.t. x1 + x2 ≤ 106y

x1 + x2 ≥ 10−3

x1, x2, y ≥ 0

y ∈ Z.

(1.1)

Note that an optimal LP solution is (x1, x2, y) = (10−3, 0, 10−9), and moreover, if we set

3Personal communications with Zonghao Gu, September 2005.
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our tolerances to any number above 10−9, this LP solution would mistakenly be taken as

an optimal IP solution, which of course is not true. The choice of 10−9 was not accidental,

this value represents the best accuracy that most commercial LP solvers can achieve. And

although Problem (1.1) is clearly artificial, this kind of structure does arise in practice quite

often, and in fact, more general structures leading to the same kind of numerical issues are

easy to devise.

A fourth setting arises when computing valid inequalities for MIP problems, in particular

when generating MIR-Gomory cuts. Although in theory it is possible to solve any IP

problem by applying successive rounds of Gomory cuts, in practice this is not done. One

of the reasons is that the cuts obtained from successive rounds do cut feasible/optimal

solutions from the problem. This is not due to a breakdown of the theory of Gomory cuts,

but rather a consequence of the floating point representation of numbers inside LP solvers,

and the unavoidable errors that this representation generates.

1.2.6 Previously known results

The subject of accurate solutions for LP problems is not new, and it has received some

attention in the past. One of the earliest references on this topic is from Gärtner [44],

who discusses the problem of inaccurate solutions for some LP arising from computational

geometry. He implements a simplex algorithm where some operations are carried out in

floating-point representation, and others in exact arithmetic. The results show that for

problems with either a few rows or columns, exact solutions can be computed in competitive

times with commercial software like CPLEX, but the method does not seem to work well

on larger instances.

Jansson [59] address the inaccuracy problem with a completely different approach. He

studies methods to provide upper and lower bounds for the LP at hand, taking in con-

sideration problems as ill-conditioning and margin errors for coefficients in the input data.

Numerical tests where carried out using MATLAB on small instances with mixed results.

In the context of MIP problems, Neumaier and Shcherbina [87] show (in some seem-

ingly innocents MIP problems), that state-of-the-art MIP solvers (based on floating point
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representation), like CPLEX, fail to find the actual optimal solution to the problem. One

such example is the following:

min − x20

s.t. (s + 1)x1 − x2 ≥ s− 1

− sxi−1 + (s + 1)xi − xi+1 ≥ −1i(s + 1) ∀i = 2, . . . , 19

− sx18 − (3s− 1)x19 + 3x20 ≥ −5s + 7

0 ≤ xi ≤ 10 ∀i = 1, . . . , 13

0 ≤ xi ≤ 106 ∀i = 14, . . . , 20

xi ∈ Z.

(1.2)

For this example, setting s = 6, CPLEX 7.1, ended with the message “integer infeasi-

ble”, however, changing the upper bound of x20 to 10, produced the feasible solution

x = (1, 2, 1, 2, . . . , 1, 2). They used techniques of rounding and interval arithmetic, pre-

processing and postprocessing to detect such ill-behaving situations and to reformulate

these problems. They also go on to use their techniques to generate safe cuts from some

templates like Gomory and MIR cuts.

An interesting approach for the problem of accuracy was taken by Dhiflaoui et al. [35].

They tried to verify the quality of the basic solution returned by the simplex algorithm as

implemented in CPLEX and other software. What they found was that, in many cases, the

basic solution was indeed the optimal solution for the LP at hand, but that the objective

values were miscalculated by some small factor. Nevertheless, there where some instances

where the basic solution returned was not optimal, and where a small number of extra

pivots were needed to get the actual optimal solution, these extra pivots where performed

entirely on exact arithmetic. This approach was also employed by T. Koch [66] in his study

to find the true optimal solutions for all NETLIB problems.
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1.3 Getting Exact LP Solutions

1.3.1 Selecting the Right Tools

Given the constraints that we have imposed on ourselves, i.e. keep the hot-start capabilities

of the simplex algorithm, the only relevant algorithmic choice is to use the simplex algorithm.

Given also the fact that we need to modify internal routines of the LP solver, we may choose

to implement from scratch a simplex algorithm, or to take an existing implementation and

modify its source code.

Since implementing a modern simplex algorithm, with hot-start capabilities that allows

adding and deleting both columns and rows, and that is competitive with current simplex

implementations, would be in itself a major undertaking, we have chosen to build upon an

available implementation.

Another requirement for us was that the implementation to be selected must provide a

callable library interface (so that we can use the resulting tool as a subroutine on different

problems), and moreover, we restrict ourselves to implementations done in either the C or

C++ programming languages.

Having said that, the choices are still numerous. Simplex implementations that provide

the source code include QSopt, GLPK, CLP and SOPLEX. Unfortunately we found that

the license restrictions for SOPLEX were too stringent for our purposes, and this fact made

us discard it as a viable alternative.

Of the three remaining choices, their performance on many LP instances seems to be

comparable (see Mittelmann [77] for more details on these comparisons), and then the

remaining consideration was the footprint of the source code. Looking at Table 1.4, it was

clear that QSopt was a better choice. That, plus the possibility to speak with the developers

of QSopt, determined our choice for QSopt.

1.3.2 A first Näıve Approach

Since our goal is to obtain exact solutions in the sense of Definition 1.1, a natural way to

achieve this goal is to perform every computation in rational arithmetic. To achieve this

we took the full QSopt source code, changed every floating point type to the rational type

16



Table 1.4: Source Code Footprint for Free LP solvers. The size for CLP is just a lower
bound on the actual size, because it seems to depend on other components from the COIN
suite.

Program Lines of
Code

Source Code
Size (Kb)

QSopt 35,482 1,009
GLPK 56,632 1,971
CLP +81,813 +2,492

provided by GMP, and changed every operation on the original code to use GMP operations.

The resulting code, called mpq QSopt produced the results showed in Table 1.5.

Table 1.5: Running times for mpq QSopt on a number of small MIPLIB and NETLIB LP
instances. Time is measured in seconds. The QSopt time column refers to the time spent
by the original QSopt code solving the same set of problems.

Instance Pivots Time Instance Pivots Time
mpq QSopt QSopt mpq QSopt QSopt

sc50b 50 0.06 0.00 flugpl 15 0.02 0.00
afiro 18 0.02 0.00 sc50a 45 0.05 0.00
sc105 92 0.20 0.00 p0033 28 0.02 0.00
marketshare 32 0.04 0.00 kb2 56 0.38 0.00
enigma 21 0.04 0.00 stocfor1 81 0.15 0.00
bell5 84 0.08 0.00 adlittle 79 0.43 0.00
marketshare2 44 0.06 0.00 egout 86 0.07 0.00
blend 100 2.04 0.00 stein27 40 0.04 0.00
scagr7 144 0.22 0.00 lseu 67 0.08 0.00
bell3a 101 0.08 0.00 sc205 191 1.69 0.00
gt2 29 0.03 0.00 share2b 132 0.86 0.00
rgn 52 0.06 0.00 recipe 48 0.03 0.00
pp08a 132 0.08 0.00 pk1 51 0.24 0.00
noswot 34 0.04 0.00 lotfi 178 0.36 0.00
vtp 157 0.69 0.00 share1b * 251 7.94 0.01
pp08aCUTS 237 0.63 0.00 vpm1 160 0.15 0.00
boeing2 154 0.49 0.00 stein45 67 0.14 0.00
vpm2 179 0.20 0.00 timtab1 108 0.13 0.00
modglob 240 0.26 0.00 bore3d 185 0.99 0.00
scorpion 372 0.66 0.00 mod008 29 0.2 0.00
mas76 171 1.36 0.00 blend2 171 1.38 0.00
mas74 * 167 6.53 0.00 capri 374 2.35 0.02
misc03 122 0.45 0.00 brandy * 302 27.38 0.04
sctap1 154 0.31 0.00 scagr25 560 3.76 0.05
dcmulti 438 0.70 0.00 p0201 212 0.46 0.00

Continued on Next Page. . .
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Table 1.5 (continued)

Instance Pivots Time Instance Pivots Time
mpq QSopt QSopt mpq QSopt QSopt

opt1217 129 0.65 0.00 israel 136 1.59 0.00
set1ch 495 0.41 0.00 glass4 75 0.16 0.00
scfxm1 * 423 7.34 0.03 p0282 98 0.21 0.00
bandm * 621 161.58 0.08 timtab2 192 0.24 0.00
e226 * 292 12.45 0.02 p0548 446 0.58 0.01
grow7 * 198 247.60 0.02 etamacro 511 3.28 0.03
agg 104 0.42 0.00 finnis 464 3.33 0.02
standata 64 0.18 0.00 scsd1 119 1.41 0.01
standgub 174 0.30 0.00 beaconfd 109 0.29 0.00
danoint * 949 392.04 0.26 gen 914 1.57 0.04
rout 279 3.06 0.04 stair * 372 2083.13 0.12
gfrd-pnc 895 2.28 0.05 standmps 314 0.54 0.01
khb05250 222 0.47 0.01 scrs8 * 798 13.36 0.08
qiu 1277 13.98 0.23 boeing1 564 7.69 0.05
modszk1 * 875 1326.14 0.30 fixnet6 278 0.33 0.01
aflow30a 352 0.46 0.01 tuff * 524 105.99 0.05
degen2 555 5.06 0.18 forplan * 151 12.75 0.02
agg3 160 0.51 0.01 agg2 183 0.67 0.01
gesa3 o 1176 3.20 – shell 726 1.10 0.04
scfxm2 * 870 21.24 0.09 pilot4 * 1200 11615.13 0.25

It is not surprising to see that mpq QSopt is slower (by a factor of 100 in most instances).

But what is surprising is that, despite the fact that all entries are ordered in Table 1.5 by

the size of the problem, the fluctuations in the running time (specially for those problems

marked with an asterisk) are not correlated with the number of simplex iterations performed

or with the size of the input.

On close examination of the optimal primal/dual solution found by our algorithm, we

discover a startling fact: The number of bits needed to represent the solution for the ill-

behaving problems is far greater than that for most other problems (some statistics of this

fact can be seen in Table 1.6). In fact, the number of bits needed to represent the rational

solution found for the problem pilot4 is amazing, 5,588 bits on average! To put that

number in perspective, a conservative upper bound on the number of atoms in the whole

universe is 10100, and the suspected age of the universe in milliseconds is about 1021; those

two numbers multiplied can be represented in just 402 bits.
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Table 1.6: Optimal Solution Representation. We display the average number of bits needed
to represent each non-zero in the primal/dual optimal solution found by the algorithm.

Instance Number of Bits Instance Number of Bits

share1b 163 mas74 551
brandy 415 scfxm1 126
bandm 635 e226 429
grow7 1605 danoint 472
stair 4026 scrs8 159
modszk1 827 tuff 150
forplan 306 scfm2 156
pilot4 5588

others 60
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Figure 1.1: Bit representation v/s Time per simplex iteration.
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If we now take in consideration the average size of the representation for the optimal

solution, and also the average time spent in each simplex iteration, we obtain the graph in

Figure 1.1, which shows that the final length of the solution correlates very well with the

average cost of each simplex iteration.

If we assume a linear extrapolation on the results from Table 1.1, and also assume that

the number of simplex iterations for the regular floating point simplex algorithm to be a good

indicator of the number of iterations needed to solve a problem with rational arithmetic,

then, since the average number of bits needed to represent the optimal primal/dual solution

of the problem d2q06c is 78,990 bits, the time needed to solve it with simplex in exact

arithmetic would be 870,613 seconds, against the 22 seconds it takes to solve the problem

with floating point, a factor of 39,573 slower!.

These considerations, namely that the time to solve a problem would depend on the

size of the representation for the optimal solution, which is unknown and highly unpre-

dictable, and also memory constraints, make this näive approach highly impractical for

most applications.

1.3.3 Is Everything Lost?

Although the previous section shows how hopeless it is to try to avoid errors due to the use

of floating-point calculations by performing all calculations in rational arithmetic, there is

some evidence that the solutions obtained by floating-point simplex implementations are

quite good.

In the studies of Dhiflaoui et al. [35] and of Koch [66], they report that in most cases

the reported optimal basis gives, in many cases, the actual optimal solution, and on a few

others, only some extra pivots are needed to get the true optimal solution. Moreover, both

of them show that the time for verification is usually not too large. Koch [66] says with

respect to the NETLIB problems the following:

“The current development version of SOPLEX using 106 as tolerance finds true

optimal bases to all instances besides d2q05c, etamacro, nesm, dfl001, and

pilot4. Changing the representation from 64 to 128 bit floating point arithmetic
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allows also to solve these cases to optimality”.

The last part of the quote is quite remarkable. It says that working with larger floating

point representation, in his case 128 bits, allowed them to find optimal bases for all NETLIB

problems.

Although not stated in his paper, in personal communications with Koch, he explained

that he used the long double type provided on some architectures that uses 128 bit rep-

resentations for his calculations. Unfortunately, this solution is not portable in the sense

that normal long double implementations are only 64 bits for mantissa on most common

architectures (which is not a big leap from doubles that use 52 bits for mantissa). Moreover,

what if the basic solution found with floating points on 128 bits is not optimal?.

1.3.4 Working with Floating Point with Dynamic Precision

Building on the results of both Koch [66] and Dhiflaoui et al. [35], we propose to ex-

tend their methodology by keeping a rational representation of the problem, but solving

it with floating point arithmetic with dynamic precision and only performing the optimal-

ity/unboundedness/infeasibility test in exact rational arithmetic.

For this approach to work we need to be able to perform floating point calculations with

arbitrary (but fixed) precision, and moreover, we need to be able to change this precision

at running time. Fortunately GMP directly provides those capabilities, thus giving us the

tools needed for this approach. An overview of the algorithm is presented in Algorithm 1.1.

Algorithm 1.1 Exact LP Solver (basic)

Require: c ∈ Qn, b ∈ Qm, A ∈ Qm×n

1: Start with some preset precision p (number of bits for floating point representation)
2: Compute approximations c̄, b̄, Ā of original input in the current floating point precision.
3: Solve min{c̄x : Āx ≤ b̄}.
4: Test result in rational arithmetic
5: if Test fails then
6: Increase precision p
7: goto step 2
8: end if
9: return x∗

We now describe in some detail the different parts that make the full algorithm. We
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then describe some coding choices that greatly reduced the amount of work needed for

the development of the exact LP solver, as well as some engineering questions regarding

parameters and the related choices that we made.

Infeasibility Certificates in Exact Arithmetic Consider the problem

min c · x

s.t. Ax = b

l ≤ x ≤ u.

(1.3)

With c ∈ Qn, A ∈ Qm×n, b ∈ Qm and l, u ∈ (Q ∪ {+∞,−∞})n.

An infeasibility proof for problem (1.3) may assume that c = 0. Then, the dual problem

can be written as

max b · y − u · du + l · dl

s.t. Aty + dl − du = 0

du, dl ≥ 0.

(1.4)

Note that problem (1.4) is always feasible, and then, a proof of infeasibility for prob-

lem (1.3) reduces to finding (y, dl, du) such that it is dual feasible, and with a positive

objective value.

When working with modern implementations of the simplex algorithm, it is usually the

case that whenever the program stops with the message infeasible, it also provides an

infeasibility certificate, in most cases in the form of a dual solution y that should satisfy

the dual conditions. We take this dual infeasibility certificate, and compute (dl, du) so

that (y, dl, du) is feasible for (1.4), we then check that (dl)k = 0 when lk = −∞ and that

(du)k = 0 when uk =∞, and then check that (y, dl, du) · (b, l, u) > 04. If all these conditions

hold, then we save the infeasibility certificate and return with success, otherwise we report

a failure. An overview of this algorithm can be seen in Algorithm 1.2.

Note that step 1 of Algorithm 1.2 is subject to some freedom. Probably, the most correct

4Note that we are assuming that ∞× 0 = −∞× 0 = 0
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Algorithm 1.2 Infeasibility Certificate

Require: b ∈ Qm, A ∈ Qm×n, p number of bits used for the mantissa for floating points.
Require: ȳ floating-point infeasibility certificate as returned by the LP solver
1: Compute y ∈ Qm such that ‖y − ȳ‖∞ ≤ 2−p−1.
2: Compute d = Aty, du = d+ and dl = −d−.
3: if (dl)k = 0 for all lk = −∞, (du)k = 0 for all uk =∞ and (y, dl, du) · (b, l, u) > 0 then
4: return success, problem infeasible
5: else
6: return failure

7: end if

way to implement it would be to use simultaneous diophantine approximation; the prob-

lem with this approach is that it is extremely expensive to compute such approximations,

specially when the dimension of the vector y is large.

Note that the objective of Algorithm 1.2 is not to prove infeasibility in general, but only

to check whether the given certificate (in floating point arithmetic) can be translated into an

infeasibility certificate in rational arithmetic. More aggressive versions of this algorithm are

possible, for example, if the computed (y, dl, du) is not an infeasibility certificate, we could

randomly perturb y, and perform again the tests, however, in our experience, the procedure

implemented as described in Algorithm 1.2 proved to be appropriate for our computational

tests.

Optimality Certificates in Exact Arithmetic In this case we want to give an opti-

mality proof of a given basis of problem (1.3). In this setting, a basis B = (B, L, U) indicates

for each variable xi, i = 1, . . . , n whether the variable is at its upper bound (i ∈ U), lower

bound (i ∈ L), or if it is basic (i ∈ B)5. This defines a partition of 1, . . . , n that satisfies

the following:

1. |B| = m.

2. AB := (A·i)i∈B is full rank.

Definition 1.2 (Optimal Basis). We say that a basis defines an optimal solution if the

following holds:

5A fourth possibility, is that a given variable is free, we ignore this case for the sake of simplicity, although
the actual implementation does take this into account.
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1. Primal feasibility:

lB ≤ xB := A−1
B (b−

∑

i∈U

A·iui −
∑

i∈L

A·ili) ≤ uB.

Where aB denotes the vector a ∈ Qn restricted to the index set B.

2. Dual solution:

y := A−t
B cB

(dl)i := (ci − ct
BA−1

B A·i), ∀i ∈ L, zero otherwise.

(du)i := −(ci − ct
BA−1

B A·i), ∀i ∈ U, zero otherwise.

3. Dual feasibility: dl ≥ 0, du ≥ 0.

4. Complementary slackness: (xi − li)(dl)i = 0, (xi − ui)(du)i = 0 for all i ∈ {1, . . . , n}.

Our optimality certificate function takes as an input a basis B for Problem (1.3), com-

putes the primal/dual solution as described in Definition 1.2, and checks for all required

conditions. If all conditions holds, it returns optimal, otherwise, it returns fail and dis-

plays a message indicating which test failed. An overview of this algorithm can be seen in

Algorithm 1.3.

Algorithm 1.3 Optimality Certificate

Require: b ∈ Qm, A ∈ Qm×n, c ∈ Qn, basis B = (B, L, U)
1: xU ← uU , xL ← lL
2: xB ← A−1

B (b− ∑
i∈U

A·iui −
∑

i∈L

A·ili).

3: if exists i ∈ B such that xi < li or xi > ui then
4: return fail, basis is primal infeasible.
5: end if
6: du ← 0, dl ← 0.
7: y ← A−t

B cB.
8: (dl)i ← (ci − ct

BA−1
B A·i), ∀i ∈ L.

9: (du)i ← −(ci − ct
BA−1

B A·i), ∀i ∈ U .
10: if exists i ∈ U ∪ L such that (dl)i < 0 or (du)i < 0 then
11: return fail, basis is dual infeasible.
12: end if
13: if exists i ∈ U ∪ L such that (xi − li)(dl)i 6= 0 or (xi − ui)(du)i 6= 0 then
14: return fail, complementary slackness does not hold.
15: end if
16: return success (x, y, dl, du).
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Note that the condition in line 13 of Algorithm 1.3 is redundant, but we keep it for one

reason, in general, steps 2,7,8,9 can be expensive, and it might be that by taking the already

computed floating point values ȳ, x̄, d̄l and d̄u we could approximate the true rational values

y, x, dl, du. As in the infeasibility certificate, we do this by using the continued fraction

approximation, and test the obtained solution. If this approximate solution fails to provide

us with an optimality certificate, then we apply Algorithm 1.3.

The approximation procedure (where we estimate y, x, dl, du from their floating point

values) succeeded in almost all TSP-related tests, but failed in all MIPLIB and NETLIB

instances. Probably the reason for this is that the solutions of our TSP-related test would

only need a few bits to be represented, and then the continued fraction method should give

us the true rational representation; while for instances like d2q06c we would need a very

precise floating point solution to get the actual rational representation for the solutions.

Some Computational Considerations Although, from an algorithmic point of view,

having an implementation of the simplex algorithm that works on variable-length floating

points should be enough to implement Algorithm 1.1; when we also add the requirement of

having fast implementations, using a general implementation of floating points is clearly a

poor choice.

Table 1.7: Number Representation v/s Performance I. Here we show the impact on run-
ning time when we change the number-representation used. The algorithm being tested
is a variant of the Padberg-Rinaldi (with shrinking) min-cut algorithm over a collection of
fractional solutions for the TSP.

Number Representation Time (s)

integer 162
double 190
GMP-float (128 bits) 463
GMP-rational 645

The reasons for this are numerous, but to cite a few, the fact that most modern day

computers have specially designed chips that perform these floating-point operations (in

either single or double precision) on hardware provides great speed-ups. These speed-ups

mean that today, working with doubles is almost as fast as working with plain integers.
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Moreover, if we also consider the fact that accessing a variable-length floating point (as

provided by GMP) incurs in the extra cost of dereferencing the array where the actual

number is stored, then the performance penalty by the effects of memory fragmentation

(which effectively reduce performance in array operations, so common in most LP solvers)

can be quite substantial. Some computational experiments showing these effects can be

seen in Table 1.7 and in Table 1.8.

Table 1.8: Number Representation v/s Performance II. Here we show the impact on running
time when we change the number-representation used. The algorithm being tested is QSopt
primal simplex on the instance pilot4.

Number Representation Time (s)

double 0.38
GMP-float (64 bits) 4.29
GMP-float (96 bits) 4.93
GMP-float (128 bits) 6.03
GMP-float (160 bits) 6.63
GMP-float (1,024 bits) 64.45
GMP-rational 11,615.13

Another consideration is that we need to solve in exact arithmetic linear systems Ax = b

in order to effectively perform optimality tests as described in Algorithm 1.3. A possible

alternative would be to implement a Gaussian elimination procedure, but given that the

systems to be solved may be quite large, a sparse implementation would be needed. Given

that QSopt already provides such functions, an interesting alternative would be to have a

version of those routines that work with rational arithmetic.

However, in principle, this approach would require us to have three versions of the same

QSopt source code, which would make debugging extremely difficult.

For this reason we decided to develop a common interface to work with numbers. This

common interface can be configured at compile time to generate versions of the code that

use the different number representations, thus allowing us to have only one source code

version, but different compiled versions using different type representations for numbers.
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This interface, called EGlpNum6, provides all basic arithmetic operations, multiplying,

dividing and adding integer numbers to a given number, allocating (and initializing), re-

allocating and freeing arrays of numbers, converting to and from plain doubles and file

input/output. A nice side-effect of this approach, is that we can now read and write LP

problems with rational coefficients in either mps or lp format.

Tolerances in Extended Floating Point Representation It is hard to overstress the

importance of setting right tolerance values. These choices effectively affect the overall

performance of the code. QSopt has eleven such parameters. These parameters include

primal and dual feasibility tolerances (set at 10−6), absolute zero tolerance (set at 10−15)

and pivot tolerances (set at 10−12).

These settings are the result of experimentation over many problems, but they do not

tell us much about how to set them when we change the precision of the floating-point

representation.

A possible way of extending these tolerances to larger precisions would be to linearly

scale the given value. For example, if we have a tolerance value of 2a in double precision

floating point, then we could choose a value of 2a p

53 for floating points with p bits of mantissa

representation. Note, however, that this approach is greedy in the sense that we are trying

to extend as much as possible the achievable precision, but it does not take into account

the fact that a factor of error is due to rounding while performing floating-point operations.

For this reason we decided to leave some of the precision to buffer some of these rounding

errors. Then, if we have a tolerance value of 2a, we set the tolerance on p bits as 2a p

64 , and

then leaving p11
64 (or about 17%) bits to buffer errors due to floating point calculations.

Another important detail to be decided is how to choose the next precision after a

floating-point LP solution has failed to provide us with an optimal solution. We choose to

start our procedure with regular double precision floating point calculations, and then we

move to 128 bits of mantissa representation, after that we grow by factors of 3/2; we try

6EGlpNum is part of EGlib, a common project of Daniel Espinoza and Marcos Goycoolea, available on-
line at http://www2.isye.gatech.edu/~despinoz/EGlib doc/main.html, and is released under the LGPL
license.
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Algorithm 1.4 Exact LP Solver

Require: c ∈ Qn, b ∈ Qm, A ∈ Qm×n

1: for precision in double, 128, 192, 288, 416, 640, 960, 1440, 2176, 3264 do
2: Compute approximations c̄, b̄, Ā of original input in current floating point precision.
3: Solve min{c̄x : Āx ≤ b̄}.
4: B ← final basis.
5: if simplex status is optimal then
6: (x̄, ȳ)← optimal floating point solution.
7: x←≈ x̄, y ←≈ ȳ.
8: if success = Optimality Certificate(B, x, y) then
9: return success, (B, x, y).

10: else
11: x← A−1

B b′, y ← A−t
B c.

12: if success = Optimality Certificate(B, x, y) then
13: return success, (B, x, y).
14: end if
15: end if
16: end if
17: if simplex status is infeasible then
18: ȳ ← fractional infeasibility certificate.
19: if success = Infeasibility Certificate(B, ȳ). then
20: return infeasible, (B, ȳ).
21: end if
22: end if
23: if simplex status is unbounded and precision ≥ 128 bits then
24: return unsolved.
25: end if
26: end for
27: return unsolved.
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up to 12 steps where we increase the precision on the floating point representation. The

resulting full algorithm can be seen in Algorithm 1.4.

Some Final Remarks on the Implementation Note that in Algorithm 1.4 we do

not handle the case of unbounded problems, this is not because is not possible in theory to

provide such certificates, but rather to the fact that QSopt does not provide unboundedness

certificates. While we could formulate two auxiliary LP to generate first a feasible solution,

and then a ray, we decided to discard such an approach in the hope that future versions of

QSopt will provide this functionality.

Another detail is that the choice to stop after trying 3,264 bits is an arbitrary one, and

in fact we could keep iterating beyond this point. However our experience shows that we

never reach such levels of required floating point precision to actually find the optimal basis

for a given LP problem.

1.4 Some Applications and Numerical Results

1.4.1 Orthogonal Arrays with Mixed Levels

What are Orthogonal Arrays? Orthogonal arrays are extensively used in statistical

experiments that call for a fractional factorial design. In such applications, columns cor-

respond to the factors or variables in the experiment, and the rows specify the settings or

level combinations at which observations are to be made.

We consider two sets of factors F1 and F2, with |F1| = k1, |F2| = k2, where all factors

in F1 can have s1 different values (also called levels), and all factors on F2 can have s2

levels. The objective is to find a matrix M where each row is a (k := k1 + k2)-tuple in

{1, . . . , s1}k1 × {1, . . . , s2}k2 in such a way that in any submatrix M ′ of M with t columns,

all possible t-tuples that could occur as rows appear equally often. If we call the number of

rows of M n, then we say that M is an orthogonal array for F1 ∪ F2 of strength t and size

n, also called OA(n, sk1
1 sk2

2 , t).

The Sloan LP Sloan et al. [95] introduced a linear programing problem that produces a

lower bound on the size of these arrays, i.e., a lower bound on the number of combinations
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that are necessary to consider. In their paper, they where able to compute bounds for

configurations having s1 = 2, s2 = 3, t = 3, k1 <= 60 and k1 + 2k2 ≤ 70, but they found

that “outside this range the coefficients in the linear program get too large”. The solver

that they used was CPLEX 1.2.

We now define the actual LP problem: given s1, s2, k1, k2 and t positive integers, we

define SL(s1, k1, s2, k2, t) as

min

k1∑

i=0

k2∑

j=0

xi,j

s.t. x0,0 ≥ 1

xi,j ≥ 0 for 0 ≤ i ≤ k1, 0 ≤ j ≤ k2

k1∑

i′=0

k2∑

j′=0

P k1
s1

(i, i′)P k2
s2

(j, j′)xi′,j′ ≥ 0 for 0 ≤ i ≤ k1, 0 ≤ j ≤ k2

k1∑

i′=0

k2∑

j′=0

P k1
s1

(i, i′)P k2
s2

(j, j′)xi′,j′ = 0 for 1 ≤ i + j ≤ t.

(1.5)

Where

P k
s (a, b) =

b∑

j=0

(−1)j(s− 1)b−j

(
a

j

)(
k − a

b− j

)

.

The Experiments Our experiments have two objectives. First see what are the limits

of CPLEX regarding these instances, and to see how our exact LP solver performs in these

instances.

We tried several configurations. These configurations, and the results obtained, can be

seen in Table 1.9. To put the results in perspective, note that we did not check primal/dual

feasibility for the CPLEX solutions (thus, although the objective value may be close to the

true optimal, it may well be the case the solution is not feasible). Another detail is that

the CPLEX solutions were both over and below the true optimal, which again shows the

problem of trusting the obtained bounds. On the upside, CPLEX now is able to solve larger

problems than those reported by Sloan et al. [95] with ease.

A surprise was instance (3, 20, 5, 20, 35); in this instance the ratio between the smaller

and larger coefficient in each constraint is no more than 1016, and the overall ratio between
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Table 1.9: Runs on the Sloan LP problems. We present the optimal value, running time
and maximum floating point precision required for our exact lp solver. We also display
results for CPLEX 9.1 primal simplex, dual simplex and barrier solvers. These results are
either the percentage error on the optimal solution found, or infeasible if no solution was
found.

Instance QSopt exact CPLEX
s1 k1 s2 k2 t Value Time Precision Primal Dual Barrier

2 20 3 1 4 302.022 0.04 double 10−10.429 10−10.429 10−10.429

2 20 3 2 4 348.336 0.06 double 10−8.875 10−8.875 10−8.875

2 30 3 1 4 584.797 0.05 double 10−9.116 10−9.116 10−9.116

2 40 3 2 4 1084.219 0.13 double 10−9.364 10−9.364 10−9.364

2 60 3 2 4 2169.515 0.22 double 10−9.993 10−9.993 infeasible
2 100 3 2 4 5621.167 0.56 double 10−9.544 10−9.544 infeasible
3 18 5 18 35 1020.692 131.43 double 10−1.734 10−1.734 infeasible
3 20 5 20 35 1022.789 402.68 double infeasible infeasible infeasible
5 18 7 18 35 1027.094 157.54 double infeasible infeasible infeasible

11 20 13 20 20 1023.126 2224.33 128 infeasible infeasible infeasible
11 20 13 20 30 1034.370 3691.24 192 infeasible infeasible infeasible
17 20 19 20 10 1013.008 3.41 double 10−9.326 10−4.453 10−9.326

19 20 23 20 10 1013.764 16.55 double 10−7.768 infeasible 10−8.446

20 10 30 10 5 107.385 0.07 double 0 0 0
31 20 37 20 10 1015.682 16.17 128 infeasible infeasible infeasible
40 10 80 10 5 109.515 0.07 double 0 0 0
40 10 80 10 19 1033.449 2.34 double infeasible infeasible infeasible
43 20 47 20 10 1016.720 13.18 128 infeasible infeasible infeasible
61 20 73 20 10 1018.633 12.73 128 infeasible infeasible infeasible
80 8 90 8 15 1028.955 0.77 double infeasible infeasible 10−7.898

80 9 90 9 15 1029.006 4.69 double infeasible 99.99 infeasible
80 10 90 10 15 1029.057 14.42 double infeasible 99.99 infeasible

200 20 250 20 10 1023.979 11.52 128 infeasible infeasible infeasible

the largest and smallest coefficient is 1023. These numbers are big enough to make floating

point calculations very prone to rounding errors (a testimony of this is that CPLEX can not

find a feasible solution), but QSopt is able to find the actual optimal basis in plain double

precision floating point arithmetic.

Note also that the running time for the two slowest instances is only 138.8 and 483.47,

respectively, if we disregard the time spent in the rational certificate process. This opens

the possibility of having better running times if we find a more efficient implementation of

our exact certificates.
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Finally, note that these instances have no more than 441 variables and constraints, but

they are completely dense, i.e. the number of non-zeros is exactly the product of number

of rows and columns.

1.4.2 The NETLIB, MIPLIB and other instances

In response to the needs of researchers for access to real-world mixed integer programs, a

group of researchers R.E. Bixby, E.A. Boyd and R.R. Indovina created in 1992 the MIPLIB

repository, an electronically available library of both pure and mixed integer programs.

This was updated in 1996 by Robert E. Bixby, Sebastian Ceria, Cassandra M. McZeal,

and Martin W.P. Savelsbergh. This version of MIPLIB is known as MIPLIB 3.0, and is

available on-line at Rice University.

A second update was done in 2003 by Alexander Martin, Tobias Achterberg, and

Thorsten Koch. Their intention was to update the set of instances with harder MIP exam-

ples. This version of MIPLIB is known as MIPLIB 2003. This test-set is available on-line

at http://miplib.zib.de.

The NETLIB repository contains freely available software, documents, and databases of

interest to the numerical, scientific computing, and other communities. This repository has

a set of well known LP instances that has also come to be known as the NETLIB problems.

We also consider problems from the Kennington LP test sets from NETLIB, the LP test

sets from Hungarian Academy of Sciences, including the set of stochastic LPs, the set of

miscellaneous LP, and also the set of problematic LP. We also consider the LP test sets from

Hans D. Mittelmann. Most of these problems can be found at http://www.gamsworld.org/

performance/plib/origin.htm.

We took the union of all these set of instances as a test-set for our exact LP solver,

containing 625 problems in total. All comparisons are against the original version of QSopt,

the reason being that since our code is a transformation of QSopt, and no work has been

done to improve its performance; we can not hope to obtain better running times than the

original code.

The reader should also bear in mind that our code is a proof of concept and not a
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commercial grade implementation. One of the problems that we have not addressed yet

is how to hot-start the simplex algorithm in extended floating point precision when the

previous precision run of simplex fails. This has a very important impact in the performance

of the overall algorithm, because when the simplex code fails in plain double precision, then

the extended precision code must completely solve the LP from scratch, which means a

penalty factor of about 10-20 times slower than the original version of QSopt. We split our

results into problems where hot-start does occur, and into problems where no hot-start is

done.

Table 1.10: Comparison on Infeasible Instances. Here we compare running times for both
the original QSopt code (QSopt) and our exact version (QSopt ex) primal simplex, as well
as the precision required to prove infeasibility.

Instance QSopt QSopt ex Instance QSopt QSopt ex
Time Precision Time Time Precision Time

bgdbg1 0.01 double 0.04 bgetam 0.04 double 0.14
bgindy 0.14 double 0.45 bgprtr 0.00 double 0.00
box1 0.00 double 0.01 ceria3d 0.84 double 1.49
chemcom 0.01 double 0.02 cplex1 1.02 double 2.05
cplex2 0.09 128 1.12 ex72a 0.01 double 0.01
ex73a 0.00 double 0.01 forest6 0.00 double 0.01
galenet 0.00 double 0.00 gosh 4.29 double 6.39
gran 5561.30 128 714.27 greenbea 2.80 double 5.39
itest2 0.00 double 0.00 itest6 0.00 double 0.00
klein1 0.01 double 0.05 klein2 0.25 double 0.35
klein3 0.72 double 1.39 mondou2 0.01 double 0.02
pang 0.04 double 0.12 pilot4i 0.08 double 0.55
qual 0.04 128 0.32 reactor 0.01 double 0.03
refinery 0.03 double 0.09 vol1 0.05 128 0.52
woodinfe 0.00 double 0.01

We do not report on problems where the sum of running time of primal and dual simplex

for both the exact LP solver and the original QSopt code is less than one second, this leaves

us with only 364 problems. Furthermore, some problems could not be solved in less than five

days of running time, these problems are nug20, nug30, cont11, cont1, cont11 l, and cont1 l,

these problems were removed from the overall list of problems that we report. Infeasible

problems are reported separately from feasible LP problems, and feasible LP problems are
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split into three categories, problems with less than 1,000 constraints are considered small,

problems with 1,000-10,000 constraints are considered of medium size, and problems with

over 10,000 constraints are considered large.

In Table 1.10 we compare results for QSopt and our exact version on all problems from

NETLIB that are infeasible. Note that for the instance gran QSopt ends without any

answer (it reaches the iteration limit), while QSopt ex gives us the correct answer. The

Table 1.11: QSopt ex performance on MIPLIB, NETLIB and other problems. Column
Size is the number of problems that fall within the corresponding category, column R1 is
the geometric average of all running time ratios computed as QSopt ex running time over
QSopt running time, column R2 is the same but we discount the time spend computing
rational certificates from the QSopt ex running time, column R3 is the ratio of the sum
of all running time for QSopt ex and the sum of all running time for QSopt, and the last
column show the average running time for QSopt in the set of instances

Problem Set Alg. Size Running time ratio Running
R1 R2 R3 time

Large with restart primal 68 1.17 1.09 1.04 4000.86
Large with restart dual 62 1.53 1.43 1.09 1932.69
Medium with restart primal 181 3.65 2.86 2.82 459.84
Medium with restart dual 182 4.59 3.28 1.12 409.44
Small with restart primal 59 3.96 2.75 1.42 6.78
Small with restart dual 62 3.99 2.55 1.48 7.37
Large no restart primal 15 14.42 13.71 13.66 1901.96
Large no restart dual 21 9.51 9.24 6.19 4290.02
Medium no restart primal 33 37.38 27.11 59.64 166.35
Medium no restart dual 32 70.92 40.66 68.51 164.43
Small no restart primal 7 120.77 102.21 383.48 91.96
Small no restart dual 4 217.39 175.75 403.09 43.22

reason is that since QSopt ex can change precision, each precision that we try has a much

lower limit of iterations than the default QSopt, because if any floating point precision fails,

we can always move to the next precision. In fact, after less than 800 iterations in 128-bits

precision, it is able to find a proof of infeasibility, while QSopt seems to be stuck in an

infinite loop.

In Appendix A, Table A.2 shows the results for the primal simplex algorithm on instances

where hot-start could not be done, while Table A.1 shows the results on instances where

hot-start was done. In Table A.4 we present the results for the dual simplex algorithm on
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instances where hot-start could not be done, while Table A.3 shows the results on instances

where hot-start was done. Table 1.11 present a summary of these results showing the

geometric average of the running time ratios for the original code and our exact version

for small, medium and large problems. We also show the geometric average of the running

time of the exact code versus the original code without considering the time spent on the

rational check, the ratio of total running time computed as the ratio between the sum of

all running time for the exact code and the sum of all running time for the original QSopt

implementation, and the number of instances that falls within each category. All runs where

done using a Linux workstation with a 3GHz Intel Pentium 4 CPU and with 4GB of RAM.

It is interesting to note that for those problems where we successfully did hot-start the

simplex procedure with higher precision, the running time ratios for large instances are in

between 1.04 and 1.53 depending on how we measure it. The situation among all problems
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Figure 1.2: Running time ratio distribution I. Here we show the running time ratio dis-
tribution over all instances where re-start was possible for both primal and dual simplex
methods. This gave us a total of 299 problems.

where hot-start was possible is similar, we obtain ratios ranging from 4.59 down to 1.04

depending on the set and how we measure it. The case of problems where we could not

hot-start subsequent runs of simplex, is as we expected much worst, varying from ratios

between 403.09 to 6.19. Fortunately, only on 18.24% of the problems we could not hot-start
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Figure 1.3: Running time ratio distribution II. Here we show the running time ratio distri-
bution over all instances where re-start was not possible for either primal or dual simplex
method. This gave us a total of 65 problems.

the successive simplex calls.
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Figure 1.4: Running time distribution. Here we show the running time distribution over
all instances where re-start was possible for both primal and dual simplex method, we also
show the running time distribution for the original QSopt code.

Note that on the other hand, Figure 1.2 and Figure 1.3, suggest a slightly different story,

they seem to indicate that the ratios are in the rage of 1-10 for problems with hot-start,

and in the range 1-100 for problems where no hot-start was done, how does this fit with the
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overall running time ratio for medium and large instances shown in Table 1.11? To try to

understand this disparity, we take a look at Figure 1.4, where the running time distribution

for primal and dual simplex is shown for both QSopt and our exact version QSopt ex.

Note that for running times below 100 seconds there is a substantial difference for running

times between the exact and the original versions of QSopt, but those differences tend to

disappear on problems requiring more than 100 seconds to solve. With this knowledge,
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Figure 1.5: Running time ratio distribution III. Here we show the running time ratio
distribution over all instances where re-start was possible for both primal and dual simplex
methods, and that took over 100 seconds to solve for either QSopt, or for QSopt ex. This
gave us a total of 45 problems for primal simplex, and 41 problems for dual simplex.

we repeat our running time ratio distribution for those instances where hot-start was done

and where either QSopt or our exact version took over 100 seconds to solve, this leave us

with 45 problems for the primal simplex algorithm, and 41 problems for the dual simplex

algorithm, Figure 1.5 shows the distribution of the running time ratios, and now we can

see that they are closely distributed around 1, which is a consistent result with the results

shown in Table 1.11.

Another interesting observation that we can make is that LP problems can have quite

large encoding for their optimal solutions, Figure 1.6 shows the empirical distribution of

the encoding length of each non-zero coefficient of optimal solutions, the data was drawn

from all optimal solutions collected during our experiments. The problem with the largest
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Figure 1.6: Encoding length distribution. Here we show the experimental distribution of
the average encoding length for nonzero coefficients in optimal solutions. The data consists
of 341 LP problems from MIPLIB, NETLIB and other sources. Note that the x axis is in
logarithmic scale.

average encoding that we solved was stat96v3, which require on average 64,000 bits to

represent each coefficient, and the largest coefficient representation required 152,000 bits,

this problem is part of the miscellaneous set of LP from the Hungarian Academy of Sciences.

Fortunately, it seems that most problems require much less precision to be represented, note

that from Figure 1.6, 80% of the problems required less than 256 bits to exactly represent

their optimal solution.

In fact, if we look at the required precision to find an optimal basis, 51.92% were solved

in plain double arithmetic, 74.03% could we solved using at most 128 bits for mantissa

representation, 81.59% could be solved using 192 bits for mantissa representation, and

98.90% of the problems could be solved using 256 bits of mantissa representation. Figure 1.7

shows the optimal value for problem maros-r7, which only requires on average 16,715 bits

to represent the optimal solution found by QSopt ex, about a quarter of the average size

required by problem stat96v3.

One final question that we address is how close are the objective values reported by

QSopt to the true optimal value computed by QSopt ex. We present the absolute value of

the relative error (in percentage) between the true optimal solution, and the value reported
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Figure 1.7: A Long Optimal Value. This figure shows the optimal value for problem maros-
r7, its primal/dual solution has 12,545 non zeros entries, each one needing an average of
16,715 bits to be represented.

by the original QSopt code. Note that as reported by many before us, it seems that the

errors tend to be small but for a few problems. Figure 1.8 shows the empirical distribution

derived from our experiments, note that 98% of the problems have relative error of less than

1% in the objective value.

1.4.3 TSP-related Tests

One interesting standing conjecture related to the STSP, is whether the optimal optimal

value of the subtour-elimination polytope (SEP)7 is within 4/3 of the true optimal value for

7This relaxation was introduced by Held and Karp [55]
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Figure 1.8: Relative objective value error distribution. Here we show the relative error in
objective value as reported by QSopt and our exact version QSopt ex, the test bed includes
all our models, i.e. 595 problems in total.

the STSP in the metric case (i.e. when the cost matrix satisfies the triangular inequality).

Boyd and Labonté [21] presented exact values for the integrality gap for instances with

up to 10 cities. We extend their results to include all instances in the TSPLIB with at

least 50 cities, providing the exact solution for the SEP, the integrality gap to the optimal

solution8, and the length of the encoding for the primal/dual solution that we obtained.

We also provide the same results for a million city TSP problem.

Our implementation relies on CONCORDE [7] to obtain a floating point approximation

of the SEP polytope, and then we perform the pricing of edges, the generation of violated

subtours in exact rational arithmetic, and we use our exact LP solver for the LP part,

iterating the cutting and the column generation process until we prove optimality. We

implemented a version of the Padberg and Rinaldi [89] minimum-cut algorithm in exact

rational arithmetic to obtain any remaining violated subtour inequality. A summary of our

results can be seen in Table 1.12.

8In the case of pla85900 we only provide the gap to the best known upper bound, since the optimal
solution for it remains an open problem.
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Table 1.12: Subtour elimination polytope integrality gap. We present for each instance the
number of bits to encode the largest number in the optimal primal/dual solution (including
objective value), total running time, optimal value for the SEP relaxation, optimal value
for the instance or best upper bound known, and the percentage gap.

Instance Encoding
length

Time
(seconds)

SEP Optimal
value

Optimal value
/ Best bound

Gap

a280 12 0.36 2566 2579 0.506%
ali535 22 2.05 804949/4 202339 0.547%
att48 14 0.04 10604 10628 0.226%
att532 21 1.40 164515/6 27686 0.973%
berlin52 13 0.03 7542 7542 0.000%
bier127 17 0.18 117431 118282 0.724%
brazil58 18 0.05 50709/2 25395 0.159%
brd14051 30 340.97 21020743/45 469385 0.483%
brg180 19 3.19 1950 1950 0.000%
burma14 12 0.01 3323 3323 0.000%
ch130 15 0.12 12151/2 6110 0.567%
ch150 19 0.17 51921/8 6528 0.583%
d1291 30 8.00 7029201/140 50801 1.179%
d15112 37 451.49 375571207/240 1573084 0.524%
d1655 21 10.46 246197/4 62128 0.940%
d18512 34 587.06 92464823/144 645238 0.486%
d198 14 0.60 15712 15780 0.432%
d2103 18 12.07 79307 80450 1.441%
d493 18 1.26 69657/2 35002 0.498%
d657 24 1.59 775283/16 48912 0.942%
dsj1000 32 4.25 222563723/12 18659688 0.607%
eil101 12 0.13 1255/2 629 0.239%
eil51 12 0.04 845/2 426 0.828%
eil76 10 0.05 537 538 0.186%
fl1400 15 21.15 19783 20127 1.738%
fl1577 15 31.49 21886 22249 1.658%
fl3795 20 124.69 113909/4 28772 1.035%
fl417 17 2.16 23579/2 11861 0.606%
fnl4461 27 33.99 4357661/24 182566 0.548%
gil262 14 0.33 4709/2 2378 0.998%
gr120 18 0.11 27645/4 6942 0.444%
gr137 21 0.26 276481/4 69853 1.060%
gr202 16 0.38 40055 40160 0.262%
gr229 28 0.53 5332681/40 134602 0.963%
gr431 24 1.53 510916/3 171414 0.650%
gr666 29 2.75 10529761/36 294358 0.637%
gr96 19 0.15 109139/2 55209 1.171%
kroA100 17 0.07 41873/2 21282 1.650%
kroA150 15 0.15 26299 26524 0.855%
kroA200 15 0.22 29065 29368 1.042%

Continued on Next Page. . .
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Table 1.12 (continued)

Instance Encoding
length

Time
(seconds)

SEP Optimal
value

Optimal value
/ Best bound

Gap

kroB100 15 0.09 21834 22141 1.406%
kroB150 18 0.16 51465/2 26130 1.544%
kroB200 15 0.25 29165 29437 0.932%
kroC100 17 0.08 40945/2 20749 1.350%
kroD100 17 0.10 42283/2 21294 0.721%
kroE100 17 0.08 43599/2 22068 1.231%
lin105 17 0.09 28741/2 14379 0.059%
lin318 20 0.67 167555/4 42029 0.334%
million 82 3.88×106 41679386539494215

58810752 709412217 0.100%
nrw1379 26 4.29 1353509/24 56638 0.428%
p654 16 4.74 34596 34643 0.135%
pa561 15 1.15 5479/2 2763 0.857%
pcb1173 16 2.74 56351 56892 0.960%
pcb3038 20 17.50 273175/2 137694 0.810%
pcb442 19 0.63 100999/2 50778 0.551%
pla33810 33 4527.63 525643505/8 66048945 0.522%
pla7397 32 206.08 277517567/12 23260728 0.580%
pla85900 28 32106.46 141806385 142382641 0.406%
pr1002 26 3.76 3081191/12 259045 0.887%
pr107 16 0.26 44303 44303 0.000%
pr124 19 0.22 116135/2 59030 1.657%
pr136 20 0.28 191869/2 96772 0.872%
pr144 21 0.33 232757/4 58537 0.597%
pr152 19 0.51 146417/2 73682 0.646%
pr226 17 0.81 80092 80369 0.345%
pr2392 23 10.82 1120469/3 378032 1.216%
pr264 19 0.95 98041/2 49135 0.233%
pr299 16 0.40 47380 48191 1.711%
pr439 21 1.28 317785/3 107217 1.216%
pr76 17 0.09 105120 108159 2.890%
rat195 16 0.30 9197/4 2323 1.032%
rat575 13 0.83 6724 6773 0.728%
rat783 18 1.55 35091/4 8806 0.379%
rat99 11 0.06 1206 1211 0.414%
rd100 17 0.09 23698/3 7910 0.135%
rd400 14 0.64 15157 15281 0.818%
rl11849 30 365.01 21935527/24 923288 1.018%
rl1304 24 6.00 1494563/6 252948 1.547%
rl1323 21 5.11 531629/2 270199 1.649%
rl1889 21 11.06 623409/2 316536 1.550%
rl5915 25 83.96 3341093/6 565530 1.558%
rl5934 28 87.61 10969411/20 556045 1.381%
si1032 17 18.98 92579 92650 0.076%
si175 19 0.57 85499/4 21407 0.150%

Continued on Next Page. . .
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Table 1.12 (continued)

Instance Encoding
length

Time
(seconds)

SEP Optimal
value

Optimal value
/ Best bound

Gap

si535 23 7.06 581011/12 48450 0.066%
st70 10 0.06 671 675 0.596%
ts225 17 0.17 115605 126643 9.548%
tsp225 17 0.31 15513/4 3916 0.973%
u1060 24 4.77 1781207/8 224094 0.648%
u1432 18 9.90 152535 152970 0.285%
u159 16 0.21 41925 42080 0.369%
u1817 21 10.80 226753/4 57201 0.904%
u2152 25 14.81 1021729/16 64253 0.618%
u2319 36 215.23 234215 234256 0.017%
u574 16 1.29 36714 36905 0.520%
u724 19 1.56 124958/3 41910 0.617%
ulysses16 13 0.02 6859 6859 0.000%
ulysses22 13 0.03 7013 7013 0.000%
usa13509 29 387.33 79405855/4 19982859 0.661%
vm1084 26 4.37 2833949/12 239297 1.327%
vm1748 27 7.43 5977093/18 336556 1.353%

It is interesting to note that the worst integrality gap that we found was around 9%

(for instance ts225). A second remark is that most of the time was spent doing the full

pricing for all edges not in the LP, operations like solving the current LP relaxation, or

finding minimum-cuts took well under 100 seconds, even in the case of the million city TSP

instance.

The million city TSP is a random-Euclidean data set with the coordinates being integers

drawn from the 1, 000, 000×1, 000, 000 grid. The problem was created by David S. Johnson

(AT&T), who used it as part of his test-bed of instances in [42]. The instance is called

E1M.0 in the DIMACS challenge page, and can be generated using the code available at

http://www.research.att.com/~dsj/chtsp/download.html.

1.5 Final Comments and Missing Links

1.5.1 Shortcomings and Possible Improvements

Rational Certificates It is clear that one of the most expensive parts of the proposed

methodology is to obtain rational certificates of optimality/infeasibility (see Figure 1.9 for
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Figure 1.9: Profile of QSopt exact I. Here we summarize the time spent in each type of
arithmetic (double, extended floats and rationals) for 199 problems running both primal
and dual simplex. The total accumulated time was 250,886.46 seconds. The graph shows
the percentage of the time spend in each type of arithmetic.

more details). Our approach solved this problem by using QSopt in rational arithmetic to

solve the rational systems, which perform first a factorization of the constraint matrix, and

then compute the primal and dual solution using this factorization.

Although this approach does give us the desired result, there is reason to believe that

this is not the best approach. Some alternatives are to directly solve the linear system by

Gaussian elimination, or to use Wiedemann’s method [97] to solve the rational system. This

last method has the advantage of being parallelizable, and has been used by Dhiflaoui et

al. [35], obtaining almost linear speed-up on a cluster with 40 PC’s workstations.

Hot-Starts or How to use Previous Results In the case where a floating point ap-

proximation solves the given approximation to the problem, but the certificate step fails, we

use the resulting basis as a starting point for the next floating point approximation. This

results in the number of simplex iterations performed in extended arithmetic being quite

low in these cases.
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Unfortunately we can not take advantage of the results of the LP-solver when an un-

bounded or infeasible problem has been detected by the floating-point simplex method but

the certificate method fails. The reason is that in many cases the ending basis is quite

ill-behaving from a numerical point of view, and in many cases is not even close to the

optimal solution. In this situation we are forced to re-start from scratch with increased

floating point precision, the effects in running time can be seen in Figures 1.9 and 1.10.

However, it could be possible to use the basis obtained in such situations if we had some

Double
Precision: 68%

Other: 14%

Rational
Arithmetic:

11%

Extended
Float

Arithmetic: 5%

Figure 1.10: Profile of QSopt exact II. Here we summarize the time spent in each type of
arithmetic (double, extended floats and rationals) for 191 problems running both primal
and dual simplex, but we exclude instances where we could not hot-start simplex iterations
done in extended arithmetic. The total accumulated time was 122,852.61 seconds. The
graph shows the percentage of the time spend in each type of arithmetic.

knowledge of their properties, or if we know that the ending basis is good in some sense.

Handling Tolerances in a Multiprecision Environment This forces us to question

how to handle numerical problems when we have multiple levels of precision available to

us. QSopt (like other simplex implementations in floating-point arithmetic) plays with its

tolerances to both improve speed and maintain numerical stability, but having the possibility

to improve numerical accuracy changes this goal in the sense that we could try to get good
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solutions but with better numerical stability, and only when this criteria forbids any further

simplex steps change to higher precision floating points to hopefully perform just a few more

pivots.

Floating Point Implementations Also from a programming perspective, the GMP

multiple-precision floating point implementation has some drawbacks, mainly that it in-

troduces memory fragmentation on arrays that degrade performance. While their choice

seems to be the best one if we truly want multiple precision floating point calculations with

run-time determined precision, we could have a more compact and efficient implementation

for lower floating point precisions like 96,128 and 192 bits of mantissa lengths, and further

improve the actual running time.

Just for illustration purposes, we took an implementation of IEEE floating points on 128

bits using 15 bits for exponent and 112 bits for the mantissa due to John Hauser and available

on-line at http://www.jhauser.us/arithmetic/SoftFloat.html. This implementation

uses contiguous memory to represent floating-point numbers (thus avoiding part of the

memory fragmentation problems described before), but lacks any assembler code (which

GMP uses heavily to improve performance). To show the impact on performance of using

different implementations of floating points, we took 135 of the smallest problems in our

collection, and ran from scratch a version of QSopt using double representation, another

using Hauser’s float128 floating-point number, and another using GMP general floating

point with 128 bits of mantissa, that we call mpf128.

Table 1.13: Floating point calculations speed. Here we show the total running time of
QSopt using different floating point number representations over a set of 135 small LP
instances.

Representation Total Time (s)

double 17.966
float128 213.840
mpf128 272.689

In Table 1.13 we see that Hauser’s floating point implementation is indeed faster than

the general floating point implementation, showing that even in this area there is some time
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to be gained by clever implementations of the floating-point arithmetic.

Errors in the Program One regrettable outcome of our code conversion is that the

resulting code is far less stable than the original QSopt code, even if we run the transformed

code with plain double precision arithmetic. The reason for this is not a problem with the

idea of converting the source code of the LP solver, but rather to errors while doing the

conversion.

Good programming practices (like comparing the performance of the code with the

original version every time an important function is changed, or when a suitable number of

lines of code have been changed ) should prevent this.

What surprises the author is that despite these errors the code still is able to solve

almost all problems (but with some penalty on the performance).

Table 1.14: Coding Errors. Here we show running times for some LP instances for the
original QSopt code (QSopt ori), and the transformed QSopt code compiled with double
arithmetic (QSopt dbl).

Instance QSopt ori QSopt dbl

baxter 12.32 13.46
qap12 475.85 511.57
maros-r7 13.49 29.92
greenbeb 9.28 102.00

Some examples showing the effects of these suspected errors can be seen in Table 1.14.

1.5.2 Final Remarks

Taking the results obtained during this research, it seems reasonable to expect to have

simplex implementations that can either produce high quality solutions, or actual ratio-

nal certificates of optimality/infeasibility/unboundedness when required, without too much

performance penalty.

It is also clear from Section 1.5.1 that much can be done to improve this approach, both

from a programming perspective, and from an algorithmic point of view, specially when

handling problems with numerical instabilities.
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Although our code has still some issues regarding numerical stability, we are making it

available to the academic community in the hope that it will be a good tool for solving LP

problems exactly. The code can be found at http:/www.isye.gatech.edu/~despinoz.
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CHAPTER 2

Mixed Integer Problems and Local Cuts

2.1 Introduction

Mixed integer (linear) programming (or MIP), are optimization problems in which the

objective function and all the constraints are linear, and where some or all variables are

restricted to have integer or discrete values.

The range of applications is wide, and as Nemhauser and Wolsey write:

“... Because of the robustness of the general model, a remarkably rich variety

of problems can be represented by discrete optimization models.

An important and widespread area of application concerns the management

and efficient use of scarce resources to increase productivity. These applica-

tions include operational problems such as the distribution of goods, production

scheduling, and machine sequencing. They also include (a) planning problems

such as capital budgeting, facility location, and portfolio analysis and (b) design

problems as communication and transportation network design, VLSI circuit de-

sign, and the design of automated production systems.

In mathematics there are applications to the subjects of combinatorics, graph

theory, and logic. Statistical applications include problems of data analysis and

reliability. Recent scientific applications involve problems in molecular biology,

high-energy physics, and x-ray crystallography. A political application concerns

the division of a region into election districts”. Nemhauser and Wolsey [86].
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Although based in LP, much of the theory available to LP problems does not apply

to MIP problems. Moreover it remains an open question whether or not MIP is solvable

in polynomial time. In fact MIP is NP-complete, and is widely believed that no such

algorithm exists.

The strength of the MIP modeling paradigm has been recognized almost from the be-

ginning of its introduction, but it has been the developments of the last 20 years that has

truly made it an applicable one.

These developments include both theoretical discoveries, and also the growth in com-

puter power, for example Bixby [15] shows that the advances of the last 20 years translate

in a total speed-up of six orders of magnitude while solving LP problems! It is these kind

of improvements that makes it possible today to solve problems like the traveling salesman

problem (TSP) on large instances1.

The standard approach to solve MIP problems is a mixture of two algorithms. The first

algorithm was introduced by Lang and Doig [68] and further improved by Little et al. [73]

and Dakin [30], and is commonly known as the branch-and-bound algorithm. The second

algorithm, introduced by Dantzig, Fulkerson and Johnson [33], is known as the cutting plane

algorithm. The resulting hybrid method is known as the branch-and-cut algorithm, and is

arguably the most successful approach to-date to tackle general MIP problems.

One of the key ingredients to the success of general purposes MIP solvers, is the cut

generation procedure (or cutting plane phase). Bixby et al. [16] shows that by disabling

(mixed) Gomory cuts in CPLEX 6.5, the overall performance goes down by a 35%, and if

on the other hand we disable all other cuts and use just (mixed) Gomory cuts, CPLEX 6.5

achieves 97% improvement against the performance of using no cuts at all. This is a clear

indication of how important cutting planes are for today’s MIP solvers.

The subject has received wide attention in the academic literature, and there is an ever

growing list of valid inequalities and facets for most well-known MIP problems, including

the TSP (for a survey on valid inequalities for the TSP, see Naddef and Pochet [79]), the

vehicle routing problem (VRP), bin-packing problems, the knapsack problem, the stable set

1The largest TSP problem solved to optimality today has 33,810 cities.
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problem and many others.

While the literature for valid inequalities (and facets) for special problems is abundant,

the case of general MIP problems has received less attention. Some notable exceptions are

the Gomory cuts [46, 47, 48], mixed integer rounding inequalities (MIR) [85], the disjunctive

cuts of Balas [9, 10] and others, the lift and project cuts from Lovász and Schrijver [74, 75]

and Balas et al. [11], the split cuts of Cook et al. [27], and the lifted cover [51, 53] and flow

cover [52] inequalities of Gu et al. Note however that MIR cuts, disjunctive cuts, lift and

project cuts and split cuts are closely related, in fact Balas and Perregaard [12] proved that,

for the case of 0-1 mixed integer programming, there is a one to one correspondence between

lift-and-project cuts, simple disjunctive cuts (also called intersection cuts) and MIR cuts.

An interesting new approach to the cutting-generation procedure was introduced by

Applegate et al. [5, 7]. They introduce a procedure to generate cuts that relies on the

equivalence between optimization and separation to get cuts resulting from small GTSP

problems that are the result of a mapping of the original problem. This methodology to

find cuts for the TSP allowed the authors to greatly improve both the total running time

on all instances (by 26% on medium size instances, and by over 50% on larger instances),

increase the number of problems solved at the root node of the branch and cut procedure

(from 42 without using local cuts, to 66), and also to solve the then largest TSP instances

with 13,509 and 15,112 cities respectively.

In this chapter we extend this approach to the case of general MIP problems. The rest

of the chapter is organized as follows. In Section 2.2 we provide some motivation for this

approach, and extend the separation algorithm proposed by Applegate et al. [5, 6, 7] to

the general MIP setting. In Section 2.3 we show how to get facets or high-dimensional

faces from valid inequalities. In Section 2.4 we give a mathematical definition of a mapping,

and give general conditions for them to ensure separation. In Section 2.5 we present the

framework for local cuts on general MIP problems, and discuss some implementation details

of the procedure, as well as some modifications that we use in our actual implementation.

In Section 2.6 we present several of our choices for the mapping part, and Section 2.7 shows

our experience with the procedure on the MIPLIB instances, and on some problems from
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Atamtürk [8]. Finally, Section 2.8 presents our conclusions, thoughts, and hopes on local

cuts.

2.2 The Separation Problem

The separation problem can be stated as follows:

Definition 2.1 (Separation Problem). Given P ⊆ Rn a polyhedron with rational

data, and x ∈ Qn, prove that x ∈ P , or show that there exists a linear inequality

ay ≤ b with (a, b) ∈ Qn+1 such that P ⊆ {y ∈ Rn : ay ≤ b} and that ax > b.

The separation problem is the heart of the cutting plane method, and also an important

part of the branch-and-cut algorithm. However, most of the inequalities known today are

special classes of inequalities for different special structures, and in most cases, they only

provide a partial description of the special structure for which they are facets or faces. A

novel approach was used by Applegate et al. [5, 6, 7], where they find violated inequalities

on the fly for the TSP. In this section we start by providing evidence that trying to find all

facets (or classes of facets) for MIP problems seems to be hopeless. We then move on to

explain the method proposed by Applegate et al. but in the case of general MIP problems.

We end by showing that in theory, we can get any violated face of a polyhedron by this

approach, and show some examples where this approach may work well in practice.

2.2.1 Facet Description of MIPs

In this section we try to provide some evidence that finding complete descriptions of the

convex hull of mixed-integer sets is hard in the sense that the number of facets needed to

describe the convex hull of a problem may grow exponentially with the dimension of the

problem.

Christof and Reinelt [25] computed all (or a large subset of the) facets for several small

MIP problems. We reproduce in Table 2.1 their results for the symmetric traveling salesman

problem with up to 10 nodes (TSPn). In Table 2.2 we reproduce their results for the

linear ordering polytope, which is the convex hull of all characteristic vectors of acyclic

tournaments on a complete directed graph on n nodes (LOPn). Table 2.3 reproduces their

results for the cut polytope, which is the convex hull of all characteristic vectors of edge
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cuts for a complete undirected graph on n nodes (CUTPn). Finally, Table 2.4 reproduces

their results on some 0-1 polytopes with many facets.

Table 2.1: Facet Structure for TSPn.

n Vertices Facets Classes

3 1 0 0
4 3 3 1
5 12 20 2
6 60 100 4
7 360 3,437 6
8 2,520 194,187 24
9 20,160 42,104,442 192

10 181,440 ≥ 51, 043, 900, 866 ≥ 15, 379

Table 2.2: Facet Structure for LOPn.

n Vertices Facets Classes

3 6 8 2
4 24 20 2
5 120 40 2
6 720 910 5
7 5,040 87,472 27
8 40,320 ≥ 488, 602, 996 ≥ 12, 231

Table 2.3: Facet Structure for CUTPn.

n Vertices Facets Classes

3 4 4 1
4 8 16 1
5 16 56 2
6 32 368 3
7 64 111,764 11
8 128 ≥ 217, 093, 472 ≥ 147
9 256 ≥ 12, 246, 651, 158, 320 ≥ 164, 506

It is interesting to note that in all examples presented by Christof and Reinelt, the

number of both facets and classes of facets grow quite rapidly, making one presume that

the situation is worse as we look at larger instances. But a natural question to ask is if this
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Table 2.4: 0-1 polytopes with many facets

Dimension d Vertices v Facets f d
√

f

6 18 121 2.22
7 30 432 2.37
8 38 1,675 2.52
9 48 6,875 2.66

10 83 41,591 2.89
11 106 250,279 3.09
12 152 ≥ 1, 975, 937 ≥ 3.34
13 254 ≥ 17, 464, 365 ≥ 3.60

behavior is restricted to structured problems, or is it a common behavior of the convex hull

of general combinatorial sets?

To give a partial answer to this question, consider P ⊆ {0, 1}d, and define f(P ) as the

number of facets defining its convex hull. Call Pn the set of all 0-1 polytopes in dimension n,

i.e. Pn = {Conv(P ) : P ⊆ {0, 1}n}, and define fn = max{f(P ) : P ∈ Pn}. It is easy to see

that fn ≤ 2n!. This trivial upper bound was improved to 30(n− 2)! by Fleiner, Kaibel and

Rote [37]. The problem of obtaining lower bounds for fn was open until recently, Bárány

and Pór [13] proved that

fn ≥
(

cn

log n

)n/4

for some positive constant c. This bound was further improved by Gatzouras et al. [45] to

fn ≥
(

cn

log2 n

)n/2

for some positive constant c.

Note that these bounds reflect worst case bounds, and again, one may ask whether this

behavior is common or if it is the result of a few pathological cases.

Fortunately, we can give a partial answer to this question. Let us define Pn,N as the

convex hull of N independently chosen random points drawn from the n-dimensional sphere.

Bushta et al. [23] showed that there exists two constants c1, c2 > 0 such that

(

c1 log
N

n

)n/2

≤ E[f(Pn,N )] ≤
(

c2 log
N

n

)n/2
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for all n and N satisfying 2n ≤ N ≤ 2n. Thus, if we take N ≈ 2αn for some α < 1, then we

have that
(

c̃1n

log n

)n/2

≤ E[f(Pn,N )] ≤
(

c̃2n

log n

)n/2

for some c̃1, c̃2 > 0.

Although these previous results are not an actual proof that in general the number

of facets grows exponentially with respect of the number of vertices or the dimension of

general mixed-integer sets, they provide circumstantial evidence of this. This hints towards

the idea that the separation problem over the convex hull of mixed-integer sets should be

solved through an optimization oracle.

2.2.2 The Optimization Oracle and the Separation Problem

Here we present how through an optimization oracle, one can construct a separation algo-

rithm. We start by defining a theoretical optimization oracle:

Definition 2.2 (Optimization Oracle). We say that OPT is an optimization oracle

for a rational polyhedron P ⊆ Rn, if for any c ∈ Qn it asserts that P is the empty

set, or provides x∗ ∈ P ∩Qn such that c · x∗ ≥ c · x for all x ∈ P , or provides r∗ ∈ Qn

a ray in P such that c · r∗ > 0, ‖r∗‖ = 1, and c · r∗ ≥ c · r for each ray r of P with

‖r‖ ≤ 1.

The output of the algorithm is of the form (status, β, y), where status is one of

empty, unbounded or optimal; β contains the optimal value of max{ctx : x ∈ P}

if the problem has an optimal solution, and y contains the optimal solution or an

unbounded ray if the status is optimal or unbounded respectively.

A Linear Programming Formulation We now give a linear programming formulation

to the separation problem. Consider P a polyhedron. Note that there exist Pc and Pr such

that P = Pc + Pr with Pc a bounded polyhedron, where

Pc =
{

x ∈ Qn : ∃λ ∈ QIc
+ ,
∑

(λivi = x : i ∈ Ic), e · λ = 1
}

(2.1)
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with {vi : i ∈ Ic} ⊂ Qn, e the vector of all ones whose number of components is determined

by the context, and where

Pr =
{

x ∈ Qn : ∃λ ∈ QIr
+ ,
∑

(λiri = x : i ∈ Ir)
}

(2.2)

with {ri : i ∈ Ir} ⊂ Qn.

Then, by definition, a given x∗ ∈ Qn is an element of P if and only if there is a solution

(λc, λr) of the system

∑

i∈Ic

λc
ivi +

∑

i∈Ir

λr
i ri = x∗, etλc = 1, (λc, λr) ≥ 0. (2.3)

By duality, system (2.3) has no solution if and only if there is a vector a ∈ Qn and b ∈ Q

such that

atvi − b ≤ 0 ∀i ∈ Ic (2.4a)

atri ≤ 0 ∀i ∈ Ir (2.4b)

atx∗ − b > 0. (2.4c)

Note that any (rational) cut that separates x∗ from P is in one-to-one correspondence

with solutions of (2.4). This opens the possibility of choosing our cut under some criteria, for

example, we could choose to minimize the number of non-zeros in a (i.e. try to find a sparse

cut), or minimize the sum of the absolute values of the components of a that correspond

to continuous variables, or simply find the most violated cut. Unfortunately, there is no

single criteria to identify the best cut (or a set of cuts) among all cuts, and moreover, some

criteria (such as minimizing the number of non-zeros) seem to require integer variables for

their formulation. For the sake of simplicity, we choose to maximize the violation of the cut

subject to the normalization ‖a‖1 = 1. This problem may be formulated as

max atx∗ − b
s.t. atvi − b ≤ 0, ∀i ∈ Ic

atri ≤ 0, ∀i ∈ Ir

a− u + v = 0
et(u + v) = 1
u, v ≥ 0.

(2.5)

A drawback of formulation (2.5) is that the number of constraints is |Ir|+ |Ic|+ n + 1,

which might be quite large. This, plus the knowledge that in practice the number of
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simplex iterations tends to grow linearly with respect to the number of constraints other

than bounds and logarithmically with respect to the number of variables, suggests that

instead of solving (2.5) we should solve its dual,

min s
s.t.

∑

i∈Ic

λc
ivi +

∑

i∈Ir

λr
i ri + w = x∗

etλc = 1
−w + set ≥ 0
w + set ≥ 0

λr, λc ≥ 0.

(2.6)

Note that (2.6) has only 3n + 1 constraints other than bounds on individual variables,

thus improving (in most cases) from the bound |Ir| + |Ic| + n + 1 in the case of (2.5).

However, if we choose to minimize ‖a‖1 subject to the constraint atx∗ = b + 1, then we

obtain the following formulation for the problem:

min et(u + v)
s.t. atvi − b ≤ 0, ∀i ∈ Ic

atri ≤ 0, ∀i ∈ Ir

a− v + u = 0
atx∗ − b = 1
u, v ≥ 0,

(2.7)

whose dual is

max s
s.t. sx∗ − ∑

i∈Ic

λc
ivi −

∑

i∈Ir

λr
i ri + w = 0

−s + etλc = 0
λc, λr ≥ 0, −e ≤ w ≤ e.

(2.8)

Several observations should be made, first, problem (2.8) has only n+1 constraints other

than bounds on individual variables, which is a notable improvement from formulation (2.6),

which has 3n+1 constraints. Second, problem (2.8) is trivially feasible (the all zero solution

is always feasible), and then, if problem (2.8) has an optimal solution, its dual gives us a

separating inequality for P and x∗, and if the problem is unbounded, then the unbounded

ray provides us with a decomposition of x∗ into elements in Pc and Pr, thus providing us with

a proof that x∗ ∈ P . Finally, note that problems (2.5) and (2.7) are essentially the same.

More precisely, assuming that the separation problem is feasible, then if (a, b) is an optimal

solution for (2.5), then atx∗− b > 0, and then (ã, b̃) = (a/(atx∗− b), b/(atx∗− b)) is feasible

for (2.7). Moreover, (ã, b̃) is optimal for (2.7), if not, then there exists a separating cut (a′, b′)
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such that a′tx∗ − b′ = 1 and such that ‖a′‖1 < ‖ã‖1 = ‖a‖1/(atx∗ − b) = 1/(atx∗ − b), but

this implies that atx∗ − b < 1/‖a′‖1 = (a′tx∗ − b)/‖a′‖1, which contradicts the optimality

of (a, b) for (2.5). This proves that any optimal solution of (2.5) is an optimal solution

of (2.7) (after scaling) and any optimal solution of (2.7) is an optimal solution for (2.5)

(after scaling).

In the remaining of the text we will always assume that the separation problem is

formulated as (2.8), unless otherwise stated.

Using the Optimization Oracle One of the obvious problems with our linear program-

ming formulation of the separation problem is that the number of variables can be quite

large. It is in this part that the optimization oracle plays an important role.

Fortunately, it is possible to solve (2.8) even when writing down all columns is impossible.

The technique was introduced by Ford and Fulkerson [62] and by Jewell [60], and is known

as delayed column generation, or column generation for short.

Algorithm 2.1 Separation through optimization oracle SEP(OPT, x∗, Ic, Ir)

Require: OPT (c) Optimization oracle for P .
x∗ point to be separated from P .
{Ic} Initial set of feasible points in P .
{Ir} Initial set of rays of P .

1: loop
2: Solve (2.8) over Ic and Ir.
3: if (2.8) is unbounded then
4: return x∗ ∈ P .
5: end if
6: let a, b be an optimal dual solution to (2.8)
7: (status, β, y)← OPT (a).
8: if status = unbounded then
9: Ir ← Ir ∪ {y}.

10: else if status = optimal and β > b then
11: Ic ← Ic ∪ {y}.
12: else
13: return x∗ /∈ P , (a, b)
14: end if
15: end loop

The idea is to start with some set I ′c ⊆ Ic and I ′r ⊆ Ir (both of which may be empty),

and solve (2.8) under the restricted set of columns I ′c and I ′r. If the problem is unbounded,
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then we have a proof that x∗ ∈ P . Otherwise, we obtain a tentative inequality atx ≤ b that

is violated by x∗, We then call the optimization oracle to check whether P ⊆ {x : atx ≤ b}

by maximizing atx over P . If P ⊆ {x : atx ≤ b}, we end with the inequality atx ≤ b.

Otherwise, we add a point x′ in P such that atx′ > b to the set I ′c, or a ray r′ to I ′r such that

atr′ > 0 and repeat the process. An overview of this algorithm can be seen in Algorithm 2.1.

2.2.3 On the Polynomiality and Finiteness of the Separation Algorithm

A first question to answer is whether Algorithm 2.1 is polynomial. Unfortunately the answer

is not easy. Since the algorithm relies on an LP problem to find a separating inequality,

we need to invoke the ellipsoid method as our algorithm to solve this linear programming

problem. Moreover, an inspection of (2.7), suggests to use again the ellipsoid method to

solve it, with our optimization oracle as the feasibility oracle for the problem, and then,

allowing us to say that the scheme is polynomial as long as the optimization oracle is

polynomial.

However, we do not use the ellipsoid method as our algorithm of choice, instead we use

the simplex algorithm. Under this setting, polynomiality is not a valid question anymore,

but we may still want to know under which conditions the algorithm will terminate. To

provide such a guarantee is enough to add some conditions on the output of our optimization

oracle.

Condition 2.1 (Extreme Ray Condition). We say that an optimization oracle

OPT for a polyhedron P satisfies the extreme ray condition if and only if whenever

it outputs (unbounded, β, y), y is an extreme ray of P .

Condition 2.2 (Extreme Point Condition). We say that an optimization oracle

OPT for a polyhedron P satisfies the extreme point condition if and only if whenever

it output (optimal, β, y), y is an extreme point of P .

It is easy to see that whenever an optimization oracle satisfies Condition 2.1 and Condi-

tion 2.2, then Algorithm 2.1 will terminate after a finite number of iterations, this is because

both the set of all extreme points and extreme rays of any polyhedron P are finite, and
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because each extreme point and ray can be obtained at most once during the execution of

the algorithm.

Note that Condition 2.2 seems to be too restrictive for mixed-integer polyhedrons, where

an optimal solution obtained by either dynamic programming, or by branch and bound may

not satisfy such a requirement. Fortunately, we can relax Condition 2.2, but we need some

definitions.

Definition 2.3 (Integer Projection). Let P ⊆ Rn1 × Zn2 be a polyhedron with

rational data, we define its integer projection

Pint := {z ∈ Zn2 : ∃x ∈ Rn1 , (x, z) ∈ P} .

Moreover, for every z ∈ Pint we define

Pz :=
{
(x′, z′) ∈ P : z′ = z

}
.

Now we present an alternative for Condition 2.2:

Condition 2.3 (Mixed Integer Extreme Point Condition). We say that an

optimization oracle OPT for a polyhedron P satisfies the mixed integer extreme point

condition if and only if whenever it outputs (optimal, β, y), y = (y1, y2) is an extreme

point of Py2 , and |Pint| is finite.

Note that the requirement of |Pint| in Condition 2.3 is not really restrictive, because

Pint can always be assumed to be a sub-set of Pc for a suitable choice of Pc.

Final Remarks on the performance of the Separation Algorithm We should note

that whenever the separation algorithm returns a separating inequality, the inequality is a

face of P , and moreover, the separation algorithm also return a set of points in P satisfying

it at equality.

A drawback of the previous results is that they only show that the algorithm terminates

after a finite number of steps if we use the simplex algorithm, but also show that if we

use the ellipsoid method, then the number of steps (or calls to the optimization oracle)
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is not only finite, but also polynomial in the size of the problem input. However, in our

experiments, the number of calls to the optimization oracle only grows linearly in the

dimension of the problem P , with a constant factor of less than 3. This suggests that it

may be possible to prove that in general, regardless of the algorithm used to solve the linear

programming and the column generation problems, the number of calls to the optimization

oracle grows polynomially on the size of the problem. Finally, note that Conditions 2.2,2.1

and Condition 2.3 are sufficient conditions to ensure finiteness of Algorithm 2.1 while using

the simplex algorithm. However, the author feels that a proof of finiteness for the simplex-

implementation of the algorithm does not need those extra conditions.

2.3 Obtaining high-dimensional Faces

Up to now, we have given a general form to to solve the separation problem, provided that

we have an optimization oracle for our polyhedron. Although the algorithm guarantees that

the obtained cut (if there is one) is good in some sense, it does not guarantee it to be a facet

of P . An example of such a situation can be seen in Figure 2.1.

x∗
P

← atx ≤ b

Figure 2.1: Example of a solution of Algorithm 2.1. In this example, the optimal solution
to (2.8) is the shown inequality atx ≤ b, which is a face of the polyhedron P , but is not a
facet.

The appeal of facets is that they are inequalities that can not be replaced by any other

inequality (but for a scaling factor and by adding multiples of equality constraints) in the

description of a polyhedron, and also, they are maximal (by inclusion) among all possible

faces.

In this section we describe an algorithm that transforms the inequality found by Algo-

rithm 2.1 (or any other face of a polyhedron) into a facet of P . This is an extension of a
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similar algorithm described by Applegate et al. [5, 6, 7] in the context of the TSP.

2.3.1 An Algorithmic Approach

Let us start by defining some notation. Let P be our working polyhedron, and assume it

to be non-empty. Let x∗ be the point being separated from P , satisfying x∗ /∈ P . Let

atx ≤ b (2.9)

be the inequality found by Algorithm 2.1. Let OPT be our optimization oracle for P , and

define Po as the set of feasible points of P satisfying (2.9) at equality found at the end of

Algorithm 2.1. Note that since we are assuming that P 6= ∅, that (2.9) is the result of

Algorithm 2.1, and also x∗ /∈ P , then we have that Po 6= ∅.

Another detail is that, since we are not assuming that P is full-dimensional, we need

to take this into account while looking for facets. In order to do this, we define P⊥, the

orthogonal of P , as

P⊥ :=
{
x ∈ Rn : xt(y − yo) = 0, ∀y ∈ P, and some fixed yo ∈ P

}
.

Note that the choice of yo is arbitrary, and P⊥ is independent of it. Let P⊥
o := {p1, . . . , pr}

be a generating set for P⊥, and let x̄ be a point in P such that atx̄ < b, then, by definition,

inequality (2.9) is a facet of P if and only if the system

w(pt
iyo) + vtpi = 0 ∀pi ∈P⊥

o (2.10a)

w − vtxi = 0 ∀xi ∈Po (2.10b)

w − vtx̄ = 0 (2.10c)

(w, v) ∈ [−1, 1]n+1 (2.10d)

has as unique solution the all zero vector. Note that condition (2.10d) is not really needed,

but it helps to make the feasible region of Problem (2.10) a compact set. Note also that

condition (2.10c) ensures that P * {x : atx = b}, i.e. that (2.9) is a proper face of P .

But if there exists a non-trivial solution (w, v) to (2.10), what should we do? One

possibility would be to try to find more affine independent points that satisfy (2.9) at

equality. Unfortunately, there are some drawbacks for this approach, first, we would need

a more deep knowledge of P , in fact, the provided optimization oracle would not help us
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in this endeavor, even worst, this deeper knowledge of P may not be available. A second

problem is that there may be no more affine independent points in P that satisfy (2.9) at

equality, just because atx ≤ b is not a facet of P .

Instead, we take an algorithmic approach. This algorithm allow us to start with a partial

description of Po and of P⊥
o , and ensures that at every iteration it will either increase the

dimension of P⊥
o , or increase the dimension of Po while possibly modifying the current

inequality, or finish with the result that (2.9) is in fact a facet for P , or proves that (2.9) is

a valid equation for P . We do this in such a way as to ensure that we have a good violation,

and also that all access to P is through our optimization oracle OPT .

Ensuring a Proper Face Our first problem is to either find out that our current separat-

ing hyperplane atx ≤ b is a proper face of P , or if it is a valid equation for P . Fortunately,

this has an easy answer, we just maximize over P the function −a; if the problem is un-

bounded, then we can easily find a point x̄ ∈ P such that atx̄ < b; if on the other hand

the problem has an optimal solution with value different from −b, then such an optimal

solution provide us with the sought x̄ ∈ P ; otherwise, the optimal value is −b, thus proving

that atx = b is a valid equation for P that is violated by x∗.

P ′

at
−x ≤ b− →

↙at
+x ≤ b+

y

z

← atx ≤ b

x∗

Po

x̄

w

Figure 2.2: Non-Facet Certificates I. Here we show a possible outcome for the mapping of
P through atx and vtx, the points x̄, Po and x∗ refer to their projection into P ′, as well as
all the inequalities. The gray area represent P ′.
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The (non) Facet Certificate Once we have x̄, and a proof that the only solution

to (2.10) is the all-zero vector, we finish with a certificate that the current inequality is

a facet.

If, on the other hand, we find a non-zero solution (w, v), the natural question to ask

is whether this inequality can be used in any form to achieve our goal of either increasing

the dimension of Po or of P⊥
o . Before answering this question, let us give some intuition:

Consider P ′ := {(y, z) ∈ R2 : ∃x ∈ P, y = atx, z = vtx}. Figure 2.2 shows how P ′ might

look like. The idea that we will use, is to tilt our current inequality atx ≤ b, using as

pivot the set Po, using as rotating direction the vector (v, w), until we touch the border of

P , identifying then a new linearly independent point. Figure 2.2 also shows two resulting

inequalities at
+x ≤ b+ and at

−x ≤ b−, both of them with dimension one more than the

original constraint atx ≤ b. It is easy to see that, if we restrict ourselves to move in this

two-dimensional space, these two inequalities are all inequalities that we can find by rotating

our original constraint atx ≤ b.

P ′

at
−x ≤ b− →

at
+x ≤ b+

y

z

← atx ≤ b

x∗

Po

x̄

w

(a)

P ′

at
=x ≤ b=

y

z

← atx ≤ b

x∗

Po

x̄

w

(b)

P ′

at
−x ≤ b− →

← at
+x ≤ b+

y

z

← atx ≤ b

x∗

Po

x̄

w

(c)

P ′

←at
+x ≤ b+

←at
−x ≤ b−

y

z

← atx ≤ b

x∗

Po

x̄

w

(d)

Figure 2.3: Non-Facet Certificates II. Here we show some of the possible ill-behaving
outcomes for the mapping of P through atx and vtx, the points x̄, Po and x∗ refer to their
projection into P ′, as well as all the inequalities. The gray area represent P ′.
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The Facet Procedure Assuming that we can perform this tilting procedure, we still

must bear in mind that Figure 2.2 is just one possible outcome for P ′, Figure 2.3 shows four

ill-behaving outcomes: Figure 2.3(a) is an example where one of the resulting inequalities

coincides with vtx ≤ w. Figure 2.3(b) shows an example where vtx = w is in fact a

valid equation for P , and then giving us a new point v to add to P t
o . Figure 2.3(c) shows

an example where one side of the tilting is in fact our original inequality atx ≤ b, and

Figure 2.3(d) shows an example where both sides of the tilting are our original inequality.

We will provide a tilting algorithm in Section 2.3.2, but in the meantime, let us assume

that we do have a tilting routine with the following characteristics:

Condition 2.4 (Abstract Tilting Procedure: TILT(a, b, v, w, x̄, Po, OPT )).

Input The input of the algorithm should satisfy all of the following:
• atx ≤ b a face of P , and Po ⊂ P set of points satisfying it at equality.
• vtx ≤ w an inequality linearly independent from atx ≤ b, satisfied at

equality by all points in Po.
• x̄ ∈ P such that atx̄ < b and vtx̄ = w.
• OPT optimization oracle for P .

Output The output should be one of the following:
• (unbounded,a, b, r), where r is a ray for P that satisfies atr = 0 and

vtr > 0.
• (optimal,v′, w′, x̄′) where (v′, w′) is a non-negative combination of (v, w)

and of (a, b) and such that {max v′tx : x ∈ P} = w′, and where x̄′ ∈ P
such that v′tx̄′ = w′ and such that x̄′ is affine independent from Po.

Note that if we have a non-facet certificate (v, w, x̄) for the inequality atx ≤ b with point

set Po and equation set P⊥
o , then we can obtain both a+, b+ and a−, b− with the calls

(status1, a+, b+, x̄1) = TILT(a, b, v, w, x̄, Po, OPT ), and

(status2, a−, b−, x̄2) = TILT(a, b,−v,−w, x̄, Po, OPT ).

With this information, we can the finish our facet procedure. If status1 = optimal and

(v+, w+) = (v, w), and status2 = optimal and (v−, w−) = (v, w), then we are in the

situation depicted in Figure 2.3(b), and we can add v to P⊥
o , increasing its dimension by

one, and repeat the process.

In any other situation we have two inequalities (possibly the same one), and we pick the

one which is most violated by x∗; assuming that a+, b+ is the most violated one, then, we

replace a, b with a+, b+. If status1 = optimal we add x̄1 to Po, otherwise, we add x̄1 + x
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Algorithm 2.2 FACET(a, b, x∗, Po, P
⊥
o , OPT )

Require: atx ≤ b face of P such that atx∗ > b.
∅ 6= Po ⊂ P such that atx = b for all x ∈ Po.
P⊥

o ⊂ P⊥ and OPT optimization oracle for P .
1: xo ← x ∈ Po /* select some point of Po. */
2: loop
3:

/* find proper face certificate */

4: (status, β, y)← OPT (−a).
5: if status = optimal and β = −b then
6: return (equation, a, b) /* P ⊆ {x : atx = b} */
7: else if status = unbounded then
8: x̄← y + xo.
9: else

10: x̄← y.
11: end if
12:

/* get (non-)facet certificate */

13: if (0, 0) is the unique solution for Problem (2.10) then
14: return (facet, a, b)
15: end if
16: (v, w)← a non-trivial solution for Problem (2.10).
17: (status+, a+, b+, x̄+)← TILT(a, b, v, w, x̄, Po, OPT ).
18: (status−, a−, b−, x̄−)← TILT(a, b,−v,−w, x̄, Po, OPT ).
19:

/* update a, b, Po, P
⊥
o */

20: if status+ = status− = unbounded then
21: Po ← Po ∪ {xo + x̄+}. /* grow dimension of Po */
22: else if status+ = status− = optimal and (a+, b+) = (a−, b−) = (v, w) then
23: P⊥

o ← P⊥
o ∪ {v}. /* grow dimension of P⊥

o */
24: else
25: if status± = unbounded then
26: x̄± ← xo + x̄±.
27: end if
28: λ+ ←

(
at

+x∗ − b+

)
/‖a+‖1.

29: λ− ←
(
at
−x∗ − b−

)
/‖a−‖1.

30: if λ+ > λ− then
31: (a, b)← (a+, b+).
32: Po ← Po ∪ {x̄+}. /* grow dimension of Po */
33: else
34: (a, b)← (a−, b−).
35: Po ← Po ∪ {x̄−}. /* grow dimension of Po */
36: end if
37: end if
38: end loop
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to Po where x is any point in Po, note that since in any case the newly added point to Po

increase its dimension by one.

Since at every step we either increase the dimension of P⊥
o or the dimension of Po, the

algorithm performs at most n iterations, where P ⊂ Rn. Moreover, in the case where we

add one point to Po, since atx∗ − b > 0, and {x : at
+x ≤ b+, at

−x ≤ b−} ⊆ {x : atx ≤ b},

then at least one of the tilted inequalities separates x∗ from P . In the case where we add a

point to P⊥
o , since we keep our original constraint, then we still have a separating inequality

for P and x∗.

Algorithm 2.2 shows an outline of the complete algorithm, that starts with a face of P ,

and returns a facet for P or a separating equation for x∗.

2.3.2 Solving the Tilting Problem

We now show an algorithm that performs the tilting procedure as specified by Condition 2.4.

We assume that we have some set Po feasible for P and satisfying at equality the inequality

atx ≤ b. We also have another inequality (although it might not be valid for P ) vtx ≤ w

such that Po and x̄ satisfy it at equality, but also atx̄ < b and x̄ ∈ P . Note that we are

interested in obtaining only a+, b+, the procedure to obtain a−, b− is completely analogous.

Our objective is to find a valid inequality v′tx ≤ w′ for P , such that Po satisfies it at

equality, and a new affine independent point x̄′ from Po that also satisfies it at equality. The

idea is to use vtx ≤ w as our candidate output constraint, and x̄ as our candidate for an affine

independent point, but before we can claim this, we must show that {max vtx : x ∈ P} = w.

If we maximize v over P , and there is an optimal solution with value w, then we are in

the situation depicted by Figure 2.3(a) or by Figure 2.3(b). In this case we only need to

return vtx ≤ w as our tilted inequality, and report x̄ as our new affine independent point.

If the problem is unbounded, then we are in the situation depicted by Figure 2.3(c) or

by Figure 2.2. In this case, we have in our hands an extreme ray r of P (returned by the

optimization oracle). Note that since atx ≤ b is a valid inequality for P , then atr ≤ 0. If

atr = 0, then it is enough to take any x ∈ Po and report the point x + r as our new affine
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independent point2, and return our original inequality atx ≤ b as our tilted inequality.

If not, in the case where the problem is unbounded, define x′ = x + r, where r is the

ray returned by the oracle, and x is some point in Po. In the case where there is an optimal

solution, define x′ as the optimal solution returned by the oracle.

Pox̄o x∗
y

z

P

x̄1 x̄2

x̄3

x̄4

(a)

Pox̄o x∗
y

z

P

x̄1 x̄2

x̄3

x̄4

(b)

Pox̄o x∗
y

z

P

x̄1 x̄2

x̄3

x̄4

(c)

Pox̄o x∗
y

z

P
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y

z

P

x̄1 x̄2

x̄3
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Pox̄o x∗
y

z

P

x̄1 x̄2

x̄3

x̄4

(f)

Figure 2.4: Example of a push step. Here we show a sequence of push steps that start from
some (invalid) inequality vtx ≤ w and rotate it until we obtain a valid inequality for P .
The gray area represent P

Note that we are now in the situation depicted in Figure 2.2 or in Figure 2.3(d). More-

over, we have that x′ ∈ P , vtx′ > w, and thus x′ is affine independent from Po. If atx′ = b,

2Note that x + r is affine independent from Po because vtx = w for all points in Po, but vtr > 0.
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then we can output our original constraint atx ≤ b as our resulting constraint, and x′ as

our new affine independent point. If this is not the case (i.e. atx′ < b), then the trick is

to find a positive combination of vtx ≤ w and of atx ≤ b such that every point in Po still

satisfies it at equality, but such that x′ also satisfy it at equality. For that let λ := vtx′−w,

µ := b− atx′, and define the inequality

(v′, w′) = λ(a, b) + µ(v, w). (2.11)

Since (2.11) is a positive combination of (a, b) and (v, w), then every point x in Po satisfies

Algorithm 2.3 TILT(a, b, vo, wo, x̄o, xo, OPT )

Require: x̄o ∈ P , atx̄o < b, vt
ox̄o = wo.

xo ∈ P , atxo = b, vt
oxo = wo.

OPT optimization oracle for P .
atx ≤ b is a valid inequality for P .
(a, b) and (vo, wo) are linearly independent.

1: k ← 0.
2: loop
3: (status, β, y)← OPT (vk)
4: if status = unbounded and y · a = 0 then
5: return (unbounded, a, b, y + xo) /* y is an extreme ray of P */
6: end if
7: if status = optimal and β = w then
8: return (optimal, vk, wk, x̄k)
9: end if

10: if status = unbounded then
11: x̄k+1 ← y + xo

12: else
13: x̄k+1 ← y
14: end if
15: λ← vk · x̄k+1 − wk

16: µ← b− a · x̄k+1

17: if µ = 0 then
18: return (optimal, a, b, x̄k+1)
19: end if
20: vk+1 ← λa + µvk.
21: wk+1 ← λb + µwk.
22: k ← k + 1.
23: end loop

v′tx = w′, but more importantly, x′ also satisfies (2.11) at equality. To see this, note that

v′tx′−w′ = λ(atx′−b)+µ(vtx′−w) = −λµ+µλ = 0. Now we replace (v, w) by (v′, w′) and

x̄ by x′, and we repeat the process of optimizing v over P described above. Note also that
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in the case where the oracle returns unbounded, then new candidate inequality v ′ satisfies

v′ · r = 0, where r is the ray returned by the oracle.

Every step where we re-define our tentative (v, w) inequality is called a push step.

Figure 2.4 shows a sequence of push steps that end with the desired inequality. Algorithm 2.3

shows an outline of the tilting algorithm, and also defines the output for it.

Is the Tilting Procedure Correct? Here we show that Algorithm 2.3 satisfies the

Condition 2.4. We will only assume that our oracle OPT satisfies the optimization oracle

Definition 2.2, P 6= ∅, Po 6= ∅ and that atx ≤ b is a valid inequality for P .

Claim 2.1. At every step we have that there exists λk ≥ 0 and µk > 0 such that (vk, wk) =

µk(vo, wo) + λk(a, b).

Proof. We proceed by induction, the case k = 0 being trivially true with λo = 0, µo = 1.

We assume now that the result is true for k, and that the algorithm does not stop

during this iteration (otherwise we have finished the proof), then we have that x̄k+1 is such

that λ = vt
kx̄k+1 − wk > 0 and that µ = b − atx̄k+1 > 0. By definition, (vk+1, wk+1) =

λ(a, b)+µ(vk, wk), but since (vk, wk) = λk(a, b)+µk(vo, wo). Now by defining λk+1 = λ+λkµ

and µk+1 = µµk > 0 we obtain our result.

Claim 2.2. At every step we have that:

1. x̄k and all x ∈ Po satisfy vt
kx = wk.

2. x̄k is affine independent from Po.

Proof. We proceed by induction.

Note that for k = 0 the result is obvious, since the conditions are assumptions on the

input x̄o and vt
ox ≤ wo.

Now, we may assume that x̄k and vt
kx ≤ wk satisfy the conditions of the claim. If the

algorithm returns during this iteration with output (unbounded, a, b, r), then, by definition,

r satisfies atr = 0 and that vt
kr > 0, but since vk = µkvo+λka, then 0 < vt

kr = µkv
t
or+λka

tr

= µkv
t
or. Now since µk > 0, then vt

or > 0.

If the algorithm returns with output (optimal, vk, wk, x̄k), then by the induction hy-

pothesis x̄k is affine independent from Po and x̄k ∈ P , also vt
kx ≤ wk is valid for P and
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all points in Po satisfy it at equality, and by Claim 2.1, it is a non-negative combination of

(vo, wo) and (a, b).

Otherwise, since vt
kx = wk for all points in Po and vt

kx̄k+1 > wk, then x̄k+1 is affine

independent from Po. Thus, if the algorithm returns (optimal, a, b, x̄k+1), the output sat-

isfies the Condition 2.4. Otherwise, by definition of vk+1, wk+1, the conditions of Claim 2.2

holds.

Does the Tilting Procedure Stop? We have proved that if the tilting algorithm stops,

the output satisfies the Abstract Tilting Procedure Conditions. It only remains to prove

that the algorithm stops after a finite number of steps.

The proof rests on the fact that the set of facets of

P ′ := {(y, z) ∈ R2 : ∃x ∈ P, y = atx, z = vtx}

is finite and that the tilting algorithm performs no more than two iterations for each of

these facets. We start by proving that if the oracle returns unbounded, then it must be

during the first iteration of the algorithm, and then we tackle the case of bounded facets of

P ′.

Claim 2.3. The optimization oracle may return with status unbounded only during the

first iteration of the tilting procedure.

Proof. By contradiction, assume that for some k > 0 the optimization oracle returns with

status unbounded. Let r be the ray returned by the oracle, then we have that vt
kr > 0 and

that atr ≤ 0. By Claim 2.1 we have that vk = λka+µkvo for some λk ≥ 0 and µk > 0, then

0 ≤ −λka
tr

µk
< vt

or.

Proving that the problem {max vt
ox : x ∈ P} is unbounded. We may thus assume that

during our first call to the optimization oracle the output was (unbounded,β, r ′), where r′

is an unbounded ray that maximizes vt
oy among all rays y of P with ‖y‖ = 1. Note that

vt
or

′ ≥ vt
or and vt

kr ≥ vt
kr

′ > 0⇔ λk

µk
atr + vt

or ≥
λk

µk
atr′ + vt

or
′ > 0.
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After multiplying the last two inequalities by -1, and adding the term vt
or, we obtain

0 ≤ −λk

µk
atr′ − vt

or
′ + vt

or < vt
or.

By noting that λ1 = vt
or

′ and that µ1 = −atr′, and subtracting the term vt
or, we obtain

λk

µk
<

λ1

µ1
.

On the other hand, by Claim 2.1, we have that

λk+1

µk+1
=

λ

µµk
+

λk

µk
≥ λk

µk
≥ λ1

µ1
.

This contradicts our assumption that the oracle returned unbounded for some iteration

k > 0.

Now we proceed to prove that for each facet of P ′, the oracle may return at most two

points belonging to the same facet. The idea that we use in the proof is that the quantity

λk/µk can be interpreted as the slope of our current inequality vt
kx ≤ wk when we look at it

in the P ′ space. We link this slope with the slopes of each of the facets of P ′ in increasing

order, so that we can easily identify the possible outputs of the oracle once we look at them

in the P ′ space. We proceed first with some definitions and a claim before proving our main

result.

Let X̄ := {x̄k}k∈K be the set of points returned by the optimization oracle during the

execution of the tilting algorithm (note that we are not assuming this sequence to be finite).

We will abuse notation and regard x̄k ∈ X̄ as an element of P , but also as an element of

P ′, in which case we refer to its projection (z̄k, ȳk) := (vt
ox̄k, a

tx̄k).

Let F be the set of all facets of P ′ ∪ {(z, y) : y ≥ w}, and let z = αF (b− y) + zF be the

equation defining F in P ′. Note that since (wo, b) ∈ P ′ then zF ≥ wo.

We now prove that given F ∈ F such that |F ∩ X̄| ≥ 3, then the tilting algorithm stops

at one of the corresponding iterations.

Claim 2.4. Given F ∈ F with x̄k1 , x̄k2 , x̄k3 ∈ F , then the tilting algorithm stops at or

before iteration k3, where k1 < k2 < k3.
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Proof. By contradiction, assume that the algorithm does not stop at or before iteration k3.

Then, we have that 0 < b − atx̄ki
and that 0 < vt

ki−1x̄ki
− wki−1 for i = 2, 3. Thus, by

Claim 2.1, we have that

λk1

µk1

<
λk2

µk2

<
λk3

µk3

. (2.12)

Note also that from Claim 2.1 we also have that

λk+1

µk+1
=

(vt
kx̄k+1 − wk) + λk(b− atx̄k+1)

(b− atx̄k+1)µk

=

(
λk(a

tx̄k+1 − b) + µk(v
t
ox̄k+1 − wo)

)
+ λk(b− atx̄k+1)

(b− atx̄k+1)µk

=
vt
ox̄k+1 − wo

b− atx̄k+1
=

z̄k+1 − wo

b− ȳk+1
.

(2.13)

Since x̄ki
∈ F , we have that vt

ox̄ki
− zF = αF (b − atx̄ki

). Replacing this result in inequal-

ity (2.12) we obtain

b− atx̄k3 < b− atx̄k2 < b− atx̄k1 . (2.14)

Also, from equation (2.13), we have that

λk1

µk1

= αF +
zF − wo

b− atx̄k1

> αF . (2.15)

Note that in (2.15) the strict inequality comes from the fact that zF > wo; if this is not the

case, then it is easy to see that the tilting algorithm would have to stop at iteration k1 + 1,

contradicting our hypothesis. On the other hand, the optimality conditions of x̄k2 imply

that

vt
k2−1x̄k2 − wk2−1 ≥ vt

k2−1x̄k3 − wk2−1, (2.16)

but for x ∈ F , the function vt
k2−1x− wk2−1 can be rewritten as

(b− atx)(αF µk2−1 − λk2−1) + zF − wo. (2.17)

Since k2 − 1 ≥ k1, from Claim 2.1 and from (2.15) we have that λk2−1/µk2−1 > αF , then

the optimality condition for x̄k2 implies that

b− atx̄k2 ≤ b− atx̄k3 , (2.18)

contradicting inequality (2.14). This proves our claim.

From Claim 2.3 and from Claim 2.4, it is easy to see that the number of iterations for

the tilting algorithm is bounded by 2|F|+ 2, thus proving that Algorithm 2.3 is finite.
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2.3.3 More on the Facet Procedure

We have shown the correctness of Algorithm 2.2, and we have also shown that if the orig-

inal inequality separates x∗ from P , then our output constraint also separates x∗ from P ,

however, some care must be taken.

On the violation of the output of the facet procedure Since the output of our sep-

aration algorithm gives us an inequality that is maximally violated (under L1 normalization

of a), it is clear that the output of our facet procedure can not have a higher violation, but

worst, its violation can be arbitrarily small, Figure 2.5 shows an example where no matter

how we choose our output constraint, the final violation is very small. However, if instead

P ′

↙at
+x ≤ b+

↖at
−x ≤ b−

y

z

← atx ≤ b

x∗

Po

x̄

w

Figure 2.5: Non-Facet Certificates III. Here we show yet another possible outcome for the
mapping of P through atx and vtx, the points x̄, Po and x∗ refer to their projection into
P ′, as well as all the inequalities. The gray area represent P ′.

of limiting ourselves to choose either at
+x ≤ b+ or at

−x ≤ b−, we allow us to choose both

constraints, then the distance from x∗ to the set of points satisfying both constraints is at

least the distance from x∗ to the set of points satisfying our original constraint atx ≤ b,

and thus conserving or improving our original violation. This is because the feasible set can

only shrink when we consider both tilting results.

This hints at a possible modification of our facet al.gorithm, where instead of keeping

the most violated inequality, we should save both inequalities and then proceed with the
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facet procedure on the most violated one. The result is that we report a set of inequalities,

which, when considered together, ensure to cut x∗ by at least the same amount as the

original constraint.

We might take this approach even further, by instead of iterating only in the most

violated inequality of the previous iteration, iterate both inequalities through the facet

procedure. The advantage of such modification is that we end with a set of facets of P that

ensure the same violation as the original inequality, but the drawback is that it may require

many more calls to the oracle, slowing down the overall algorithm.

In our actual implementation we choose to keep both inequalities resulting from the

tilting procedure (even if they are not violated at all), but we proceed with the facet

procedure on the most violated inequality returned by the tilting calls.

High-dimensional faces While the appeal of obtaining facets is clear, it may be that

the cost of the overall procedure is too large. In this respect, some rough estimates using

Concorde’s implementation of the procedure, show that the facet part of the procedure

is three to six times more costly than the separation procedure, even when Concorde’s

implementation heavily exploits the structure of the TSP to speed up calculations. This

suggest that, in a more general setting, the procedure to obtain facets can be quite expensive,

thus suggesting to stop the facet procedure after a certain number of steps (thus ensuring

a minimum dimension for the face).

In this setting, an interesting question is how to choose our non-trivial solution v, w to

perform each tilting round?

To answer this question, let us take a closer look into the facet certificate LP. Let

us suppose that we have x̄∗ ∈ P , a point in the affine space defined by the points in

Po ∪ {x̄} = {xi : i = 1, . . . , K}. Then, by definition, there exists λi ∈ R, i = 1, . . . , K such

that
∑

(λi : i = 1, . . . , K) = 1 and such that
∑

(λixi : i = 1, . . . , K) = x̄∗. This allows us

to re-write the facet certificate LP as

w(yt
opi) + vtpi =0 ∀pi ∈P⊥

o (2.19a)

w − vtx′
i =0 ∀xi ∈Po ∪ {x̄} (2.19b)

w − vtx̄∗ =0. (2.19c)
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Note that Problem (2.19) is equivalent to our original formulation (2.10) but for the

normalizing constraints in v, w. Moreover, by replacing w by equation (2.19c) we obtain

w(yt
opi) + vtpi =0 ∀pi ∈P⊥

o (2.20a)

vt(xi − x̄∗) = 0 ∀xi ∈Po ∪ {x̄} (2.20b)

w − vtx̄∗ =0. (2.20c)

By choosing x̄∗ as the L2 projection of x∗ in the affine space generated by Po ∪ {x̄},

then the inequality (x∗ − x̄∗)tx ≤ (x∗ − x̄∗)tx̄∗ is the best inequality separating x∗ and the

affine space spawned by Po ∪ {x̄} in the sense of violation of the inequality, and assuming

that its norm is ‖x∗ − x̄∗‖2. Figure 2.6 shows a possible example of this situation.

〈Po ∪ {x̄}〉P

x̄ Po

x∗

x̄∗

Figure 2.6: Non-Facet Certificates IV. Finding good non-facet certificates. The shaded
area represent P , the set 〈Po ∪ {x̄}〉 represent the affine space generated by Po ∪ {x̄}, and
x∗ is the point that we are separating from P .

This suggests solving the following problem:

max vt(x∗ − x̄∗) (2.21a)

w(yt
opi) + vtpi = 0 ∀pi ∈P⊥

o (2.21b)

vt(xi − x̄∗) = 0 ∀xi ∈Po ∪ {x̄} (2.21c)

w − vtx̄∗ = 0 (2.21d)

‖v‖2 ≤ 1. (2.21e)

Note that the a solution to Problem (2.21) would give us a closest approximation (under

L2 norm) to the ideal solution x∗ − x̄∗ that also satisfies equation (2.21b).

However, if we are to take this approach, there remains the problem of computing x̄∗.

Fortunately, that is not needed at all, by back-substituting (2.21d), and then eliminating

the linearly dependent equation (2.21d) we end with the following equivalent problem:
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max vtx∗ − w (2.22a)

w(yt
opi) + vtpi =0 ∀pi ∈P⊥

o (2.22b)

w − vtxi =0 ∀xi ∈Po ∪ {x̄} (2.22c)

‖v‖2 ≤ 1. (2.22d)

The only problem with (2.22) is that constraint (2.22d) is not linear, but note that if

we replace it with a L∞ normalization we should also obtain a reasonably close solution to

x∗− x̄∗. This is the approach that we took in our implementation, at every step of the facet

procedure described in Algorithm 2.2, we choose a non trivial solution (if one exists) of the

following problem:

max vtx∗ − w (2.23a)

w(yt
opi) + vtpi =0 ∀pi ∈P⊥

o (2.23b)

w − vtxi =0 ∀xi ∈Po ∪ {x̄} (2.23c)

−1 ≤ vi ≤ 1. (2.23d)

Some further questions on the facet procedure Note that the approach that we

have described can be seen as a greedy approach for choosing the new tentative vtx ≤ w

inequality, and although a sensible approach, it is not the only one. Also, we should

remember that this approach is very dependent in the choice of x̄ (i.e. the affine independent

point in P that does not satisfy the current inequality at equality), for which there is a lot

of freedom to choose.

It would be interesting to find procedures to choose both x̄ and v, w such that our

final facet al.so satisfies other properties, for example, that its area is large, or try to find

extensions of our oracle model and the facet al.gorithm that would give as an output all the

facets around a given face of a polyhedron P , thus providing a way to perform IP sensitivity

analysis.

2.4 Looking for Easier Problems: The Mapping Problem

Section 2.2 and Section 2.3 provide us with a method to find facets (or high dimensional

faces) by using an optimization oracle description of the underlying polyhedron P .
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In this section we provide a way to use such a procedure in a cutting plane framework as

a source of cuts for our original problem, providing sufficient conditions for the procedure

to be successful, and some examples of known inequalities that fit the proposed scheme.

Before going any further, we define some notation that will be used in the following

sections. We will call Pip ⊂ Rn the linear mixed-integer problem that we want to solve, and

we will assume that

(Pip) max ctx (2.24a)

s.t. Ax ≤ b (2.24b)

l ≤ x ≤ u (2.24c)

xi ∈ Z ∀i ∈ I. (2.24d)

Where I ⊆ {1, . . . , n}, A ∈ Qm×n, b ∈ Qm, and c ∈ Qn. Furthermore, we will assume

that |I| ≥ 1, i.e. that there is at least one integer requirement for some component of x.

We denote by P ip as the convex hull of all points in Pip, i.e.

P ip :=

{

x ∈ Rn : ∃{xk, λk}k∈K ⊂ Pip × R+,
∑

k∈K

λk = 1,
∑

k∈K

λkxk = x

}

.

Finally, we call Plp as the linear relaxation of Pip, i.e.

(Plp) max ctx (2.25a)

s.t. Ax ≤ b (2.25b)

A′x ≤ b′ (2.25c)

l ≤ x ≤ u, (2.25d)

where (2.25c) are additional constraints valid for Pip.

2.4.1 Taking Advantage of the so-called Combinatorial Explosion

The typical cutting plane approach to solve Pip starts by solving Plp, obtaining an optimal

solution x∗ to it, check whether it satisfies the integer requirements (2.24d), if it does, return

x∗ as our optimal solution, otherwise, find a valid inequality for P ip that separates x∗ from

P ip, add it to our current relaxation Plp, and repeat the process.

A first näıve approach would be to use our separation procedure over P ip, of course

this implies that in order to solve our separation problem we will need to solve several

optimization problems, which may be as hard as solving our original problem, thus rendering

the approach useless.
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We propose instead to use the so-called combinatorial explosion of combinatorial prob-

lems to our advantage. Combinatorial explosion, according to Krippendorff “... it occurs

when a small increase in the number of elements that can be combined, increase the number

of combinations to be computed so fast that it quickly reaches computational limits. E.g.,

the number of possible coalitions (partitions of unlike individuals into like parts) among 3

individuals is 5, among 5 individuals it is 52, among 10 individuals it is 115,975 and among

20 individuals it is 51,724,156,235,572, etc.” [67].

The idea is that instead of working on Pip, we work in a related problem Pip’ that has a

reasonable number of integer variables, that can be solved in a reasonable amount of time,

and that hopefully allows us to cut the current fractional point.

We now make our notion of related problem precise.

Definition 2.4 (Valid Mapping). We say that P ′
ip ⊂ Rn′

is a valid mapping for

Pip ⊂ Rn, if there exists a function π : Rn → Rn′
such that for all points x ∈ Pip we

have that π(x) ∈ P ′
ip. The function π is called the mapping function.

Note that we may have π(Pip) ( P ′
ip, and moreover, it could be that dim(P ′

ip) >

dim(Pip). Note also that by the definition, any valid linear mapping will also satisfy

π(P ip) ⊂ P
′
ip.

Although we might want to use mappings that are obtained from general functions π

(for example, in a 0-1 IP problem, we might use the function π(x) = x2 as our mapping

function), linear affine mappings are of special interest for us. The main reason for this is

that if we find a valid cutting plane aty ≤ b in the mapped space P
′
ip, then we also have

found a valid cutting plane for the original problem, namely atπ(x) ≤ b, and if we write

π(x) = Mx −mo, then the cut in the original space can be written as atMx ≤ b + atmo,

and thus providing a cut that preserves the linearity of the original problem once we add

the cut to the current LP relaxation Plp. We will consider from now on only linear affine

mappings.

Note that the mappings used by Applegate et al. [5, 6, 7] are in fact linear mappings, and

moreover, their choice was geared towards obtaining spaces P
′
ip where they could provide
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efficient optimization oracles, (In fact, they use mappings that map a TSP problem into a

GTSP problem on k nodes where at least k − 1 nodes satisfy the constraint x(δ(ni)) = 2,

and where k is in the range 5− 48). Of course this choice comes at a price, while they are

able to have very fast oracles3, only about 1% of the trials are successful5. Despite this low

success rate, they make heavy use of the special structure of the TSP which allows them to

have good overall results.

2.4.2 Mappings with Guarantees

Since one of our objectives is to extend the idea of local cuts to general MIP, we take a

slightly different approach than that of Applegate et al. [7]. We would like to find conditions

that ensure that our mapping will separate our current fractional point.

In order to do that, we make some further assumptions, namely, we will assume that our

current fractional optimal solution is a basic optimal solution for our current LP relaxation

Plp, which is a natural assumption in the branch-and-cut framework.

Definition 2.5 (Separating Mapping). Given a MIP Pip, a linear programming

relaxation for it Plp, an optimal basic fractional solution x∗ of Plp, a mapping function

π and an image space P ′
ip. We say that the mapping is separating if π(x∗) /∈ P

′
ip.

The relevance of separating mappings is that they ensure that if x∗ /∈ P ip, then π(x∗) /∈ P
′
ip,

and thus ensuring success for the separation algorithm presented in Section 2.2. A necessary

condition that a separating mapping has to satisfy is the following:

Condition 2.5 (S1). Given π a mapping for Pip, an image space P ′
ip, a current LP

relaxation Plp, and x∗ an optimal basic solution of Plp. If there exists µ ∈ Qn′
an

objective function for P ′
ip such that

max
{

µy : y ∈ P
′
ip

}

< µπ(x∗),

Then we say that the mapping satisfy condition S1.

3The average running time for their oracle on a couple of TSPLIB problems is 158µs4, running on a
Linux workstation with an Intel P4 with 2.4GHz.

5These figures were taken from sample runs of Concorde on TSPLIB instances, the actual numbers are
7662 successful separations out of a total of 788089 trials.

80



Note that condition S1 is a rephrasing of the definition of separating mappings. To see this

it is enough to note that P
′
ip is a convex set and µ serves as a separating linear constraint

for P
′
ip and π(x∗).

To give further conditions we must know some details about our mapped space. To fix

these ideas we need some definitions.

Definition 2.6 (Simple Mapping). Given a MIP problem Pip, a mapping function

π, and a mapped space P ′
ip with representation

P ′
ip =






y ∈ Rn′

:
A′y ≤ b′

l′ ≤ y ≤ u′

yi ∈ Z ∀i ∈ I ′






,

where I ′ ⊆ {1, . . . , n′}, A′ ∈ Qn′×m′
, b′ ∈ Qm′

and l′, u′ ∈ Qn′
. We say that the

mapping π is simple if π(Plp) ⊆ P ′
lp, where P ′

lp is defined as

P ′
lp =

{

y ∈ Rn′
:

A′y ≤ b′

l′ ≤ y ≤ u′

}

,

and Plp is the current linear relaxation of Pip.

Note that the notion of a simple mapping is tied with the actual representation of P ′
ip

and of Plp, not just to the mapping function π and the original space and mapped space.

Although considering simple mappings seems to be too restrictive, in practice, we always

know a linear description of P ′
ip as shown in Definition 2.6, and a linear description of P ′

lp.

Even better, working with such a fixed description of P ′
ip and P ′

lp allows us to give more

meaningful conditions on separating mappings.

Condition 2.6 (S2). Given π a simple mapping for Pip, an image space P ′
ip, a current

LP relaxation Plp, and x∗ an optimal basic solution of Plp. If there exists µ ∈ Qn′ \{0}

an objective function for P ′
ip such that

max {µy : y ∈ π(Plp)} ≤ max
{
µy : y ∈ P ′

lp

}
≤ µπ(x∗),

then we say that the simple mapping satisfies condition S2.
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Note that condition S2 is a necessary condition for separating simple mappings, but not

all simple mappings satisfying condition S2 are separating. Also note that Condition 2.6

can be interpreted as asking π(x∗) to be a point on the boundary of P ′
lp. We will assume

from now one that all mappings are simple, unless otherwise stated.

The fact that x∗ is a basic solution to Plp allows us to go further. Let us assume that

Plp =

{

x ∈ Rn :
Ax = b

l ≤ x ≤ u

}

,

where we may have added slack variables in the description of Plp; also assume that B is

the basis defining x∗, and that π(x) = Mx + mo. From Condition 2.6 we have that

max {µMx : Ax = b, l ≤ x ≤ u} = µMx∗. (2.26)

However, our assumptions on x∗, and on the representation of Plp, imply that

max µMx
s.t. Ax = b

l ≤ x ≤ u
⇐⇒

max µ(MN −MBAB−1
AN )xN

s.t. xB = AB−1
(b−ANxN )

l ≤ x ≤ u,

(2.27)

where AB is the square submatrix of A with basic columns, MB is the submatrix of columns

of M of all nonbasic variables in x∗, and AN , MN are the corresponding nonbasic subma-

trices of A and M respectively. Note also that AB−1
AN is just the nonbasic part of the

tableau rows of A for basis B, i.e. AB−1
AN = A

N
.

Thus, the optimality conditions for equation (2.26), can be written as:

n′
∑

i=1

µi

(

MN
ij −

∑

k∈B

MB
ikAkj

)

≥ 0 ∀j ∈ N, x∗
j = uj (2.28a)

n′
∑

i=1

µi

(

MN
ij −

∑

k∈B

MB
ikAkj

)

≤ 0 ∀j ∈ N, x∗
j = lj . (2.28b)

equations (2.28) seem to give little intuition, but in fact, they can be of great help in

the design of our space P ′
ip and its linear representation P ′

lp.

To see this, let us consider the case of MIR cuts. Figure 2.7 shows a typical configuration

of a MIR cut. Note that in the case of an MIR inequality we have that

P ′
ip : y1 − y2 + y3 = b̂

y2, y3 ≥ 0
y1 ∈ Z,

and that
P ′

lp : y1 − y2 + y3 = b̂

y2, y3 ≥ 0,
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≥ (d̂be

− b̂)(
y1
− b̂b
c)

Figure 2.7: The MIR Mapping. Here we show a projection into y1 and y2 of the MIR
mapped space P ′

ip, and the resulting MIR cut. The gray area represent P ′
lp, while the dark

thick lines represent P ′
ip

where b̂ is a fractional value. Note also that in the setting of MIR inequalities, we want that

π(x∗) = (b̂, 0, 0), which is a vertex of P ′
lp that does not belong to P

′
ip. This in turn, by the

optimality conditions of S2, implies that µ1 + µ2 ≤ 0 and that µ1− µ3 ≤ 0. We can choose

µ = (1,−1, 1). Note that this choice of µ does not depend on the value of b̂, but rather on

the structure of P ′
lp.

This leaves the question of how to choose M and mo. In the usual setting of MIR cuts, it

is common to derive the MIR cut such that it depends on only one basic fractional variable,

this implies that

MBA =
(

λ1ā
k, λ2ā

k, λ3ā
k
)t

,

where āk is the tableau row of the basic variable that we have chosen to generate our cut.

Moreover, since āk
k = 1, and the variable xk is chosen such that it is integer, this leads to

the common choice of λ = (1, 0, 0), this decision completely defines MB as MB
·,j = 0 for

j 6= k and MB
·,k = e1.

With these choices, and calling M = (mij), we can rewrite equations (2.28) as follows:

m1j −m2j + m3j − āk
j ≥ 0 ∀j ∈ N, x∗

j = uj (2.29a)

m1j −m2j + m3j − āk
j ≤ 0 ∀j ∈ N, x∗

j = lj . (2.29b)
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Note however, that the requirement π(Plp) ⊆ P ′
lp can only be enforced by the constraint

m1· −m2· + m3· = āk, which trivially implies equations (2.29).

An important point to note from the MIR mapping example is the mechanism that is

used to ensure that there always is a violated inequality, namely, the choice of π(x∗) to be

an extreme point of P ′
lp but such that it does not belong to P ′

ip, which also implies that

π(x∗) /∈ P
′
ip, and then ensuring the existence of a cut separating π(x∗) and P

′
ip.

We formalize this notion, and end this section with a sufficient condition for simple

mappings to be also separating mappings.

Definition 2.7 (Pointed Mappings). We say that a simple mapping is a pointed

mapping if π(x∗) is an extreme point of P ′
lp and if π(x∗) /∈ P ′

ip.

We can now enunciate the main theorem of this section:

Theorem 2.1. All pointed mappings are separating mappings.

Proof. It follows from the discussion above.

2.4.3 Final notes on mappings

Some final notes are necessary at this point. While Theorem 2.1 gives us sufficient con-

ditions for a mapping to be separating, this is not the only way to achieve success while

implementing a local cut approach. A clear example of this is the original implementation

of Applegate et al. [7].

What seems to be an important component of the conditions defined above is the use of

linear simple mappings in general. Those conditions are satisfied by the mappings used by

Applegate et al. [7], as well as by the MIR mapping and the more general Fenchel cuts as

implemented by Boyd [17], where the mapping reduces to looking at one constraint of the

original problem at a time. In Section 2.6 we show how to exploit Theorem 2.1 in order to

build more general mappings.

84



2.5 Putting it all Together

We are now in position to describe the full scheme for local cuts on general MIP. We start by

refreshing our memory regarding the building blocks that we have described in the previous

sections, we then give a unifying scheme to generate cuts for general MIP problems, and

then we move on to discuss some implementation details and modifications that we use in

our actual implementation.

2.5.1 The Melting Pot

Section 2.2 describes a general mechanism to separate a point from a polyhedron given in

oracle form. The mechanism will either prove that the given point belongs to the convex

hull of the given polyhedron, or find a separating inequality which maximizes the violation

of the inequality under L1 normalization.

Section 2.3 provides us with an algorithm that given a face of a polyhedron, and an

oracle description of it, it returns a facet of the polyhedron (or a high dimensional face of

it), or, if we choose to use the modified version of the algorithm, a set of faces that provide

a joint violation as large as the violation of the original inequality.

Section 2.4 gives conditions under which we can map our original problem into a smaller

or simpler space such that we can recover a violated inequality for the original problem

whenever the mapped problem (and point) are separable, and also it provide conditions

under which we can guarantee that the mapped problem does not contain the mapped

fractional solution.

Note however that Section 2.4 does not provides us with oracles for the mapped problems

P ′
ip, but assuming that the mapped problems are simple enough, it should always be possible

to give such description (as a last resort we can always use a branch and bound algorithm

as our oracle description for the mapped problem).

2.5.2 The Local Cut Procedure (v0.1)

The procedure for local cuts now can easily be explained. We start with a given MIP

problem Pip, a linear relaxation Plp, and a current fractional optimal basic solution x∗ to

Plp. We move to chose some linear mapping π and an image space P ′
ip, for which we provide

85



an oracle description OP ′
ip

. We then call Algorithm 2.1 as SEP(OP ′
ip

, π(x∗), ∅, ∅). If the

algorithm finds a separating inequality, we proceed to call Algorithm 2.2 using as input the

separating inequality found by Algorithm 2.1, and using as Po the set of points satisfying

the separating inequality at equality, then we can take the resulting inequalities and map

them back to the original space and add them to our current relaxation. An outline of the

implementation can be seen in Algorithm 2.4.

Algorithm 2.4 LOCAL CUT(Pip, Plp, c, x
∗)

Require: Pip original MIP problem being solved,
Plp current linear relaxation of Pip,
c objective function that we are maximizing/minimizing over Pip,
x∗ an optimal basic feasible and fractional solution to Plp.

1: C ← ∅
2: while some condition do
3: π ← some linear mapping of the form π(x) = Mx + mo.
4: P ′

ip ← a related mapped space
5: O ← oracle description of P ′

ip.
6: Ic ← ∅, Ir ← ∅.
7: (status, a, b)← SEP(O, π(x∗), Ic, Ir).
8: if status = π(x∗) /∈ P ′

ip then

9: Po ← {v ∈ Ic : atv = b}, P⊥
o = ∅.

10: C′ ← FACET(a, b, π(x∗), Po, P
⊥
o ,O).

11: C ← C ∪ {(atM, b− atmo) : (a, b) ∈ C′}.
12: end if
13: end while
14: return C

Note however that there are several possible variations. First we can try several map-

pings before reporting back our set of cutting planes, and then report a larger set of violated

inequalities. Second, note that the call to Algorithm 2.2 is not really mandatory, we could

map back the inequality returned by the separation algorithm right away and obtain a

separating inequality in our original space without any problem.

We choose to try several mappings at every round of the algorithm (between 5-10),

and moreover, instead of asking for real facets of the projected problem, we ask for faces

with dimension at least 10, and instead of keeping just the final inequality produced by

algorithm FACET, we keep all intermediate constraints. This set of choices are based on

experimentation and common sense, however, it may well be that a more in depth study of
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these parameters may yield different choices.

2.5.3 The Dark Corners of Local Cuts

Although we have discussed some issues relevant to the algorithm, there are some more

details that we should take care of.

How much precision is precise? The first problem is related to the accuracy needed

whenever we perform optimization calls and optimization of LP problems. These problems

are of great importance for both the separation and the facet al.gorithms, which rely on LP

formulations to find a separating inequality (in the separation algorithm) and to find new

search direction (in the facet al.gorithm). Any error in the solution of the separation LP

may easily yield wrong inequalities, and also any error in the solutions obtained from the

oracle, will also result in wrong inequalities.

This problem was also observed by Applegate et al. [7]; they deal with it by using integer

representation of the inequalities and of solutions, and by using an oracle whose solutions

are always integer. The problem with their approach is that it is specially tailored to the

TSP. We follow their main ideas by using rational representation of both solutions from

oracles and of cuts, and using as a linear solver the code developed in Chapter 1.

However, this still leaves the problem of solving MIPs in rational arithmetic. To fill in

this void, we also implemented a branch and bound and cut code that uses our exact LP

solver as its core element, details about the features and design of this MIP solver can be

found in Section 2.7.

A side effect of working with rational inequalities is that their representation may grow

as we go along in the algorithm, and in turn, the addition of inequalities with long repre-

sentations can generate extreme points that need a larger representation, and thus entering

in a vicious cycle of longer and longer representations of optimal points and inequalities.

Moreover, it might be the case that we start with an LP relaxation with solutions that

require long encoding; Figure 2.8 shows that such cases represent about the 20% of the LPs

studied in Chapter 1.

It is hard to give a reason for this behavior. From our computer experiments we know
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Figure 2.8: Encoding length distribution. Here we show the experimental distribution of
the average encoding length for nonzero coefficients in optimal solutions. The data consists
of 341 LP problems from MIPLIB, NETLIB and other sources. Note that the x axis is in
logarithmic scale.

that even problems with simple coefficients can generate solutions that need a long encoding

to be represented, and it seems to be the case that as we allow more and more complicated

inequalities, the situation only worsens, while winning very little in the quality of the bounds

encountered by the algorithm.

In order to settle this point, we choose to accept cuts such that the denominator and

numerator of each coefficient can be expressed using at most some fixed number of bits.

Usual values for this limit are between 32 and 256 bits. Note that this is an arbitrary

decision made in the light of some experiments.

Are our oracles fortunate? A second issue is related with our definition of optimization

oracles. While Definition 2.2 provides us with a suitable (and simple) framework to work

with, it does not take into account some practical considerations. For example, we would

like to allow our oracle to give-up on hard instances, where the time to solve the given

problem is too long to be tolerated, or where the actual computer implementation of the

oracle can not deal with the given instance because of memory constraints or because of

design problems.

It is also known that, given an MIP and a linear objective function, it is easier to find a
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solution above (or equal to) some pre-established value (or to prove that no solution above

the given threshold exists), than to find an optimal solution for the given objective value.

So we would like to consider an oracle that, given an objective and a lower bound, finds a

better solution or finds that the given bound can not be improved.

The first point is relevant if we want to have a fault tolerant implementation of the

local cut procedure, and the changes required in the algorithm are of minor importance.

The second point is specially relevant when we look at the tilting procedure as described in

Algorithm 2.3, where at every iteration we have a candidate inequality, and we ask whether

or not the current inequality is valid for the polyhedron; if not, then is enough to have a

point in P such that it violates the current candidate inequality to define a new candidate

inequality; if no such point exists, then we know that we are done with the tilting procedure.

While using such an improving oracle model would invalidate our proof of finiteness for the

tilting and separation algorithm, we have seen than in practice working with such an oracle

speeds-up the overall performance of the local cut procedure. Note also that this same

behavior can be exploited in the separation procedure described in Algorithm 2.1.

These considerations lead us to work with the following oracle model:

Definition 2.8 (Improving Oracle). We say that OPT is an improving oracle

for a rational polyhedron P ⊆ Qn, if for any c ∈ Qn and for any b ∈ Q it returns

(empty,−,−) or (fail,−,−) if P ∩ {x : c · x ≥ b} is the empty set, or it returns

(unbounded,r,−) or (fail,−,−) if the problem is unbounded, where r∗ ∈ Qn is a

ray in P such that c · r > 0 and c · r∗ ≥ c · r for all r ray of P with ‖r‖ ≤ 1, or it

returns (feasible,x∗, x∗ · c) or (fail,−,−) if the problem is bounded and feasible

where x∗ ∈ P and such that c · x∗ > b, or it returns (optimal,x∗, b) or (fail,−,−) if

c · x∗ = max{c · x : x ∈ P} ≥ b.

As we have already mention before, the use of this optimization oracle model invalidates

some of our proofs regarding finite termination and correctness of our algorithms. However,

it is possible to define conditions under which this type of oracle would also guarantee

correctness and finiteness. One such condition is to assume that the set of possible outputs

for the oracle is finite.
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Definition 2.9 (Finite Oracle). An oracle O, is said to be finite if there exists a

finite set I such that O(x) ∈ I for all valid inputs x for O.

Note that neither Definition 2.9 nor Definition 2.8 assume that we have a deterministic

oracle. Moreover, for any MIP problem, any simplex-based branch and bound oracle can be

seen as a finite and improving oracle, and in the case of pure IP problems, Lenstra’s algo-

rithm [61] provides us with a polynomial-time finite improving oracle for fixed dimension.

2.6 Choosing Relevant Mappings

In Section 2.4 we define the notion of general mappings, and also provided conditions under

which the class of simple mappings always yield separating mappings. In this section we

provide several examples of simple and pointed mappings. In each case we provide some

intuition as to why they seem to be reasonable choices, but by no means do they constitute

an exhaustive set of complete choices. Indeed, the examples shown here only scratch the

surface of the possibilities.

The mappings that we show are presented in the order in which they came to be in

our code, rather than in order of importance. The idea behind this decision is to provide a

natural path of the ideas that lead to them.

2.6.1 Problem Notation

Here we present the notation, assumptions, and representations that we will use through-

out this section. We start by defining our original MIP problem Pip, and its current LP

relaxation Plp:

Pip : Ax = b (2.30a)

l ≤ x ≤ u (2.30b)

xi ∈ Z ∀i ∈ I, (2.30c)

and
Plp : Ax = b (2.31a)

Ex = f (2.31b)

l ≤ x ≤ u. (2.31c)

Here we assume that all data is rational, u ∈ (Q ∪ {∞})n, l ∈ (Q ∪ {−∞})n, and the

constraints (2.31b) are valid constraints for Pip, but note that this set of constraints might
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be empty; these constraints can be interpreted as the current set of cuts added to our LP

relaxation.

Note also that the equality sign in equation (2.30a), (2.31a) and (2.31b) are not restric-

tive in the sense that any inequality can be converted into this format by adding a suitable

slack variable. The choice of this representation was made in the light of how actual LP

solvers work on problems.

Now we define our mapped integer problem P ′
ip and its linear relaxation P ′

lp as follows:

P ′
ip : A′y = b′ (2.32a)

l′ ≤ y ≤ u′ (2.32b)

yi ∈ Z ∀i ∈ I ′, (2.32c)

and

P ′
lp : A′y = b′ (2.33a)

l′ ≤ y ≤ u′. (2.33b)

2.6.2 Simple Local Cuts

It is well known that although MIP is NP-complete, if we fix the number of integer con-

straints (i.e. the number of variables that must be integer is fixed), then the problem can

be solved in polynomial time6, even when the number of continuous variables is not fixed.

This suggests the following simple mapping. Set π as the identity function in Rn, define

A′ =
(
A
B

)
, u′ = u, l′ = l, and I ′ ⊆ I such that |I ′| ≤ k for some fixed k. Note that

this mapping is a simple mapping as in Definition 2.6, and also a pointed mapping as in

Definition 2.7, thus ensuring that the separation procedure over P ′
ip will succeed, and we

will obtain a valid cut for x∗ and Pip.

The oracle that we used was a branch and bound solver which uses some simple cuts

like Gomory cuts and cover cuts.

Although this particular mapping satisfies all of the theoretical requirements to be suc-

cessful (and in practice it does generate quite good bounds), the problem is that the time to

solve each oracle call can be quite expensive as we move to larger instances. This is due in

6See Lenstra [61] for more details.
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part because the number of oracle calls grows also with the dimension of P ′
ip, and because

each oracle call starts to be more expensive.

2.6.3 Integer Local Cuts

One way to address the problem of the increasing number of calls to the oracle due to

the dimension of the sub-problem is to forget about all the continuous variables and work

only in the (projected) space of integer variables selected. More precisely, we select a set

I ′ = {i1, . . . , ik} ⊆ I where k is some small number, and define P ′
ip as follows:

P ′
ip :=

{

y ∈ Zk : ∃x ∈ Pip, xI′ = y
}

. (2.34)

In this case our mapping function π is just the (linear) projection operator from Rn into

RI′ . However, to make this a simple mapping, we would need to consider P ′
lp as

P ′
lp : (b−AI′y) z + lI′′v − uI′′w ≤ 0 ∀(z, v, w) ∈ Q (2.35a)

lI′ ≤ y ≤ uI′ , (2.35b)

where Q = {(z, v, w) : AI′′z + v − w = 0, v, w ≥ 0} and where I ′′ = {1, . . . , n} \ I ′. Even

worse, to get a representation for P ′
lp of the form of (2.33), we would need to compute all

extreme rays T of Q, with which we can rewrite (2.35) as

P ′
lp : (b−AI′y) z + lI′′v − uI′′w ≤ 0 ∀(z, v, w) ∈ T (2.36a)

lI′ ≤ y ≤ uI′ . (2.36b)

Fortunately, this is not necessary, we instead use an oracle definition of (2.34) that

internally works in the full formulation of the problem, with a cost coefficient of zero for all

variables outside I ′, but that only reports the solution on the selected set of variables I ′.

While this approach succeeded in reducing the number of calls to the oracle due to

large dimensional problems, it fails in two other important aspects. First, the mappings

are usually not separating, and second, the time spent in each oracle call grows with the

number of inequalities in our current LP relaxation and with the dimension of the original

problem. Note that while the problem of expensive oracle calls might be overcome by

computing (2.36), the first point seems to be more difficult to overcome.

Our experience with this approach seem not to be promising. On the other hand, the

local cut implementation of Applegate et al. [7] fits precisely this scheme. The difference is
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that they usually work on spaces P ′
ip with dimension ranging between 136 and 1176, while

our experiments worked on the range of 3 to 6 for the dimension of P ′
ip. Nevertheless, the

success rate that Applegate et al. achieve is about 1%, but they are able to offset this

by having a very fast oracle implementation for their problem, while we rely on a general

implementation of branch and bound.

2.6.4 Gomory-Projected Local Cuts

An alternative to fix the problem of non-separating mappings is to consider Gomory-like

projections, more precisely, given an integer variable xk with fractional optimal solution x∗
k,

we know that it must be a basic variable, then, from the tableau row, we know that xk

satisfies

xk +
∑

i∈N

āixi = b̂,

where N is the set of nonbasic variables, and ā is the associated tableau row for variable xk

in the current LP relaxation. We then define three aggregated variables yk
1 , yk

2 and yk
3 such

that yk
2 , yk

3 ≥ 0 and yk
1 is integer that satisfy yk

1 + yk
2 − yk

3 = xk +
∑

(āixi : i ∈ N), i.e.

y1 = xk +
∑

(m1
i xi : i ∈ N) (2.37a)

y2 =
∑

(m2
i xi : i ∈ N) (2.37b)

y3 =
∑

(m3
i xi : i ∈ N) (2.37c)

āi = m1
i + m2

i −m3
i ∀i ∈ N. (2.37d)

We also have the conditions m1
i ∈ Z and m1

i = 0 for all i /∈ I, and we choose m2
i , m

3
i < 1

for all i ∈ I and satisfying m2
i ·m3

i = 0 for all i ∈ N . Note that these conditions do not

completely define mj
i , in fact, there are at least two well known choices for these coefficients,

one is to use Gomory rounding to define m1
i as the round down of āi for integer variables,

and set m2
i , m

3
i as the remaining part of āi, and the second choice is to use mixed integer

rounding coefficients, where m1
i is either the ceiling or the floor of āi depending on the

fractional value of x∗
k and of āi. We call the first approach Gomory-projection, and the

second MIR-projection. Note also that we can write yk = Mkx where Mk is the matrix

with coefficients mij as defined above.

The procedure starts by selecting some small set I ′ of integer variables with fractional

coefficients, and for each of them define the aggregated variables yk
i for i = 1, 2, 3 and k ∈ I ′,
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using one of the two approaches defined above, with that, we define P ′
ip as follows:

P ′
ip =

{

y = (yk)k∈I′ : ∃x ∈ Plp, y = Mx, yk
1 ∈ Z ∀k ∈ I ′

}

,

where M is the matrix obtained by appending all M k matrices. Note however that we can

discard the variable yk
3 because it satisfies yk

1 + yk
2 − yk

3 = b̂, and then the dimension of P ′
ip

is no more than 2|I ′|. Note also that since each yk is a simple pointed mapping, and P ′
ip

can be seen as the product of yk spaces, then P ′
ip is also a simple pointed mapping.

Unfortunately, this mapping suffers the same representability problems that the previous

mapping has. We again avoid this problem by providing an oracle that works on the

following problem.

Plp : max cty (2.38a)

Ax = b (2.38b)

Ex = f (2.38c)

y = Mx (2.38d)

l ≤ x ≤ u (2.38e)

yk
1 ∈ Z ∀k ∈ I ′. (2.38f)

While this form of mapping ensures that we can always find a violated cut, some un-

expected issues start to play a role, namely, the length of the encoding of the obtained

inequality. To our surprise, the inequalities obtained from our algorithm require, on many

problems, above 512 bits to represent some of their coefficients. This forced us (as already

mentioned earlier) to forbid constraints with coefficients that needed more than 256 bits to

be represented, which in practice meant that we discarded most of the generated cuts.

2.6.5 Minimal Projection Local Cuts

The Gomory-projected and MIR-projected mappings introduced earlier succeed in giving

us separating mappings, but they fail in the sense that the coefficients with which we end

up can be very large, which in turn make the LP solution process more difficult and lengthy.

Although we tried to get around this problem by approximating the cuts with other cuts

with nicer coefficients, it turned out that adding approximate cuts made matters worse. We

will see this effect in Section 2.7.
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By doing some wishful thinking, if we could choose a small set of basic variables and

look for cuts involving just that small set of variables. We should get nice cuts for the

original problem, however, as we have shown, usually this kind of mapping does not give us

separating mappings (at least for low dimensional spaces P ′
ip).

This takes us to the following question, could we modify (in a slight manner) this map-

ping in such a way as to always have a separating mapping? Fortunately, condition (2.28)

ensures that by adding one extra aggregated variable we can always have a separating

mapping.

To see this we need to fix some ideas. We have a small set of variables I ′ ⊂ B ⊂

{1, . . . , n}, where B is the set of basic variables and at least one of the elements in I ′ is

integer constrained and has a fractional value in the optimal solution to the current LP

relaxation of Pip. Moreover, we want to work on the space

P ′
ip :=

{

y ∈ R|I′|+1 : ∃x ∈ Plp, y = Mx, yi ∈ Z∀i ∈ I ′ ∩ I
}

.

Assuming that I ′ = {i1, . . . , ik}, then M·j = eij for j = 1, . . . , k, we may also assume that

mk+1,j = 0 for all j ∈ B. With this, equations (2.28) reduce to

µk+1mk+1,j −
∑(

µiAij : i = 1, . . . , k
)
≥ 0 ∀j ∈ N, x∗

j =uj (2.39a)

µk+1mk+1,j −
∑(

µiAij : i = 1, . . . , k
)
≤ 0 ∀j ∈ N, x∗

j =lj , (2.39b)

where Āj· is the tableau row associated with the basic variable xij . The disadvantage of

equation (2.39) is that they provide only necessary conditions for separating mappings.

A simple modification, however, gives us a sufficient condition to obtain simple pointed

mappings:

µk+1mk+1,j −
∑(

µiAij : i = 1, . . . , k
)
≥ ε ∀j ∈ N, x∗

j =uj (2.40a)

µk+1mk+1,j −
∑(

µiAij : i = 1, . . . , k
)
≤ − ε ∀j ∈ N, x∗

j =lj , (2.40b)

where ε is any positive (rational) value. The reason equations (2.40) give us sufficient

conditions is because if they hold, it implies that π(x∗) is the only optimal solution in

P ′
lp to the objective function µ. Note also that there is no feasible solution (µ, mk+1,·)

with µ = 0. Moreover, if there is a solution to (2.40) with µk+1 = 0, then there is an
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equivalent solution with mk+1,· = 0. Thus we can assume that µk+1 = 1, and then the

problem of finding a feasible solution for equations (2.40) is a linear one. Moreover, given

µ, we can always choose mk+1,j =
(
ε +

∑
(µiĀij : i = 1, . . . , k)

)+
for j ∈ N, x∗

j = uj and

mk+1,j =
(
−ε +

∑
(µiĀij : i = 1, . . . , k)

)−
for j ∈ N, x∗

j = lj and obtain a feasible solution

of (2.40).

The coefficients mk+1,j for j ∈ N can be seen as the amount of perturbation from the

ideal mapping into I ′ to obtain a separating mapping, so our ideal solution would be one

that satisfy mk+1,j = 0. Thus, the problem of finding a minimal perturbation can be stated

as follows:

min
∑

(αj |mk+1, j| : j ∈ N) (2.41a)

µk+1mk+1,j −
∑(

µiAij : i = 1, . . . , k
)
≥ ε ∀j ∈ N, x∗

j =uj (2.41b)

µk+1mk+1,j −
∑(

µiAij : i = 1, . . . , k
)
≤ −ε ∀j ∈ N, x∗

j =lj . (2.41c)

The parameter ε can be seen as a measure of how pointed we want the projected vertex

π(x∗) to be in P ′
lp, and the objective coefficients αj should reflect the relative importance

of each of these variables.

In our experiments ε, was chosen in the range of 2−20, while αj was chosen as 1 for

integer structural variables, 10 for continuous structural variables7, |aj·|1 for integer logical

variables and 10|aj·|1 for continuous logical variables, where aj· represent the row of the

constraint matrix A defining the logical variable.

In practice, we do not select beforehand the set I ′. Instead, we let the solution of (2.41)

define the set I ′. In order to do this, we try for some of the integer constrained variables

with the most fractional value to have µj = 1 or µj = −1 and solve the system. We then

pick I ′ as those basic variables with high µ solutions, and aggregate everything else into the

remaining variable yk+1. Typically we do this for the five or six most fractional variables.

2.6.6 2-Tableau and 4-Tableau Local Cuts

While the minimum projected mappings improve somewhat the situation from the Gomory

and MIR mappings described above, they all share one common drawback, the oracle that

7As CPLEX, QSopt defines for every inequality (and equality) a slack or logical variable, the original
variables are referred as structural variables.
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we use for them effectively works on a space with dimension as large as the original problem

(although the number of integer variables is small). This implies that despite the fact that

we have separating mappings, the procedure as a whole tends to be slow.

These considerations force us to look into mapped problems P ′
ip for which we can provide

fast oracle implementations, and that also ensure separability.

We choose the following problems:

2− Tableau : y1 + y3 + y4 − y5 − y6 = b1 (2.42a)

y2 + y3 − y4 − y5 + y6 = b2 (2.42b)

y3, y4, y5, y6 ≥ 0 (2.42c)

y1, y2 ∈ Z, (2.42d)

and

4− Tableau : y1 + y5 + y6 + y7 + y8 − y9 − y10 − y11 − y12 = b1 (2.43a)

y2 + y5 − y6 + y7 − y8 − y9 + y10 − y11 + y12 = b2 (2.43b)

y3 + y5 + y6 − y7 − y8 − y9 − y10 + y11 + y12 = b3 (2.43c)

y4 + y5 − y6 − y7 + y8 − y9 + y10 + y11 − y12 = b4 (2.43d)

y5, y6, y7, y8, y9, y10, y11, y12 ≥ 0 (2.43e)

yi ∈ Z, i = 1, . . . , 4, (2.43f)

where at least one bi is fractional. Note that (b, 0) is a basic solution to the LP relaxation of

both (2.42) and (2.43), and under our assumption that at least one bi is fractional, it does

not belong to the convex hull of integer solutions, thus any linear mapping π that maps x∗

to (b, 0) will be a pointed mapping, giving us a separating mapping.

Moreover, after some work, is easy to see that the possible number of outputs for an

optimization oracle is bounded by 4 rays and 16 points for Problem (2.42) and 8 rays and

256 points for Problem (2.43). This allows us to define an oracle that checks the list of

possible outputs and returns the best unbounded ray or the best solution if the problem is

bounded.

Note also that both problems can be represented in the form

P : ( I | B | −B)y = b (2.44a)

yi ∈ Z, i = 1, . . . , m (2.44b)

yi ≥ 0, i = m + 1, . . . , 3m, (2.44c)
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where B is a non-singular matrix and m is the number of constraints for the problem.

In a sense, this is a natural extension to the MIR mapping, which can be seen as

fitting the description given in Problem (2.44), for the case of m = 1. Also, note that for

Problem (2.42) and Problem (2.43), we have that B−1 = 1
mB and that Bt = B.

With this knowledge, we turn our attention to building the mapping π(x) = Mx + mo.

A first observation is that since we have a fixed mapped space P ′
ip, a desired extreme point

(b, 0) to separate in P ′
lp, and we are looking for a simple mapping, Condition 2.6 implies

that we need to consider µ 6= 0, ensuring that

max
{
µty : y ∈ P ′

lp

}
= µt(b, 0),

which is equivalent to

µN − µM ( B | −B) ≤ 0,

where N = {m+1, . . . , 3m}, M = {1, . . . , m} and B is as in (2.44). To satisfy this condition,

it is enough to set µM = (−1, . . . ,−1) and µN = (−m, . . . ,−m), where m is the number of

constraints (other than bounds) in (2.44).

Now, we restrict ourselves to consider mappings derived from m tableau rows associated

with integer-constrained variables, where at least one of them has a fractional value in

the optimal solution to the current LP relaxation. Assume that the integer variables are

xi, i = 1, . . . , m, and choose MB such that MB
i· = ei for i = 1, . . . , m and zero otherwise.

Now that we have chosen values for µ, and MB, we can re-write equations (2.28) as follows:

m∑

i=1

(
Āij −Mij

)
−m

3m∑

i=m+1

Mij ≥ 0 ∀j ∈ N, x∗
j = uj (2.45a)

m∑

i=1

(
Āij −Mij

)
−m

3m∑

i=m+1

Mij ≤ 0 ∀j ∈ N, x∗
j = lj . (2.45b)

Since yi ∈ Z for i = 1, . . . , m, then Mij must be zero for continuous variables for

i = 1, . . . , m, and folk wisdom dictates that we should choose Mij =
⌊
Āij

⌉
for integer

nonbasic variables for i = 1, . . . , m. If we also define bi = x∗
i , then we must define mo as

(b, 0) −Mx∗, thus leaving as unknowns the coefficients Mij for j ∈ N , i = m + 1, . . . , 3m.
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However, the condition of having a simple mapping, implies that π(Plp) should be contained

in P ′
lp. To fulfill this condition, note that

( I | B | −B )y = b ⇔
( I | B | −B )Mx = b− ( I | B | −B )mo ⇔

( I | B | −B )Mx = b− ( I | B | −B )









b
0
0



−Mx∗



 ⇔

( I | B | −B )Mx = ( I | B | −B )Mx∗.

Thus, it is enough to ask that

( I | B | −B )M =
(
Āt

1·, . . . , Ā
t
m·

)t
,

or equivalently





Mm+1,j −M2m+1
...

M2m,j −M3m,j




 =

1

m
B






Ā1j −M1j
...

Āmj −Mmj




 ∀j = 1, . . . , n. (2.46)

Note that the choices that we have made up to now, ensure that equation (2.46) holds

for all j in the current set of basic variables of the optimal solution of Plp. With this, we

are ready to define Mij for i = m + 1, . . . , 3m and j ∈ N as follows:

(Mm+i,j , M2m+i,j) =
1

m

{(
(φi)

+ ,− (φi)
−) j : x∗

j = lj ,
(
(φi)

− ,− (φi)
+) j : x∗

j = uj ,
∀i = 1, . . . , m, (2.47)

where φi = Bi·

(
Āij −M1j , . . . , Āmj −Mmj

)t
. Note that with this definition we ensure the

requirement of yi ≥ 0 for i = m + 1, . . . , 3m. Moreover, if we call Âij = Āij −Mij for

i = 1, . . . , m and j ∈ N , then we can rewrite equations (2.45) for Problem (2.42) and for

Problem (2.43) as

m∑

i=1

Âij +

m∑

i=1

|φi| ≥ 0 ∀j ∈ N, x∗
j = uj (2.48a)

m∑

i=1

Âij −
m∑

i=1

|φi| ≤ 0 ∀j ∈ N, x∗
j = lj , (2.48b)

which trivially holds since φ1 =
∑

(Âij : i = 1, . . . , m), thus proving that we have defined a

simple pointed mapping for both problems.

The experience with this kind of mapping functions is encouraging. The average time

spend in each oracle call is about 16.07µs for Problem (2.42), and 172.36µs for Prob-

lem (2.43) on a 3GHz Pentium 4 CPU. Note also that we could compute all facets for
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both problems and then scan the list of facets to return the most violated one, or all vio-

lated facets, as the result of our separation routine. The oracle description of the problem

allows us to add some extra constraints, for example, we could take into account that

yi,∈ Fi i = 1, . . . , m, where Fi ⊂ Z is determined by the actual possible values for yi from

our original problem Pip.

2.7 Computational Experience

In this section we show our computational experience and explain the framework under

which the experiments where done. We start by describing our branch and bound and cut

implementation, we then move on to decide the actual default configuration against which

the local cuts runs are compared, and then we present our results.

2.7.1 The Branch and Cut Solver

Some design decisions The first question that arises when programming a branch and

bound and cut program is how independent it should be from the underling solver. Since we

had already made the choice to work with exact (rational) solvers, the only choice available

is our QSopt ex solver introduced in Chapter 1, thus, in order to achieve more efficiency

we decided to work with the low-level interface of QSopt, taking advantage of all structures

and information already stored inside QSopt.

The second question relates on how to store information for every node in the branch and

bound tree. We choose the common strategy of storing differences. Our implementation

store the difference between the parent and child node in every node, thus, to get the

actual LP relaxation at any node, we must traverse the path from the root node to the

corresponding node and apply all recorded changes relevant to the LP formulation. These

changes include any variable bound change, added or deleted cuts, and changes in the

optimal basis. A possible advantage of this approach is that the memory required to store a

given branch and bound tree should be smaller than storing all LP relaxations in every leaf

of the branch and bound tree. Moreover, in a binary tree, if we combine parent nodes with

only one children into one node, then the number of leaves equal the number of internal

nodes in the tree, thus showing that the overhead in number of nodes stored in memory is
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no more than twice as the number of active nodes. Another possible advantage is that this

scheme allows for pools of cuts that are only feasible in a sub-tree of the branch and bound

tree, to be stored in a central place, and mix it with cuts that are globally valid (by storing

the globally valid cuts in the pool of cuts of the root LP). A disadvantage is that as the

tree gets larger, the time spend in re-computing the actual LP relaxation at a given node

grows.

Branching Rules Branching rules are an essential part of modern branch and bound MIP

solvers (see Achterberg et al. [1] for a review of common branching rules). We implemented

four branching rules. Branch on most fractional variable. Branch in the first fractional

variable. A form of strong branching (see Applegate et al. [4] and CPLEX 7.5 [58]). And

a form of pseudocost branching (this rule was introduced by Benichou et al. [14], and

has been further explored by J. T. Linderoth and M. W. P. Savelsbergh [72] and by A.

Martin [76]), which combine strong branching for initialization of pseudocosts with the

approach described in [72]. Versions of this mixed strategy for branching have been shown

to perform very well on a range of problems (see [72, 76, 1]), and our experiments with

branching rules confirmed this.

Cutting Planes As we have said before, cutting planes are the heart of any modern

branch and bound framework. Based in the Results of Bixby et al. [16], we decided to

implement MIR cuts and sequence independent lifted cover inequalities, as defined by Gu

et al. [51, 53, 52].

For our MIR cuts we try two different implementations. The first one compute the

MIR cut derived from each tableau row associated to a basic integer constrained variable

with fractional value, and moreover, it also derives cuts from multiples of the tableau row,

usually we try multiples from 1 to 15. Moreover, we only consider tableau for variables

whose fractional part is between 1
2000 and 1999

2000 .

The second approach applies the MIR technique to linear combinations of pairs of

tableau, we consider the seven most fractional integer variables, and generate MIR cuts

from all combinations of pairs of tableau combined with coefficients ranging from -3 to 3.
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Since our procedures can generate large numbers of cuts, we add cuts to the LP in

groups, usually 200 of them at a time, and, by default, discard any cut that is not violated.

Furthermore, we provide a callable interface to add cuts to a MIP, which allows to call

several cutting planes routines in a given order. We also have two modes of operations

inside the cutting loop for a given LP relaxation. In the first approach we call each and all

of the cutting routines and then add the resulting cuts in batches, this mode is called full

cutting. In the second approach we call the cutting routines in a given order and stop the

cutting phase as soon as we find more than 200 cuts, this mode is called partial cutting.

A typical problem in cutting plane experiments is that while cutting planes help to

improve the quality of the LP relaxation, they also increase the number of constraints in

the LP, making it slower to solve as we add more and more cuts. Moreover, it is usual to

see that older cuts tend not to be tight as we go along in the cutting procedure, and in

fact, they become dominated by newer cuts (this situation is very common with MIR cuts).

To keep this problem at bay, we implement a procedure that automatically eliminates cuts

from the current LP relaxation. The procedure checks the slack of all cuts after each LP

resolve, and discard all cuts with a strictly positive slack. Note that this choice is safe in the

sense that it ensures that we will not cycle in the cutting phase, although it might happen

that a previously discarded cut becomes active in a different child of the node from where

it was deleted. The price that we pay for this safe approach is that we may be keeping

cuts that are dominated or just slightly important for the LP relaxation (a more aggressive

scheme is used by Applegate et al. [7] in their Concorde branch and cut code for the TSP).

2.7.2 Choosing The Default Settings

The basic options: In the previous sections we have described several variations for

performing the cutting plane procedure. In this section, we perform numerical tests to

establish a default configuration against which we will compare our local cut procedures.

We evaluate several possibilities, all of them have been introduced earlier, but for com-

pleteness and clarity we re-define them, and give different names for each of them.

Gomory Cuts: We consider three alternatives.
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G1: For each fractional integer variable8 we generate the MIR cut for multiples of the

tableau ranging between 1 and 15. Variables are complemented to their bound

in the basis.

G2: For all pairs among the 7 most fractional integer variables, and for all integer

combinations with multipliers ranging from -3 to 3, we generate the MIR cut for

the aggregated equality

α1ā1x + α2ā2x = α1b̄1 + α2b̄2,

where αi, i = 1, 2 are the integer multipliers, and āix = b̄i, i = 1, 2 are the pairs

of tables that we are looking at.

G3: Use both strategies described above.

C1: Use sequence independent lifting for cover inequalities as described in Gu et al. [51, 53,

52], the generation of the original cover inequalities follows the same heuristic ideas

described in those papers.

i1: Detection of integer slacks, when using this option we check whether or not the implicit

slack for an inequality can be assumed to be integer, the conditions are that all

variables present in the inequality should be integer constrained, and that (using a

multiplier of up to 216 = 65536) all coefficients of the inequality should be integer.

For the case of original inequalities, the scaling factor must be one.

R1: Rounding cuts. As we have described earlier, all our implementation works on ratio-

nal representation of inequalities, this is done in order to ensure correctness of our

cutting planes and procedures, but, as a side effect, many cuts require extremely long

rational representations for its coefficients. As a way to manage this problem, we only

accept cuts whose rational coefficients can be represented in 64 bits for the numer-

ator and denominator (i.e. a maximum of 128 bits of representation). This implies

that some cuts are discarded. The rounding cut procedure takes those discarded cuts

and approximate the coefficients of the rational inequality by the continued fractions

method, ensuring that the resulting inequality is still valid for the original problem

8Note that we are assuming the bounds on integer variables to be integers or infinity, thus ensuring that
integer variables with fractional optimal values are basic.
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and that the coefficient can be represented in the accepted format. If the cut can not

be approximated such that it satisfies those requirements, we discard it.

The selection procedure Note that all these configurations are not exclusive, but can

be mixed, thus generating a large set of possibilities to test. In order to reduce our running

times, we choose our configuration in two steps.

First we run all configurations without rounding cuts, and choosing among them the

best one, and then, compare that configuration with and without rounding cuts and picking

up the best as our default.

This is done because running times for configurations with rounding of cuts enabled

typically require much more running time.

Table 2.5: Gap closed I. Here we show the geometric average gap closed for each configu-
ration in a test set of 51 problems from MIPLIB

Configuration GAP Closed Time (s)

C1 2.0596383 9.6782810
G2 7.0048098 111.9273010
G2i1 7.1320951 108.1570604
C1G2 10.5433004 135.6745354
C1G2i1 11.0725560 124.1899176
G1i1 12.7157958 80.2739946
G1 12.9378161 82.9078098
G3i1 13.0540541 119.0279938
G3 13.1831940 125.8740389
C1G1 14.3647000 93.5269510
C1G1i1 14.3853854 87.0436880
C1G3 14.6564994 151.6379040
C1G3i1 14.7206547 148.1970612

Measuring effectiveness As a measure of the effectiveness we take the percentage of

the gap closed by each configuration, this is measured as

100 · Zconf − ZLP

Z+
IP − ZLP

,

where Zconf is the best bound obtained by the given configuration, ZLP is the value of

the LP relaxation, and Z+
IP is either the optimal value of the problem, or an upper/lower

bound for it if the problem is a minimization/maximization problem. Note that we stop
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at the root node and do not perform branching while computing Zconf . Taking a subset of

Table 2.6: Gap closed II. Here we show the geometric average gap closed for each configu-
ration in a test set of 119 mixed integer problems from Atamtürk.

Configuration GAP Closed Time (s)

C1 1.0000000 3.9322205
C1G2 42.7267361 162.1870281
C1G2i1 42.7267361 161.6868330
G2 42.7267361 158.9433407
G2i1 42.7267361 159.3574375
C1G3 76.9814349 150.5784483
C1G3i1 76.9814349 150.0529741
G3 76.9814349 149.2547119
G3i1 76.9814349 149.3140403
C1G1 77.0778314 141.1773095
C1G1i1 77.0778314 140.5166063
G1 77.0778314 139.5766899
G1i1 77.0778314 139.8467765

the MIPLIB problems, we obtain the averages shown in Table 2.5. Using the set of mixed

integer problems (both bounded and unbounded) presented by Atamtürk [8], we obtain the

averages shown in Table 2.6. The combined averages can be seen in Table 2.7. Note that

Table 2.7: Gap closed III. Here we show the geometric average gap closed for each con-
figuration over 170 problems coming from both MIPLIB and mixed integer problems from
Atamtürk.

Configuration GAP Closed Time (s)

C1 1.2420449 5.1521201
G2 24.8375472 143.0706154
G2i1 24.9720928 141.8655999
C1G2 28.0790737 153.7307635
C1G2i1 28.4947052 149.3819622
G1i1 44.8904237 118.3938612
G1 45.1241395 119.3844214
G3i1 45.2057651 139.4971026
G3 45.3394653 141.8177157
C1G1 46.5628559 124.7718067
C1G1i1 46.5829611 121.7111993
C1G3 46.8036020 150.8955054
C1G3i1 46.8649695 149.4937730
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while for the problems in MIPLIB all parameters and configuration have an impact, for

the mixed integer problems from Atamtürk, the only relevant settings are those related to

Gomory cuts, and in fact, the configurations with Gomory cuts of type G1 and G3 are really

close. When we look at both sets of problems at the same time, we can see that, on average,

using Gomory cuts of both types, with lifted cover inequalities and detection of integer slack

variables provides the best configuration while maintaining a reasonable average running

time. Figure 2.9 shows the distribution of the gap closed for several configurations over a
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Figure 2.9: Closed gap distribution. This figure shows the closed gap distribution for
several configurations over 170 problems from MIPLIB and the mixed integer problems of
Atamtürk.

set of 170 problems from both MIPLIB and from Atamtürk. Note that this graph confirm

that the geometric mean presented in the previous tables are good estimator of the behavior

of the settings.

To round or not to round Now that we have chosen a basic configuration, we evaluate

the use of rounding cuts. From both Table 2.8 and from Figure 2.10 is clear that the

default setting with rounding is able to close several extra points of the overall gap, but at

the expense of a tremendous running time.

This bad behavior in running time is what forced us to choose the configuration C1G3i1
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Table 2.8: Gap closed IV. Here we show the geometric average gap closed by our default
configuration with and without rounding cuts over 32 problems coming from MIPLIB.

Configuration GAP Closed Time (s)

C1G3i1 17.8327738 31.5883756
C1G3i1R1 25.3462967 13183.4560473
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Figure 2.10: Closed gap distribution with rounding. This figure shows the closed gap dis-
tribution for our default configuration C1G3i1 with and without rounding over 32 problems
from MIPLIB.

without rounding as our default setting. Note however that the experiment suggest that the

idea of approximate cuts may be good, and it may be that different choices in the rounding

procedure could yield better running times without loosing the extra gap closed.

2.7.3 Comparing the default settings against Local Cuts

Now that we have explained the default settings for our solver, we re-state the different

implementations for local cuts:

LS: In this configuration our mapping function is the identity, and the only modification

to the problem is that now at most five variables remain integer constrained. At every

iteration we try up to ten sets of five integer-constrained variables.

L1: This is the minimum projection local cuts, where the mapping preserves some of the
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original variables and aggregates the remaining variables in such a way as to obtain a

pointed mapping that minimizes a weighted sum of the coefficient of the aggregated

variables.

L2: Local cuts obtained by using a MIR projection using up to four tableau.

L3: Local cuts obtained by using a Gomory projection using up to four tableau.

L4: In this configuration we use a mapping that is a projection into a sub-set of at most

five integer variables.

L5: This configuration is the 2-Tableau mapping described earlier.

L6: This configuration is the 4-Tableau mapping described earlier.

Note that whenever we use a particular local cut configuration we are also using our

default setting, i.e. Lx = C1G3i1Lx. To simplify notation, we call L0 our default seating

C1G3i1.

One of the difficulties of comparing cuts is that as we add several rounds of cuts, the

problems tend to diverge markedly. In order to minimize those effects, we compare the two

first full rounds of cutting planes. We start with a small subset of seventeen problems from

MIPLIB where we compare all our configurations. Table 2.9 show the average gap closed for

Table 2.9: Local Cuts performance I. Here we compare all our local cuts configurations
on a set of seventeen problems from MIPLIB. The results show average running time and
average gap closed after the first and second round of cuts. Time is measured in seconds.

Configuration First Round Second Round
%GAP Time (s) %GAP Time (s)

L3 33.00 169.71 37.93 1623.74
L2 33.48 70.89 39.21 1302.89
L0 32.70 1.06 39.38 3.03
L6 32.25 10.76 39.38 26.98
L1 36.45 254.88 39.41 1650.13
L5 32.72 3.47 39.65 9.72
L4 32.80 6.56 39.74 24.91
LS 32.75 111.27 42.61 594.75

each configuration after the first and second round of cuts, as well as the average running

time.
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It is not surprising to see that configuration LS outperforms all other configurations,

because the number of integer variables that it considers is the same as all other config-

urations, but the mapping is the identity and thus as close as possible from the original

problem at hand. However the running time is, as we discussed earlier, prohibitive.

If we consider also running times, then the best configurations are L4, L5, L6 and L0

(in that order). Now we move on to a more detailed analysis of those four configurations.

Table 2.10 show the average gap closed for the configurations L0, L4, L5 and L6 over 64

Table 2.10: Local Cuts performance II. Here we compare configurations L0, L4, L5 and L6
over 64 problems from MIPLIB. The results show average running time and average gap
closed after the first and second round of cuts. Time is measured in seconds.

Configuration First Round Second Round
%GAP Time (s) %GAP Time (s)

L6 17.94 23.20 23.28 55.86
L0 19.34 6.34 24.58 14.96
L4 19.35 22.49 24.67 60.51
L5 19.35 11.49 25.15 28.33

problems from MIPLIB after the first and second round of cuts. Table 2.11 show the average

Table 2.11: Local Cuts performance III. Here we compare configurations L0 and L5 on a
set of 70 problems from MIPLIB. The results show average running time and average gap
closed after the first, second and last round of cuts. Time is measured in seconds.

Configuration First Round Second Round Last Round
%GAP Time (s) %GAP Time (s) %GAP Time (s) Rounds

L0 20.24 10.46 25.24 25.05 33.03 184.71 23.49
L5 20.24 17.79 25.80 43.28 33.31 416.33 17.46

gap closed for the configurations L0 and L5 over 70 problems from MIPLIB after the first,

second and last round of cuts. Note that the improvement in GAP closed is slightly above

half percent after the second round of cuts. Figure 2.11 shows the cumulative distribution of

closed gap for both L0 and L5 configurations over a set of 70 instances from MIPLIB. Note

that this figure also shows that the difference between both configurations is very small.
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Figure 2.11: Closed gap distribution for Local Cuts. Here we show the cumulative distri-
bution of closed gap for configurations L0 and L5 over a set of 70 problems from MIPLIB.

2.8 Final Thoughts on Local Cuts

In previous sections we have developed a general technique to generate cuts for general

MIPs using an oracle description for a relaxation of the original problem. We also provided

conditions under which the separation problem over the relaxation can be guaranteed to

generate valid cuts for the original problem. We then proposed some possible simple map-

pings to construct possible relaxations and compare their performance against our default

settings at the root node. Those experiments show that there is potential for this kind of

mechanism to work in practice for general MIPs.

Note however that the set of mappings presented here are just scratching the possibilities

for this kind of approach, and moreover, the scheme could be used in structured problems

where small instances are easily solvable.

A surprising outcome for us was that in several instances we were unable to add cuts

to our LP relaxation because the encoding of the obtained cuts exceeded our auto imposed

limits. This raises the question of whether the problem of long encodings are common and

unavoidable, or if there are techniques (or special relaxations) that naturally yield inequal-

ities with short descriptions. The question is not just a rhetorical one, note that in the case
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of the TSP, the local cuts procedure usually finds inequalities with short descriptions.

Some implementation issues also aroused naturally once we start to look at the profile

of our program. From these analysis we can see that on average over 87% for the L0

configuration and 86% of the time is spend computing maximum common denominator to

mantain our fractions in normal (irreducible) form and perform rational arithmetic. This

hints that our rational representation is not the best for our purposes, or at least shows

that to maintain irreducibility at every step is not necessarily a good idea.
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CHAPTER 3

The TSP Problem and the Domino Parity Inequal-

ities

3.1 Introduction

The Traveling Salesman Problem or Travelling Salesman Problem (TSP), also known as the

Traveling salesperson problem, is the problem of given a number of cities and the cost of

traveling from any city to any other city, find the cheapest round-trip route that visits each

city exactly once and then returns to the starting point.

An equivalent formulation in terms of graph theory is: Given a complete graph on n

points, and weights on the edges, find a Hamiltonian cycle with minimum weight.

This problem is NP-hard , even in the special case when all distances are either 1 or 2.

It remains NP-hard even if the distances are euclidean. The problem also remains NP-hard

when we remove the condition of visiting each city exactly once. The decision version is

NP-complete (see [43] for more complexity results).

The problem is of considerable practical importance, apart from the evident transporta-

tion and logistics areas. A classic example is in printed circuit manufacturing: scheduling

of a route of the drill machine to drill holes in a board. In this case the cities are the holes

that the robot must drill, and the cost between cities is the time needed to move the robot

arm and retooling it.

Although the most direct solution method would be to try all the permutations of cities

and then see which one is the cheapest, the number of combinations to try is n!, which
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translates into the following values for different numbers of cities:

• 10 cities ≈ 105.5 possibilities.

• 100 cities ≈ 10156 possibilities.

• 1,000 cities ≈ 102,565 possibilities.

• 33,810 cities ≈ 10138,441 possibilities.

To put those numbers in perspective, let us record some physically large numbers:

• Age of the universe ≈ 1018 seconds.

• Number of atoms in the universe < 10100.

These numbers show that the brute force approach (of enumerating all possible combinations

and pick the best) is absolutely hopeless for problems with more than a handful of cities.

Using techniques of dynamic programming one can solve the problem exactly in O(n22n)

time. Although this is exponential, it is still much better than the O(n!) running time for

the brute force approach.

The best approach to exactly solve TSP problems today is the Branch and Bound

and Cut algorithm proposed by Dantzig, Fulkerson and Johnson [33]. In this method we

start with a linear programming relaxation description of all tours, and we iteratively add

inequalities satisfied by all tour vectors. Once no more inequalities can be found, we resort

to branching and keep cutting in every node in the branch-and-bound tree. However, the

cutting phase is crucial to find optimal solutions for TSP problems, without them, the

scheme reduces to a clever enumeration of (almost) all possible tours, which, as we have

seen, can be a quite time consuming endeavor.

The literature of valid and facet-defining inequalities for the TSP is vast and with a

long history, they include the subtour elimination constraints, the blossom constraints in-

troduced by Edmonds [36] in 1965, the comb inequalities introduced by Chvátal [26] in

1973 and generalized by Grötschel and Padberg [49] in 1979, the path, wheelbarrow and

bicycle inequalities introduced by Cornuéjols et al. [29] in 1985, the clique-tree inequalities

introduced by Grötschel and Pulleyblank [50] in 1986, the star inequalities introduced by

Fleischmann [39] in 1988, the bipartition inequalities introduced by Boyd and Cunning-

ham [19] in 1991, the 2-brushes inequalities introduced by Naddef and Rinaldi [80] in 1991,
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the binested inequalities introduced by Naddef [78] in 1992, the crown inequalities intro-

duced by Naddef and Rinaldi [81], the ladder inequalities introduced by Boyd et al. [20] in

1993, and the domino-parity inequality introduced by Letchford [70] in 2000.

Many of these classes of inequalities have been proven to be facet defining under some

mild conditions, however, polynomial time separation algorithms are lacking for most of

them, exceptions are the subtour inequalities which can be separated in O(n3) time, where

n is the number of nodes or cities in the problem; the blossom inequalities can be separated

exactly in O(m(m + n)3) time [88, 90], where m is the number of edges in the graph, and

n is the number of nodes or cities in the problem; Carr [24] also proposed a polynomial

time separation algorithm for clique trees and bipartition inequalities for fixed number of

handles and teeth whose complexity is O(nh+t+3), where n is the number of nodes or cities

in the problem, h the number of handles and t the number of teeth that we are considering.

Most implementations of the branch and bound and cut procedure for the TSP in-

clude exact separation routines for subtour inequalities and some form of the separation

of blossom inequalities, but they have to rely on heuristic separation routines for other

classes of inequalities. Although this mixture of exact methods and heuristic algorithms

for the separation of inequalities have proven to be effective in many cases (see Padberg

and Rinaldi [91], Jünger, Reinelt and Thienel [63], Applegate et al. [5], and Naddef and

Thienel [82, 83]), finding exact separation methods could allow to solve larger problems and

also solve problems faster than what is nowadays possible.

An interesting new approach to TSP separation problems was adopted by Letchford [70],

building on an earlier work of Fleischer and Tardos [38]. Letchford [70] introduces a new class

of TSP inequalities, called domino-parity constraints, and provides a separation algorithm

under some sparsity conditions, moreover, the separation algorithm runs in O(n3) time,

where n is the number of cities or nodes in the problem. This theoretical complexity

hints that the algorithm might be used in practice. An initial computational study of

this algorithm by Boyd et al. [18], combining a computer implementation with by-hand

computations, showed that the method can produce strong cutting planes for instances

with up to 1,000 nodes. Further studies by Naddef and Wild [84] showed that most of the
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domino parity constraints are facet defining for the TSP.

In this chapter we present a further study of Letchford’s algorithm, reporting computa-

tional results on a range of TSPLIB test instances. The rest of this chapter is organized as

follows: In Section 3.2 we define our notation. The domino parity constraints are described

in Section 3.3, together with a review of results from Letchford [70] and a short description

of the steps adopted in our implementation to improve the practical efficiency of the sepa-

ration algorithm. In Section 3.4 we describe shrinking techniques that allow us to handle

large instances and also to handle the common case where the original sparsity conditions

do not hold. A local-search procedure for improving domino-parity constraints is described

in Section 3.6 and computational results are presented in Section 3.7. These results include

the optimal solution of a 33,810-city instance from the TSPLIB.

3.2 Problem Description

We consider the traveling salesman problem (TSP) with symmetric costs, that is, the cost

to travel from city a to city b is the same as traveling from b to a. The input to the problem

can be described as a complete graph G = (V, E) with nodes V , edges E, and edge costs

(ce : e ∈ E). Here V represents the cities and the problem is to find a tour, of minimum

total edge cost, where a tour is a cycle that visits each node exactly once (also known as a

Hamiltonian cycle).

Tours are represented as a 0-1 vectors x = (xe : e ∈ E), where xe = 1 if edge e is used in

the tour and xe = 0 otherwise. For any S ⊆ V let δ(S) denote the set of edges with exactly

one end in S and let E(S) denote the set of edges having both ends in S. For disjoint sets

S, T ⊆ V let E(S : T ) denote the set of edges having one end in S and one end in T . For

any set F ⊆ E define x(F ) =
∑

(xe : e ∈ F ).

Using this notation the subtour-elimination constraints can be defined as

x(δ(S)) ≥ 2 ∀ ∅ 6= S ( V. (3.1)

Using network-flow methods, the separation problem for these inequalities can be solved

efficiently, that is, given a non-negative vector x∗ a violated subtour-elimination constraint

can be found in polynomial time, provided one exists. The subtour-elimination constraints
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were employed by Dantzig et al. (1954) and they are a basic ingredient of modern imple-

mentations of the cutting-plane method. The solution set of the TSP relaxation

x(δ({v})) = 2 ∀ v ∈ V

x(δ(S)) ≥ 2 ∀ ∅ 6= S ( V

0 ≤ xe ≤ 1 ∀ e ∈ E

is known as the subtour-elimination polytope and is denoted by SEP (n), where n = |V |.

3.3 DP Inequalities and Letchford’s Algorithm

We begin by introducing the domino-parity constraints and giving an overview of Letchford’s

separation algorithm. We highlight some important algorithmic steps, placing emphasis on

our implementation. All lemmas and theorems not proved in this section can be found in

Letchford [70].

Define I(p) = {1, . . . , p} for any p ∈ N. Let Λ = {Ei}i∈I(k), where Ei ⊆ E, ∀i ∈ I(k).

Define µe = |{F ∈ Λ : e ∈ F}| The family Λ is said to support the cut δ(H) if δ(H) = {e ∈

E : µe is odd}. Define a domino as a pair {A, B} satisfying ∅ 6= A, B ⊆ V , A ∩B = ∅, and

A ∪B 6= V .

Theorem 3.1. Let p be a positive odd integer, let {Aj , Bj} be dominoes for j ∈ I(p), and

let H ( V . Suppose that F ⊆ E is such that {E(Aj : Bj), j ∈ I(p); F} supports the cut

δ(H) and define µe accordingly. Then, the domino-parity (DP) constraint,

∑

e∈E

µexe +
∑

j∈I(p)

x(δ(Aj ∪Bj)) ≥ 3p + 1 (3.2)

is valid for all tours.

The set H is called the handle of the constraint.

Letchford [70] proposes a two-stage algorithm which exactly separates this class of con-

straints, provided that the support graph G∗ is planar and all subtour-elimination con-

straints are satisfied. In the first stage, a set of candidate dominoes is constructed. In the

second stage, a handle and an odd number of dominoes are selected in such a way as to

define a maximally violated constraint, provided one exists.
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For the remainder of this section, assume that all of the subtour-elimination constraints

are satisfied. Also, assume that G∗ is a planar graph and let Ḡ∗ be the planar dual of G∗.

For any subset F ⊆ E(G∗), denote by F the corresponding edges in Ḡ∗ .

3.3.1 Building Dominoes

Lemma 3.2. Consider s, t ∈ V (Ḡ∗ ) and three node-disjoint s-t paths P1, P2, P3 in Ḡ∗ .

There exists a domino {A, B} such that
(

δ(A ∪B) ∩ E(Ḡ∗ )
)

∪
(

E(A : B) ∩ E(Ḡ∗ )
)

=

E(P1) ∪ E(P2) ∪ E(P3).

Algorithm 3.1 Primalizing Dual Dominoes (prim dom(p1, p2, p3))

Require: p1, p2 and p3 be three simple s− t paths in Ḡ∗ .
1: Compute p̂1, p̂2 and p̂3 three non-crossing s-t paths in Ḡ∗ such that

⋃

i∈I(3)

pi =
⋃

i∈I(3)

p̂i.

2: Compute S1, S2, S3 a partition of V such that δ(Si) = p̂i+1 ∪ p̂i+2.
3: Let A be the smallest {Si}i∈I(3) and B be the second smallest {Si}i∈I(3).
4: return (A, B)

Given three paths in Ḡ∗ as described above, it is easy to construct a domino in G∗.

Algorithm 3.1 describes the procedure by which we build them even in the case when

x∗ /∈ SEP (n). Take note that, as shown in step 3 of Algorithm 3.1, there is no a unique

primal domino whose cut-edges correspond in the dual to the three node-disjoint s-t paths.

This allows us some freedom at the moment of choosing the primal representation of the

domino, such as to choose A and B in such a way as to force x(E(A : B)) or |E(A : B)| to

be minimum or maximum. From the point of view of the exact separation algorithm this

does not affect the outcome, but when doing heuristics to generate more cuts, this can have

a great impact. A proof that we can indeed choose A and B in any way is in section 3.4.

A surprising fact is that it suffices to use only these dominoes (generated from three

dual s − t paths) as candidates. Algorithm 3.2 describes the basic procedure by which to

obtain them.

Algorithm 3.2 although correct is far too inefficient to be used directly. The first ob-

servation to be made is that by defining the weight of a domino {A, B} as w({A, B}) =

x(δ(A ∪ B)) + x(E(A : B)) − 3, then a DP inequality with domino-set {Aj , Bj}j∈I(p) can
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Algorithm 3.2 Generating Candidate Dominoes (basic)

1: L ← ∅.
2: Compute Ḡ∗ , the planar dual of G∗.
3: for all s, t ∈ V (Ḡ∗ ) do
4: Find three edge disjoint s− t paths p1, p2, p3 of minimum joint weight.
5: L ← L ∪ prim dom(p1, p2, p3)

6: end for
7: return L

be re-written as

x(F ) +
∑

j∈I(p)

w({Aj , Bj}) ≥ 1. (3.3)

Thus, if we are only interested in violated inequalities, we should consider dominoes {A, B}

with weight w({A, B}) < 1, i.e. we can add the constraint x(p1 ∪ p2 ∪ p3) < 4 while we are

generating the dominoes between steps 4 and 5 of Algorithm 3.2.

More can be done with this bound if we assume that x ∈ SEP (n). First of all, note that

no node at distance 2 or more from either s or t can be present in any of the three paths,

otherwise, if such a node is in path p3, then we know that p1, p2 form a cycle in the dual,

and thus correspond to a cut in the primal, from that we have that x(p1 ∪ p2) ≥ 2 and that

x(p3) ≥ 2, thus we would violate the bound of 4. This allow us to run Dijkstra’s algorithm

on a much smaller graph than the original one. Moreover, since we use a successive shortest

path algorithm as described in [2], we can use the weight of the previously computed paths

as a bound for the weight of the remaining paths, this is because x(p1) ≤ x(p2) ≤ x(p3), and

then sufficient conditions for the bound to be violated are 3x(p1) ≥ 4 or x(p1)+2x(p2) ≥ 4.

Finally, note that x ∈ SEP (n) also implies that for any domino satisfies w({A, B}) ≥ 0.

To take advantage of these bounds we implemented Dijkstra’s algorithm with heaps and

with the capacity of whenever the latest labeled node has a value over a given bound, stop

the algorithm. We call this function dijkstra(G,s,w,bound), where G is a graph, s is a

node in V (G), w is a weight vector on the edges of G and bound is the stopping bound,

this function returns a vector of distances from s to all nodes in G (with distance less than

bound, and infinite otherwise).

Another small speed-up is possible by realizing that while computing all s − t paths

for t ∈ V (Ḡ∗ ) \ {s}, the solution to the first path can be computed with only one run of
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dijkstra. A more detailed version of the actual implementation is in Algorithm 3.3.

Algorithm 3.3 Generating Candidate Dominoes (get all dominoes(G∗,α))

1: L ← ∅.
2: Compute Ḡ∗ , the planar dual of G∗.
3: w(e)← x∗

e, ∀e ∈ E(Ḡ∗ ) /* weight definition */
4: c(e)← 1, ∀e ∈ E(Ḡ∗ ) /* capacity of edges */
5: for all s ∈ V (Ḡ∗ ) do
6: do ←dijkstra(Ḡ∗ ,s,w,2)
7: for all t ∈ V (Ḡ∗ ) and t > s and do(t) < (3 + α)/3 do
8: d← do

9: Send unit flow in shortest s− t path according to d
10: Update residual graph Ḡ∗ , residual costs w, and capacity c
11: val← d(t)
12: bound← min

(
3+α−val

2 , 2
)

13: d←dijkstra(Ḡ∗ ,s,w,bound).
14: if val + 2d(t) < 3 + α then
15: Send unit flow in shortest s− t path according to d
16: Update residual graph Ḡ∗ , residual costs w, and capacity c
17: val← val + d(t)
18: bound← min (bound, 3 + α− val)
19: d←dijkstra(Ḡ∗ ,s,w,bound).
20: if val + d(t) < 3 + α then
21: Send unit flow in shortest s− t path according to d
22: Compute the three unit flows paths p1, p2, p3 from s to t.
23: Dst ← prim dom(p1, p2, p3), w(Dst)← val + d(t).
24: L ← L ∪ Dst.
25: end if
26: end if
27: end for
28: end for
29: return L

Note that Algorithm 3.3 has a parameter α as input. To actually get al.l dominoes that

might be used in a violated constraint, suffices to choose α as one. In practice however,

we have seen that choosing α to be .55 greatly reduces the computation time to get the

dominoes, and at the same time it seems that it does not hurt the quality of the inequalities

that we actually get from this code. In all the test presented in section 3.7, that is the value

used for α.

Another interesting possibility to speed-up the domino generation step, is to do steps 6-

27 of Algorithm 3.3 in parallel, this is possible because to compute all dominoes originating

at a node s is independent of the computations to get al.l dominoes originating from any
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other node t. The only synchronization needed is to collect all resulting partial lists of

dominoes, which is done by a master program, and we need to send a copy of the working

graph Ḡ∗ to each of the sub-programs generating the dominoes, this is done only once

during each separation call. Although this is not a theoretical speed-up, it allows us to use

a cluster of 50-100 machines to generate all dominoes, greatly reducing the (actual) time to

do the testing of the code.

3.3.2 The Odd-Cycle Problem

Now we will focus in the problem of how to build an inequality from this set of dominoes,

and the edges in the dual graph. For that, define an auxiliary multigraph M ∗ with node

set V (M∗) = V (Ḡ∗ ). For each edge e = {u, v} ∈ E(Ḡ∗ ) define an even edge e = {u, v} ∈

E(M∗) with weight we = x∗
e, and for each Duv ∈ L define an odd edge e = {u, v} ∈ E(M ∗)

with weight we = w(Duv). An odd cycle in M∗ is a cycle with an odd number of odd edges.

Lemma 3.3. Given an odd cycle C ⊆ E(M ∗) with weight w(C) < 1 it is possible to

construct a DP-inequality with violation 1− w(C).

In fact, to construct the DP-inequality from the cycle it suffices to define the set F as

the even edges in C, and choose the set of dominoes used by the inequality T as those

dominoes corresponding to odd edges in C.

Theorem 3.4. There exists a violated DP-inequality in G∗ if and only if there exists an

odd cycle in M∗ with weight less than one. Furthermore, if such a cycle exists, a minimum

weight odd cycle in M∗ corresponds to a maximally violated DP-inequality.

From these results Algorithm 3.4 directly follows.

This algorithm can be improved by some simple observations, first we can omit all edges

e ∈ E(Ḡ∗ ) such that x∗
e ≥ 1 − ε, where ε is the minimum violation that we would like to

have, and can be set to zero if we want an exact separation version. Note that even in the

case when we set ε to zero, the number of edges that can be discarded is usually very large,

specially when the current LP relaxation is very good, because the number of edges having

values of one (or close) is very large.
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Algorithm 3.4 DP-inequality separation (basic)

1: max violation← 0
2: L ←get all dominoes(G∗,1).
3: build graph M∗

4: for all v ∈ V (M∗) do
5: Compute min odd cycle C passing through v
6: if 1− w(C) > max violation then
7: max violation← 1− w(C)
8: F ← even edges in C
9: T ← {Duv ∈ L : euv odd , euv ∈ C}

10: end if
11: end for
12: return F, T

3.3.3 Generating More Inequalities

One drawback of Algorithm 3.4 is that it only provides one maximally violated domino

parity inequality. But the amount of work involved to get it is really huge, and in practice

we want to find several violated inequalities for the current fractional LP solution x∗. A

first approach to get several inequalities is to keep all violated inequalities found during

the algorithm. Although this approach works, it has several pitfalls, first of all, many of

the violated inequalities generated in this form are the same, and from our computational

experience we know that there is a large set of inequalities with high violation that do not

correspond to a minimum odd cycle with a given node in it. This lead us to implement (on

top of the previous improvement) an heuristic search procedure to attempt to find additional

inequalities. The technique we use is to sample the odd cycles by performing random walks

starting at each node. At each step of the walk we select a new edge to extend the current

path that does not create an even cycle, nor create an odd cycle with only one odd edge

in it (with any previously visited node), with a probability proportional to the weight of

the edge. If the resulting path has total weight more than one, we re-start the process, if

the resulting path creates an odd cycle within the path, we keep the constraint and re-start

the process, otherwise, we keep iterating. In our tests we spend 10-30 seconds in this step,

evenly distributed among all nodes in the network. Incredibly, this simple procedure is able

to find several hundred of thousands of different inequalities within a couple of seconds,
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which in turn lead us to the following problem: Which of those inequalities should we

choose to report?. Clearly we can not return them all (just storing all those inequalities

is impossible within our computer memory of 4GB of RAM), and keeping the set of most

violated inequalities leads to storing several inequalities that are almost identical and that

use roughly the same set of edges in the graph M ∗.

Algorithm 3.5 Selection of Cuts (add if new(C,{F, T }))
1: C: The set of cuts that we have selected up to now.
2: {F, T }: The cut that we are consider to add to the set of cuts.
3: Nmax: Maximum number of cuts to return.
4: ε: Minimum violation required.
5: αmin: Closeness parameter.
6: βo: Spread parameter.
7: wo: Quality parameter.

8: βF̄ ,T̄ = 1 +
∑

{F ′,T ′}∈C\{F̄ ,T̄ }

〈(F̄ ,T̄ ),(F ′,T ′)〉
‖(F̄ ,T̄ )‖‖(F ′,T ′)‖

9: βmax = max
{
βF ′,T ′ : {F ′, T ′} ∈ C

}

10: {Fβ , Tβ} = argmax
{
βF ′,T ′ : {F ′, T ′} ∈ C

}

11: wmin = min {1− w(F ′)− w(T ′) : {F ′, T ′} ∈ C}
12: {Fw, Tw} = argmin {1− w(F ′)− w(T ′) : {F ′, T ′} ∈ C}
13: αo = max

{
〈(F,T ),(F ′,T ′)〉

‖(F,T )‖‖(F ′,T ′)‖ : {F ′, T ′} ∈ C
}

14: {Fo, To} = argmax
{

〈(F,T ),(F ′,T ′)〉
‖(F,T )‖‖(F ′,T ′)‖ : {F ′, T ′} ∈ C

}

15: if (|T | < 3) or (|T | even) or (1−w(F )−w(T ) < ε) or (T has repetitions) or ({F, T } ∈ C)
then

16: return C
17: else if (Nmax > |C|) then
18: return C ← C ∪ {F, T }.
19: else if (αo > αmin) and (1− w(F )− w(T ) > 1− w(Fo)− w(To)) then
20: return C ← C − {Fo, To}+ {F, T }
21: else if (1− w(F )− w(T ) > wmin) then
22: return C ← C − {Fw, Tw}+ {F, T }
23: else if (βmax > βo) and (βmax > βF,T ) and (1− w(F )− w(T ) > wmin · wo) then
24: return C ← C − {Fβ , Tβ}+ {F, T }
25: end if
26: return C

After a lot of testing, we choose a balance between keeping highly violated inequalities,

and inequalities that cover different parts of the graph M ∗. The basic ideas of our selec-

tion procedure are described in Algorithm 3.5. An algorithmic description of the actual

separation procedure used in our implementation can be seen in Algorithm 3.6.

In Table 3.1 we show the impact of different variations on the selection rules outlined in
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Algorithm 3.5; strategy 4 refers to the full Algorithm 3.5; strategy 3 is the same as strategy

4 but it does not perform steps 23-24 of the algorithm; strategy 2 is the same as strategy 3

but it does not perform steps 21-22; and strategy 1 is the same as strategy 2 but it does not

perform steps 19-20. The numbers represent the aggregated fraction of the optimal value

obtained over all TSPLIB instances with less than 2.000 cities that do not solve to optimality

with CONCORDE, using DP-inequalities, and without branching (actually, since there is a

random component in the overall CONCORDE separation routines, we perform four runs

for each instance). This criteria left us with 10 instances, namely att532, d657, dsj1000,

pcb1173, rat575, rl1323 rl1889, u1060, u1817 and u724. Note that the results suggest that

the selection strategy outlined in Algorithm 3.5 has some advantage, but the results are not

conclusive.

Table 3.1: Selecting DP Cuts

Strategy Average Geometric Mean

4 0.999806124 0.99981348
3 0.999805975 0.99979177
2 0.999795751 0.99979177
1 0.999796262 0.99979148

The chosen parameters for Algorithm 3.5 in our test-runs were ε = 10−3, Nmax = 500,

αmin = 0.55, βo = 1.5 and wo = 1
2 . Note that in Algorithm 3.5, the condition on line 15 just

enforce that we do not add trivial (or dominated) DP-inequalities to our current set. The

condition on line 17 just says to fill-up the set of inequalities up to the maximum number of

desired inequalities. Condition on line 19 says that if we pick the closest inequality in our

pool to the new inequality, and this inequality is close enough (defined by the parameter

αmin), we replace the old inequality by the new one as long as the new inequality has better

violation. Condition in line 21 says that if the new inequality has better violation than

the worst violation that we have, we replace that inequality by our newly found inequality.

Finally, condition in line 23 says that if we improve the spread of our set of inequalities, and

the new inequality do not degrade too much our worst violation, we replace the inequality

with the worst spread by our new inequality. This scheme assure that we keep the most
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violated inequality in our set, while trying to get inequalities that differ significantly from

each other.

3.3.4 Putting it All Together

After all the previous discussion, we are ready to present the separation algorithm that we

implemented:

Algorithm 3.6 DP-inequality separation (get cuts(G∗, α, ε, t))

1: C ← ∅
2: L ←get all dominoes(G∗, α)
3: Compute dual graph Ḡ∗ .
4: V (M∗) = V (Ḡ∗ ), Eeven = {e ∈ E(Ḡ∗ ) : xe < 1− ε}, Eodd = {uv : Duv ∈ L}
5: for all v ∈ V (M∗) do
6: Compute min odd cycle {F, T } passing through v
7: C ← add if new(C, {F, T })
8: find heuristic cuts(v, C, t)
9: end for

10: return C

Note that in Algorithm 3.6 we have some number of extra parameters, t is the time to

spend in the heuristic random walk step at every node in V (M ∗) (set to 10 to 30 seconds),

α is the bound parameter used to separate all dominoes (set to .55 in our tests), and ε is the

minimum violation required (set to 10−6 in our tests) to consider an inequality as violated.

3.4 Shrinking and Non-Planar Graphs

Although the Domino Parity separation algorithm for planar support graphs is a major

breakthrough in terms of exact separation algorithms, in practice, the cases where the

support graph is planar are very rare. Another problem of the separation algorithm is that

despise all speed-ups, it is still a very time consuming algorithm. A common approach to

tackle this kind of problems is to use some kind of preprocessing on the input that somehow

simplifies the problem to a more manageable size. In the context of the TSP there exists

the concept of safe shrinking introduced by Padberg and Rinaldi [91] which is extensively

used in modern TSP codes. They provide conditions for shrinking a pair of nodes that

guarantee that if there was a violated cut for the TSP, then the shrunken graph will also

have a violated inequality. In section 3.4.1 we provide a proof that some of these conditions

124



also hold for DP-Inequalities.

Unfortunately, safe shrinking for DP-inequalities does not guarantee that the final

shrunken graph is planar, but a natural thing to do is to keep doing unsafe shrinking

until a planar graph is obtained, this approach is explained in section 3.5. But shrinking is

not the only alternative to obtain planar graphs. A second alternative is to simply eliminate

edges from the support graph until a planar graph is obtained, this approach is explained

in section 3.5.1. Note that many more schemes are possible to generate planar graphs from

a graph, and the two methods that we explain here are only heuristics, and in fact, neither

dominates the other (in all of our tests, our code separate the DP-inequalities in the graphs

obtained from both heuristics). We think that this problem admits much more study, but

for the purposes of our code, the two heuristics presented proved more than enough in

practice.

3.4.1 Safe Shrinking

In applying the DP-separation algorithm it is crucial to preprocess G∗ to reduce the size of

the graph that must be handled. Given a graph G, and two nodes u, v ∈ V (G), let G/{u, v}

denote the graph obtained by collapsing the nodes u, v into a single node y and eliminating

any resulting self-loop edges. This operation is called shrinking u, v in G. Padberg and

Rinaldi [91] proved that under some simple conditions, if there exists a violated inequality

for the TSP (that is, x∗ is not in the convex hull of tours), then the shrunken graph will also

have a violated inequality. Their result however does not imply that if there is a violated

inequality from a particular class (like the Domino Parity inequalities) then there remains

a violated inequality from the same class. The following result provides conditions that

allow us to shrink pairs of nodes (u, v), guaranteeing that violated DP constraints will be

available in the shrunken graph G∗/{u, v} if violated DP constraints where present in G∗.

These conditions are a sub-set of the original conditions described in Padberg and Rinaldi

paper.

Theorem 3.5. Let x∗ ∈ SEP (n) and let u, v, t ∈ V (G∗) be such that x∗
uv = 1 and

x∗
ut + xtv = 1. If there exists a violated DP inequality in G∗, then there exists a DP
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inequality in G∗/{u, v} with violation no less than the violation of the original inequality.

Although the conditions for safe shrinking for DP-inequalities are not as general as

those for TSP cuts, the reader should bear in mind that the DP safe shrinking conditions

account (on average) for above 95% of all safe shrinking for TSP cuts, thus giving it a

significant impact in practice. Our implementation uses DP safe-shrinking before working

on the actual separation step and then converts back the shrunken inequality to the original

problem.

The remaining of this section is devoted to a proof of Theorem 3.5.

3.4.2 Domino Transformations

Let us start by refreshing the notation and hypothesis for Domino Parity inequalities. Let

x be a fractional point for the Subtour Elimination Polyhedron (SEP) of the TSP, and let

µ, T be a DP-inequality, where T is the set of dominoes associated with the inequality, and

µ ∈ ZE is defined as µe = |{S ∈ {F, E(AT : BT ) : T ∈ T } : e ∈ S}|. There are some

observations that are of interest about valid DP-Inequalities:

1. µ supports a cut1 on G∗, but that cut may be empty. This is due to the fact that we

only need µx to be even for all valid tours, and if the cut is empty the condition is

trivially true.

2. |T | must be odd, but we do not require |T | ≥ 3; a DP-Inequality with one domino is

still valid.

3. T may have repeated elements in it, and they are counted as many times as they

appear.

4. w(T ) = x(δ(T )) + x(E(AT : BT )) ≥ 3 for any domino and x ∈ SEP(n).

In terms of notation, we will sometimes interpret D ⊆ E(G∗) as a set of edges, and at

other times as a vector in Z
|E(G∗)|
+ with 1 for each edge in the set and 0 for all other edges.

For a domino T = {AT , BT } ∈ T we use the short-hand δ(T ) to mean δ(AT ∪BT ) and we

denote by CT the set V \ {AT ∪ BT }. Given a set S, we define the function 1IS(a) = 1 if

1A set of coefficients µ ∈ Z
|E(G∗)|
+ supports a cut in G∗ if the set of edges with odd coefficients correspond

to δ(H) for some H ⊆ V (G)
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a ∈ S, zero otherwise.

Now we will present transformations that given a DP-Inequality µ, T , and x in SEP(n)

will give us another DP-Inequality µ′, T ′ with slack less than or equal to the slack of the

original constraint.

Duplicate Domino Elimination Let T1, T2 ∈ T such that T1 = T2, define T ′ = T \

{T1, T2}, and µ′ = µ−E(AT1 : BT1)−E(AT2 : BT2). Note that the cut defined by µ′ is the

same cut defined by µ given that we subtract an even number for all entries. Note also that

the slack of the new inequality is less than (or equal) to the slack of the original inequality.

µx +
∑

T∈T

x(δ(T ))− 3|T | − 1

=µ′x +
∑

T∈T ′

x(δ(T ))− 3|T ′| − 1

+ x(δ(T1)) + x(E(AT1 : BT1))− 3
︸ ︷︷ ︸

≥0

+ x(δ(T2)) + x(E(AT2 : BT2))− 3
︸ ︷︷ ︸

≥0

≥µ′x +
∑

T∈T ′

x(δ(T ))− 3|T ′| − 1

And thus obtaining a new DP-inequality µ′, T ′ with slack less than or equal to the slack of

the original constraint, but with two less copies of T1 ∈ T . This allow us to assume that T

does not contain multiple copies of the same domino in it.

Domino Reduction Let To ∈ T , and let A′
To
⊆ ATo , B′

To
⊆ BTo be such that x(δ(A′

To
∪

B′
To

)) ≤ x(δ(To)). Define:

• T ′
o with A−partition A′

To
and B−partition B′

To
.

• T ′ = (T \ {To}) ∪ {T ′
o}.

• µ′ = F∆
(
E(ATo : BTo) \ E(A′

To
: B′

To
)
)

+
∑

T∈T ′

E(AT : BT )
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To simplify notation, call S = E(ATo : BTo) and S′ = E(A′ : B′). Then, we have that

µ = F +
∑

T∈T

E(AT : BT )

= F \
(
S \ S′)

)
+ F ∩

(
S \ S′)

)

︸ ︷︷ ︸

F

+
(
S \ S′

)
+ S′

︸ ︷︷ ︸

S

+
∑

T∈T \{To}

E(AT : BT )

= F \
(
S \ S′

)
+
(
S \ S′

)
\ F

︸ ︷︷ ︸

F ′

+2F ∩
(
S \ S′

)
+
∑

T∈T ′

E(AT : BT )

= µ′ + 2F ∩
(
S \ S′

)
.

And then the parity of all edges does not change from µ to µ′, so the implied cut of µ and

µ′ are the same. Finally, note that the left-hand-side of the new inequality is less than or

equal to that of the original constraint

µx +
∑

T∈T

x(δ(T )) = µ′x + 2x(F ∩
(
S \ S′

)
)

︸ ︷︷ ︸

≥0

+
∑

T∈T \{To}

x(δ(T )) + x(δ(To))
︸ ︷︷ ︸

≥x(δ(T ′
o))

≥ µ′x +
∑(

x(δ(T )) : T ∈ T ′
)
.

We thus obtaining a new DP-inequality µ′, T ′ with slack less than or equal to the slack of

the original constraint, with To replaced by T ′
o.

Domino Rotation Boyd et al. [18] have shown that in a DP inequality a domino {AT , BT }

in T can be rotated to {AT , CT } without altering the inequality. To see this let To ∈ T ,

and define:

• T ′
o : A′ = ATo , B

′ = T c
o .

• T ′ = (T \ {To}) ∪ {T ′
o}

• µ′ = µ− E(ATo : BTo) + E(A′
To

: B′
To

).

To simplify the notation, call S1 = E(ATo : BTo), S2 = E(CTo : ATo) and S3 = E(CTo : BTo).

Note that µ′ supports the cut δ(H∆ATo), that is,

Odd(µ′) = Odd(µ)∆δ(ATo) = δ(H)∆δ(ATo) = δ(H∆ATo)

128



where Odd(µ) denotes the edges having odd value µe. Note also that the left-hand-side of

the inequality does not change:

µx +
∑

T∈T

x(δ(T )) = (µ− S1) x + x(S1) +
∑

T∈T \{To}

x(δ(T )) + x(S2) + x(S3)
︸ ︷︷ ︸

x(δ(To))

= (µ− S1 + S2) x
︸ ︷︷ ︸

µ′x

+
∑

T∈T ′\{T ′
o}

x(δ(T )) + x(S1) + x(S3)
︸ ︷︷ ︸

x(δ(T ′
o))

= µ′x +
∑(

x(δ(T )) : T ∈ T ′
)
.

We thus obtaining a new DP-inequality µ′, T ′ with slack equal to the slack of the original

constraint, with To replaced by T ′
o and H replaced by H∆ATo .

3.4.3 Proof of Safe-Shrinking Conditions for DP-inequalities

Let (µ, T ) be a violated DP inequality for x∗ and let u, v, t satisfy the conditions in Theo-

rem 3.5, namely x∗
uv = 1 and x∗

ut+x∗
vt = 1. Let w denote the aggregated node for V \{u, v, t}.

This graph configuration is shown in Figure 3.1. We prove Theorem 3.5 by showing that

there is another DP inequality (µ′, T ′), with violation at least that of the original, such that

the coefficient of uv in the new inequality is zero. This proves that we can shrink uv into a

single node and keep a violated DP inequality.

u v

t

w

1− α α

α 1− α

1

1

Figure 3.1: Safe-Shrinking configuration, here nodes u, v are the candidates to be shrunk
into a single node. Values on the edges show the fractional value of x∗ in the reduced graph.

The general coefficient for any edge in a DP-inequality can be written as

coeff(uv) = |{T ∈ T : uv ∈ δ(T )}|+ |{T : uv ∈ E(AT : BT )}|+ Fuv

Our proof will transform the inequality to reduce each component of the above expression
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to zero.

Claim 1: We may assume that for all T ∈ T we have uv /∈ δ(T ).

Proof. Let To ∈ T s.t. uv ∈ δ(To), and let assume that u ∈ ATo , v ∈ T c
o , by rotating To and

redefining B′
o = T c

o as in Section 3.4.2 we obtain an equivalent constraint µ′, T ′ but with

|{T ∈ T : uv ∈ δ(T )}| > |{T ∈ T ′ : uv ∈ δ(T )}|.

Now we may assume that:

coeff(uv) = |{T : uv ∈ E(AT : BT )}|+ Fuv.

Claim 2: We may assume that for all T ∈ T such that uv ∈ E(AT : BT ) we have that

T = {{u}, {v}}.

Proof. Let To ∈ T s.t. uv ∈ E(ATo : BTo), we may assume that u ∈ ATo , v ∈ BTo . Then, by

applying Domino Reduction as in Section 3.4.2 with B ′
To

= {v} and A′
To

= {u}, and noting

that x(δ({u, v})) = 2 ≤ x(δ(S)), ∀S ( V we obtain our result.

Combining Claim 2 with Duplicate Domino Elimination, and by using Claim 1, we may

assume that there is at most one domino TI = {{u}, {v}} in T containing uv in E(TA : TB).

With this we may assume that

coeff(uv) = 1I{TI∈T } +Fuv

Claim 3: We may assume that coeff(uv) ≤ 1.

Proof. If coeff(uv) = 2 then TI ∈ T and Fuv = 1. In this case, we will replace TI by a new

domino TII = {{u, v}, {t}} and change F by F∆{uv, ut, vt} as in Figure 3.2.

The detailed definition of the new inequality is as follows:

• TII : ATII
= {u, v}, BTII

= {t}.

• T ′ = (T \ {TI}) ∪ {TII}.

• µ′ = (F∆{uv, ut, vt}) +
∑

T∈T ′

E(AT : BT ).
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u v

t

w

u v

t

w

Figure 3.2: Domino Transformation I, left before, right after. Shaded areas represent the
halves of the dominoes TI and TII .

To simplify notation call S1 = {uv, vt, ut}, S2 = E(ATI
: BTI

) = {uv} and S3 = E(ATII
:

BTII
) = {vt, ut}. Note that µ′ support the same cut as µ:

µ = F +
∑

(E(AT : BT ) : T ∈ T )

= F \ S1 + F ∩ S1
︸ ︷︷ ︸

F

+ S1 − S3
︸ ︷︷ ︸

S2

+
∑

T∈T \{TI}

E(AT : BT )

= F \ S1 + S1 \ F
︸ ︷︷ ︸

F ′

+2(S1 ∩ F − S3) + S3 +
∑

T∈T ′

E(AT : BT )

= µ′ + 2(S1 ∩ F − S3).

Thus the difference between µ and µ′ is an even vector. This proves that the implied cut

remains unchanged. Note also that the left-hand-side value of the new inequality is less

than or equal of the original constraint:

µx +
∑

T∈T

x(δ(T )) = µ′x + 2x(S1 ∩ F )
︸ ︷︷ ︸

≥2

− 2x(S3)
︸ ︷︷ ︸

=2

+
∑

T∈T \{TI}

x(δ(T )) + x(δ(TI))
︸ ︷︷ ︸

=x(δ(TII))

≥ µ′x +
∑(

x(δ(T )) : T ∈ T ′
)
.

Thus we have obtained a DP-inequality with coeff(uv) = 0 and with violation at least as

great as that of the original one.

Claim 4: We may assume that uv /∈ F .
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Proof. If Fuv = 1, then TI /∈ T and we may assume that u ∈ H, v ∈ V \H. We will redefine

µ in such a way that H ′ = H ∪ {v}. For that we redefine F as F∆{uv, vt, vw} by defining

a new inequality as

• T ′ = T .

• F ′ = F∆{uv, vt, vw}.

• µ′ = F ′ +
∑

T∈T ′

E(AT : BT ).

Note that µ′ supports the cut H ∪ {v}:

Odd(µ′) = Odd(µ)∆(uv, vt, vw) = δ(H)∆δ(v) = δ(H∆{v}) = δ(H ∪ {v}).

Also note that the left-hand-side of the new inequality is less than or equal to the left-hand-

side of the original inequality:

µx +
∑

T∈T

x(δ(T ))− µ′x−
∑

T∈T ′

x(δ(T )) = x(F )− x(F∆{uv, vt, vw})

= x(F ∩ δ(v))
︸ ︷︷ ︸

≥x(uv)

−x((F∆δ(v)) ∩ δ(v))
︸ ︷︷ ︸

≤2−x(uv)

≥ 2x(uv)− 2 = 0.

Thus the new inequality (µ′, T ′) has better violation than the original constraint and also

has coeff(uv) = 0.

Using Claim 4, if TI /∈ T then we have coeff(uv) = 0 and then proving our result. We may

therefore assume that TI ∈ T and that u, t ∈ H and v ∈ V \H (the alternative case, when

v and t are on the same side of the handle, is analogous to this one). This implies that µvt

is odd.

Claim 5: We may assume that vt /∈ F .

Proof. If vt ∈ F then we can replace TI by a new domino TII, replace F by F∆{vt, uw}

and add v to the handle as shown in Figure 3.3, where w = V \ {u, v, t}.

Formally speaking, define:

• TII : ATII
= {w}, BTII

= {u, v}.

• T ′ = (T \ {TI}) ∪ {TII}.
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Figure 3.3: Domino Transformation II, left before, right after. Shaded areas represent
halves of dominoes, the dotted area represent the handle.

• µ′ = F∆{vt, uw}
︸ ︷︷ ︸

F ′

+
∑

T∈T ′

E(AT : BT ).

Clearly w(TI) = w(TII) = 3. Furthermore the left-hand-side of the new DP-inequality

µ′, T ′ is less than or equal to the left-hand-side of the original DP-inequality µ, T :

x(F )− x(F ′) +
∑

T∈T

w(T )−
∑

T∈T ′

w(T ) = x(F ∩ {vt, uw})− x((F∆{vt, uw}) ∩ {vt, uw})

= x(F ∩ {vt, uw})
︸ ︷︷ ︸

≥x(vt)

−x({vt, uw} \ F )
︸ ︷︷ ︸

≤x(uw)

≥ (1− α)− (1− α) = 0.

Note also that the cut supported by µ′ is δ(H ∪ {v}):

Odd(µ′) = Odd(µ)∆{uv, vt, vw} = Odd(µ)∆δ(v) = δ(H)∆δ(v) = δ(H∆{v}) = δ(H ∪ {v}).

Thus we have a new DP inequality with vt /∈ F .

Since we may now assume that vt /∈ F , and µvt is odd, there must exist a domino TII ∈ T

such that v ∈ ATII
, t ∈ BTII

. Moreover, since coeff(uv) = 1I{TI∈T } then u ∈ ATII
. Now, by

Domino Reduction we may assume that ATII
= {u, v} and BTII

= {t}. Note that this (plus

parity, since ut /∈ δ(H)) implies that µut ≥ 2.

Claim 6: We may assume that ut /∈ F .

Proof. If ut ∈ F then we will eliminate TI , TII from T and redefine H as H ∪{v}. Formally

speaking, define:
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• T ′ = T \ {TI , TII}.

• µ′ = F∆{ut, wv}+
∑

T∈T ′

E(AT : BT ).

Note that the cut defined by µ′ is H ∪ {v} and that the new slack is less than or equal to

the slack of the original inequality (details are analogous as those before).

It follows that there exists a domino TIII such that u ∈ ATIII
and t ∈ BTIII

. Using the same

arguments as before we can transform TIII into TII and then we have that µut = |{TII ∈

T }| = µtv. But this contradicts the fact that µvt is odd and µut is even. Thus completing

the proof of theorem 3.5.

3.5 Finding a Planar Graph

In practice large TSP instances rarely produce LP solutions with planar support. In some

cases an application of the safe shrinking rules can succeed in obtaining a final shrunken

graph that is planar, but again this is quite rare. To succeed in practice it is necessary to

modify G∗ and the edge weights given by x∗ in order to obtain a planar graph that can be

used as a substitute in the DP separation algorithm. Unfortunately such a process means

that we may lose some violated inequalities, but the hope is that if the new planar graph

is close (under some measure) to G∗ then we can still produce a good selection of cutting

planes.

In the pioneering study by Boyd et al. [18], the researchers encountered non-planar

graphs in a small number of test cases. In these instances their approach was to perform

general (possibly unsafe) shrinking steps by hand, using a visual inspection of a drawing of

G∗ to guide the process to produce a planar graph. We also adopt such an approach, but

we use planarity testing algorithms to automate the process as suggested in Vella [18].

Testing planarity is very efficient and algorithms are available that either return a planar

embedding of a graph or a K3,3 or K5 minor. A straightforward way to use such an algorithm

to obtain a planar graph is given in Algorithm 3.7.

This simple algorithm is often good enough for our purposes, and it is one of the im-

plementations used in our tests. If x∗ ∈ SEP (n) then the new shrunken fractional solution

also satisfies the subtour-elimination constraints. A drawback is that the resulting fractional
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Algorithm 3.7 Planarization by Shrinking (srk planarize(G∗))

1: while G∗ is not planar do
2: Let K be a K3,3 or K5 minor of G∗

3: Let G∗[K] be the graph induced by V (K) in G∗

4: Let u, v ∈ V (G∗[K]) such that degree(v),degree(u)≥ 3
5: G∗ ← G∗/{u, v}, where G∗/{u, v} is the graph resulting from shrinking v, t in G∗

6: end while
7: return G∗

solution does not necessarily satisfy the degree constraints

x(δ({v})) = 2 ∀ v ∈ V.

This detail is not crucial, however, since the DP inequalities and the separation algorithm

are valid also for the graphical traveling salesman problem, where nodes and edges can

be used more than once in the tour. A discussion of this point is given in Section 4 of

Letchford [70].

3.5.1 Edge-Elimination Planarization

An alternative way to obtain planar graphs is to simply eliminate edges found in a K3,3 or K5

minor. Unfortunately, just deleting random edges from a minor returned by the planarity

testing code performs very poorly in practice. An intuitive reason for this behavior is that

there might be many forbidden minors sharing edges in the graph, so the edge deletion

may not make substantial progress toward obtaining a planar graph. A second problem

is that it does not take into account the weight of the edge to eliminate; since we want

to modify as little as possible the original graph and x∗, we would prefer to remove light

edges (that is, edges having small value x∗
e). With this in mind, we chose the edge to

eliminate with a routine find bad edge(G∗). This routine uses binary search to identify

the minimum-weight edge such that the subgraph containing all edges of greater weight is

planar (a description of the procedure can be found in Algorithm 3.8).

Thus the minimum weight to eliminate from the graph to make it planar is at least

the x∗
e value of the selected edge. Clearly this edge selection rule does not eliminate the

problem of minors sharing edges, but during our tests it proved to be effective. Since the

complexity of planarity testing isO(|V (G∗)|), the total complexity for find bad edge(G∗) is
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Algorithm 3.8 Choosing edge to eliminate (find bad edge(G∗))

1: Sort edges by fractional value, such that xei
≥ xei+1 , ∀i = 1, . . . , |V (G∗)| − 1

2: lo← 5
3: up← |V (G∗)|
4: while lo 6= up do
5: md← lo + up−lo

2
6: Let Gmd ← (V (G∗), {ei : i = 1, . . . , md + 1})
7: if Gmd is planar then
8: lo← md + 1
9: else

10: up← md
11: end if
12: end while
13: return elo

O(log(|E(G∗)|)|E(G∗)|). A complete description of how this is used in our edge-elimination

planarization heuristic is given in Algorithm 3.9.

Algorithm 3.9 Planarization by Edge Elimination (elim planarize(G∗))

1: while G∗ is not planar do
2: Let e =find bad edge(G∗)
3: G∗ ← G∗/{u, v}, where e = {u, v}
4: end while
5: return G∗

In our tests, we have found that the total weight of eliminated edges is usually quite

low. A problem with the method, however, is that it produces a vector x∗ that does not

satisfy the degree constraints or the subtour-elimination constraints. This implies that the

weight of the dominoes found during the domino-generation step may be negative, which

may create negative weight cycles in M ∗. To avoid this issue we simply set the weight of all

negative dominoes to zero. Now, before returning the cuts found during the second phase of

the algorithm, we re-compute exactly the actual violation for the inequality in the original

graph.

Note that many more schemes are possible to generate planar graphs from a graph, and

the two simple methods we presented here are only heuristics. Neither method dominates

the other and in our computational tests we separate the DP inequalities in the graphs

obtained from both methods. The problem of obtaining a planar graph that represents well

an LP solution deserves further study, but for the purposes of our code the two heuristics
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proved to work well in practice.

3.6 Tightening DP Inequalities

After adding a cutting plane to an LP and re-solving, it is possible that we may obtain

another fractional solution that differs very little from the one just separated. In this

case, rather than generating new cuts it may be desirable to attempt to “fix up” some

tight constraints (or those with small slack) currently in the LP or stored in a pool, by

slightly modifying them in such a way as to make the new fractional point infeasible. This

is certainly much faster than separating from scratch, and it does not require G∗ to be

planar. In fact, these tighten procedures are called on each DP-inequality found by our

separation algorithm before adding it to the LP relaxation. This is done in the hope that

the procedure can fix some of the error incurred in the separation algorithm due to the

planarization phase of G∗, and in practice it helps to get better cuts. This type of approach

has been very successful on other handle-tooth type inequalities in the work of Applegate

et al. [7] and it had a great impact in our computational tests.

To formalize this notion of simple modifications for DP inequalities, note that every DP

inequality is completely defined by a family of dominoes {Ai, Bi}pi=1 and a handle H. In

our implementation, the simple modifications we consider are:

(1) Add a node to a domino.

(2) Add a node to the handle.

(3) Change sides of a node in a domino.

(4) Change sides of a node in a domino and the handle.

(5) Remove a node from a domino.

(6) Remove a node from the handle.

A node u is relevant in our heuristic if there exists e ∈ δ(u) such that it has a non-zero

coefficient in the DP inequality. We begin by computing the move that improve the violation

of the inequality the most from among all feasible moves in all relevant nodes, call such move

the best move. While the best move reduces the slack of the constraint by at least some

suitable factor ε, perform the move, and recompute the best move. If the best move has
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a value between (−ε, ε) (that is, they change the slack, up or down, but very slightly), we

first do moves that enlarge either the handle or a domino, then do moves that flip elements

within a domino and then do moves that shrink a domino or a handle. We repeat this

process until some improving move is found (i.e. the best move improve the violation by

at least ε), and then go back to our greedy approach, or until we can not make any further

move. Note that the algorithm will never cycle, since each move can only be performed once

within each ε-improvement phase. If at the end of this process we have found a constraint

with better violation, we have succeeded and return the resulting cut. In our tests ε was

chosen as 10−6.

It turns out that the second phase of the algorithm (while performing ε-moves), is the

most crucial for the algorithm to work well in practice. Without it we were able to get some

improved inequalities, but using the second phase where we first grow the handle and teeth

of the inequality and then shrink them back, enabled us to generate many more violated

inequalities. This effect has also been seen in the tightening of other TSP-inequalities by

Applegate et al. [7].

3.7 Computational Results

In this section we present our computational experience with DP inequalities, we tested

our routines on problems from the TSPLIB collection of Reinelt [93] having at least 3,000

cities; this size is to ensure that the problems are not easy to solve. This leaves us with 13

problems, which we split into two groups, one with problems having at most 7,000 cities,

this is called the medium size instance set, and has 5 problems. The other set contains the

problems having at least 7,000 cities, which leaves us with 8 problems, this set is called the

large size instance set.

The routines described in the previous sections where implemented in the C program-

ming language, and are available on-line at http://www.isye.gatech.edu/~despinoz.

The planarity-testing functionality is provided by an implementation of J. Boyer of the

Boyer and Myrvold [22] planarity-testing algorithm.

These routines where incorporated into the Concorde TSP code of Applegate et al. [7],
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which manage the cut pools as well as add a large set of heuristic cuts as well as subtours

inequalities. We use ILOG CPLEX 6.5 as our LP solver of choice.

The computations where carried on a 2.66 GHz Xeon CPU with 2GB of RAM. The

operating system is GNU/Linux.

Table 3.2: Domino Parity vs Local Cuts I. Here we present a comparison of domino-parity
inequalities against local cuts in Concorde in the medium size instance set, the GAP is the
percentage of gap closed by the routines above the bound obtained by Concorde without
local cuts (mC0Z0 configuration). Running times are in hours.

Problem Optimal mC0Z0 mC48Z0 mC0Z3
Name Value Bound Bound GAP Time Bound GAP Time

pcb3038 137694 137589 137658 65.714 41.30 137666 73.333 1.65
fl3795 28772 28700 28769 95.833 7.50 28761 84.722 8.61
fnl4461 182566 182471 182551 84.211 7.50 182529 61.053 0.86
rl5915 565530 565172 565377 57.263 98.80 565352 50.279 5.37
rl5934 556045 555725 555922 61.562 21.80 555810 26.562 4.87

Our first test was to compare domino parity cuts against the local cut procedure of

Applegate et al. [6] as implemented in Concorde. We choose to use multiple passes through

ours (and Concorde’s) cutting plane routines. The base comparison is Concorde’s default

setting but without local cuts enabled (we call this setting mC0Z0). The local-cut runs are

Table 3.3: Domino Parity vs Local Cuts II. Here we present a comparison of domino-parity
inequalities against local cuts in Concorde in the large size instance set, the GAP is the
percentage of gap closed by the routines above the bound obtained by Concorde without
local cuts (mC0Z0 configuration). Running times are in hours.

Problem Optimal mC0Z0 mC48Z0 mC0Z3
Name Value Bound Bound GAP Time Bound GAP Time

pla7397 23260728 23205647 23255280 90.109 70.50 23252107 84.349 5.31
rl11849 923288 922116 923053 79.949 118.00 922967 72.611 48.34
usa13509 19982859 19966278 19979209 77.987 81.20 19977859 69.845 28.53
brd14051 469385 469085 469321 78.667 53.20 469264 59.667 21.83
d15112 1573084 1572175 1572863 75.688 124.00 1572756 63.916 30.21
d18512 645238 644880 645166 79.888 73.90 645093 59.497 57.04
pla33810 66048945 65960860 65972887 13.654 19.00 65980036 21.770 15.54
pla85900 142382641 142252677 142265646 9.979 224.20 142271357 14.373 77.30

done with local-cuts of size up to 48, which is the largest size that Concorde can effectively
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manage (we call this setting mC48Z0). The domino-parity runs are done without local cuts

and with default settings for other parameters (we call this setting mC0Z3). The runs start

with the degree constraints on the initial LP and edges as variables (which dynamically get

in and out of the current LP formulation depending on their reduced cost). Table 3.2 shows

our results on the medium size instances, while Table 3.3 shows our results on the large size

instances.

Note that while the domino parity inequalities do not improve the lower bound as much

as local cuts, they tend to run in a noticeable shorter time than local cuts, moreover, the

bounds still improve noticeable with respect to the basic Concorde configuration without

local cuts.

Table 3.4: Domino Parity with Local Cuts I. Here we present a comparison of domino-
parity inequalities with local cuts in Concorde in the medium size instance set, the GAP is
the percentage of gap closed by the routines above the bound obtained by Concorde with
local cuts (mC48Z0 configuration). Running times are in hours.

Problem Optimal mC48Z0 mC48Z3
Name Value Bound Time Bound GAP Time

pcb3038 137694 137658 65.714 137684 72.222 9.20
fl3795 28772 28769 95.833 28771 66.667 9.80
fnl4461 182566 182551 84.211 182558 46.667 9.80
rl5915 565530 565377 57.263 565479 66.667 28.10
rl5934 556045 555922 61.562 555994 58.537 21.50

Our second test consist on using Concorde’s local cuts in conjunction with domino parity

inequalities to see how much of the remaining gap we can close (we call this configuration

mC48Z3). Since there is some randomness in our results, we did ten runs for each configu-

ration for each problem, and then, compute geometric means of the lower bounds obtained

and of the total running time. For the case of our test set of medium size instances, we

run both configurations from scratch, however, due to the long running times for the larger

instances, we choose to run domino parity configuration after the run with local cuts was

finish. Table 3.4 presents the results in the medium size instance set, and Table 3.5 presents

the results in the large size instance set. Note again that for the medium size instance set,

the total running time for Concorde with domino parities and local cuts is faster than just
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Table 3.5: Domino Parity with Local Cuts II. Here we present a comparison of domino-
parity inequalities with local cuts in Concorde in the large size instance set, the GAP is the
percentage of gap closed by the routines above the bound obtained by Concorde with local
cuts (mC48Z0 configuration). Running times are in hours.

Problem Optimal mC48Z0 mC48Z3
Name Value Bound Time Bound GAP Time

pla7397 23260728 23255280 90.109 23258947 67.309 268.20
rl11849 923288 923053 79.949 923209 66.383 104.40
usa13509 19982859 19979209 77.987 19981200 54.548 109.90
brd14051 469385 469321 78.667 469354 51.562 159.50
d15112 1573084 1572863 75.688 1572967 47.059 152.70
d18512 645238 645166 79.888 645195 40.278 186.50
pla33810 66048945 65972887 13.654 66001234 37.270 231.00
pla85900 142382641 142265646 9.979 142296660 26.509 174.10

doing local cuts, the speed up factor ranges between 9.77 and 2.03. Unfortunately, since we

run the domino parity separation routines after we finish the local cut cutting loop for the

larger instances, we can not make the same comparisons in this test set.

It is clear from these results that the domino parity inequalities greatly help to provide

improved lower bounds from what was possible before, although, the improvements, decrease

as the problems grow larger.

3.7.1 Solution of D18512 and PLA33810

Given the large improvements in the LP bounds obtained with domino parity inequalities

and Concorde, we took these routines and tried to solve to optimality d18512 (which is a

collection of cities in Germany) and pla33810 (which is a VLSI application at AT&T), these

problems are two of the three unsolved problems in the TSPLIB.

For d18512, we use as starting point an LP relaxation obtained by Applegate et al. [7].

Using as upper bound the value of a tour found by Tamaki [96] plus one, we did three

rounds of cutting planes and branching up to 1,000 nodes, (note that we keep adding cuts

as we go along in the branch and bound tree, but the aggressiveness of the cutting phase

decreases as we go deeper into the tree). From these runs we obtain a larger pool of valid

cuts for the problem, which build on top of each other. This iterated procedure produced

an LP relaxation with a value of 645,209. Using again the same upper bound as before
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of 645,239, we let the branch and bound procedure go from this starting point. This run

required 424,241 nodes to prove the optimality of the tour found by Tamaki, with value

645,238. The total running time was approximately 57.5 years of CPU time. The runs were

made in a cluster of 2.66GHz Intel Xeon processors.

Table 3.6: LP Bounds for d18512 and pla33810

Name Optimal Concorde (with pool) Concorde+DP (with pool) Gap ∆

d18512 645238 645202 645209 19.4%
pla33810 66048945 66018619 66037858 63.4%

For pla33810, we also use as starting point an LP relaxation obtained by Applegate

et al. [7]. Using as upper bound one plus the value of a tour found by Helsgaun [56] of

66,050,499, we did five rounds of cutting planes with domino parity and branching. To our

surprise, at the sixth iteration of this procedure, the branch and bound run stoped after

exploring 577 nodes with an optimal solution of value 66,048,945. The total running time

for this experiment was 15.7 years of CPU time. In order to double-verify our procedure,

we took the LP relaxation obtained after this branch and bound run with all cuts, this gave

us a bound of 66,037,858, and using as upper bound a value of 1 plus our improved solution,

we run a new branch and bound test. This second test took only 86.6 days to finish, and

explored 135 nodes and found again the optimal tour of value 66,037,858. Note that this is

a slight improvement upon the best known tour reported by Helsgaun.

3.7.2 Final Comments on our Computational Tests

Our solutions of d18512 and pla33810 should be viewed only as evidence of the potential

strength of the new procedures; the computational studies were made as we were developing

our code and the runs were subject to arbitrary decisions to terminate tests as the code

improved. The 33,810-city TSP is currently the largest test instance that has been solved,

improving on the 24,978-city tour of Sweden computed by Applegate et al. The relatively

small search tree for pla33810 may be due in part to the natural structure in the VLSI-

derived data set that is not present in d18512.
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APPENDIX A

RUNNING TIMES FOR QSOPT EX COMPARED

AGAINST QSOPT

A.1 Primal Simplex

Table A.1: Comparison for primal simplex on instances with hot-start. Here we show
the total running time for the exact LP solver and the original QSopt code, we also show
the percentage of time spend on solving the double LP approximation, the extended float
approximation (if any), and the checking process in rational arithmetic for the exact LP
solver code, the last column shows the ratio of the running time of the exact code versus
the running time of the original QSopt code. All running times are in seconds. The runs
where made using a Linux workstation with 4Gb of RAM, and with an AMD Opteron 250
CPU.
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10teams 2255 230 0 73.11 0.00 19.94 0 2.06
25fv47 2392 821 3 71.13 0.00 19.51 1 3.98
80bau3b 12061 2262 2 82.14 0.00 7.41 1 1.57
a1c1s1 6960 3312 1 80.32 0.00 8.81 0 1.45
aa01 9727 823 21 97.80 0.00 1.35 14 1.52
aa03 9452 825 14 97.82 0.00 1.09 16 0.85
aa3 9452 825 13 97.40 0.00 1.35 15 0.86
aa4 7621 426 3 91.84 0.00 4.39 3 1.20
aa5 9109 801 11 97.24 0.00 1.44 10 1.14
aa6 7938 646 7 96.49 0.00 1.76 5 1.22
aflow40b 4170 1442 0 69.23 0.00 16.29 0 1.46
air03 10881 124 1 76.72 0.00 9.29 1 1.51
air04 9727 823 21 97.86 0.00 1.33 14 1.54
air05 7621 426 4 93.11 0.00 3.63 3 1.34
air06 9453 825 26 98.42 0.00 0.96 18 1.49
aircraft 11271 3754 2 87.97 0.00 5.31 1 1.58
arki001 2436 1048 1 12.57 42.70 26.54 0 9.78
bas1lp 9872 5411 4 63.61 0.00 17.02 2 1.91
baxter 42569 27441 13 92.66 0.00 3.35 11 1.18
baxter.pre 29709 18917 22 83.81 9.69 3.04 16 1.38

Continued on Next Page. . .
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Table A.1 (continued)

P
ro

b
le

m
n
am

e

N
u
m

b
er

of
co

lu
m

n
s

N
u
m

b
er

of
ro

w
s

Q
S
op

t
ex

ti
m

e

%
D

ou
b
le

p
re

ci
si

on

%
E

x
te

n
d
ed

p
re

ci
si

on

%
E

x
ac

t
ch

ec
k

Q
S
op

t
ti

m
e

T
im

e
ra

ti
o

bnl2 5813 2324 2 88.78 0.00 5.35 1 1.55
car4 49436 16384 14 17.77 0.00 75.75 2 7.12
cari 1600 400 1 37.73 0.00 27.18 0 3.26
ch 8762 3700 4 70.82 16.39 7.27 3 1.68
co5 13767 5774 41 77.98 13.70 5.77 16 2.50
complex 2431 1023 20 81.43 0.00 17.82 11 1.82
cq5 12578 5048 20 62.48 26.49 6.88 9 2.16
cq9 23056 9278 203 73.95 16.13 8.27 42 4.86
crew1 6604 135 0 72.43 0.00 0.00 0 1.70
cycle 4760 1903 1 17.89 55.10 14.49 0 9.02
czprob 4452 929 0 65.11 0.00 17.13 0 1.60
d6cube 6599 415 3 88.86 0.00 7.14 1 1.84
danoint 1185 664 0 80.34 0.00 12.25 0 1.66
dbic1 226435 43200 726 99.22 0.00 0.43 691 1.05
dbir1 46159 18804 7 66.06 0.00 13.16 5 1.47
dbir2 46261 18906 8 67.72 0.00 12.96 6 1.19
dbir2.pre 32091 7228 11 80.63 0.00 7.47 8 1.48
de080285 2424 936 1 14.74 31.16 36.10 0 9.11
degen3 3321 1503 2 89.00 0.00 7.75 2 1.40
delf000 8592 3128 9 9.11 41.74 43.53 1 13.25
delf001 8560 3098 6 16.76 49.48 24.87 1 7.21
delf002 8595 3135 6 15.75 50.31 24.54 1 6.41
delf003 8525 3065 9 15.72 46.75 25.92 1 6.88
delf004 8606 3142 9 16.41 42.40 29.20 1 8.41
delf005 8567 3103 9 13.34 44.87 30.58 1 8.49
delf006 8616 3147 15 10.00 33.43 48.76 2 9.78
delf007 8608 3137 18 8.38 52.21 31.43 1 12.62
delf008 8620 3148 17 8.04 45.48 38.75 1 13.56
delf009 8607 3135 20 5.95 39.31 48.14 1 13.98
delf010 8619 3147 15 8.96 49.01 34.06 1 13.11
delf011 8605 3134 13 10.57 51.95 29.17 1 11.01
delf012 8622 3151 15 12.87 45.99 33.43 2 9.46
delf014 8642 3170 9 18.94 43.48 27.16 1 7.08
delf015 8632 3161 14 14.26 44.53 33.52 2 9.10
delf017 8647 3176 10 13.97 41.60 34.46 1 7.45
delf018 8667 3196 7 23.31 39.31 27.37 1 5.68
delf019 8656 3185 6 23.58 42.80 22.76 1 5.40
delf020 8685 3213 11 15.83 50.80 24.62 1 8.20
delf021 8679 3208 11 17.88 50.06 22.78 2 6.96
delf022 8686 3214 10 18.48 48.98 22.93 1 7.61
delf023 8686 3214 12 25.46 45.48 19.63 1 10.35

Continued on Next Page. . .
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Table A.1 (continued)
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delf024 8673 3207 19 8.49 53.10 29.45 1 15.34
delf025 8661 3197 13 9.42 54.03 26.75 1 11.85
delf026 8652 3190 13 10.62 55.03 24.47 1 12.35
delf027 8644 3187 10 12.75 51.80 24.21 1 9.42
delf028 8629 3177 11 12.53 52.41 24.38 1 10.50
delf029 8633 3179 11 16.59 49.52 23.60 1 7.47
delf030 8668 3199 12 12.89 51.31 26.31 1 8.43
delf031 8631 3176 11 14.98 50.68 24.07 1 7.59
delf032 8663 3196 13 13.31 54.34 23.21 2 8.45
delf033 8629 3173 11 13.02 55.28 21.48 1 9.35
delf034 8630 3175 13 14.99 49.21 26.82 1 15.34
delf035 8661 3193 12 13.72 52.70 24.27 1 11.40
delf036 8629 3170 12 13.43 55.00 22.12 1 10.13
deter0 7391 1923 1 83.75 0.00 6.38 1 1.46
deter1 21264 5527 7 94.37 0.00 2.25 6 1.26
deter2 23408 6095 10 89.16 2.83 3.57 10 1.05
deter3 29424 7647 13 96.03 0.00 1.64 12 1.15
deter4 12368 3235 3 83.70 3.78 5.78 2 1.87
deter5 19632 5103 6 93.91 0.00 2.40 5 1.19
deter6 16368 4255 4 92.77 0.00 3.03 3 1.43
deter7 24528 6375 11 89.02 3.01 3.52 7 1.49
deter8 14736 3831 3 91.33 0.00 3.60 2 1.32
df2177 10358 630 3 57.28 0.00 37.09 1 2.23
dfl001 18301 6071 321 74.91 22.55 2.40 212 1.51
dfl001.pre 12953 3881 234 58.74 39.19 1.93 100 2.34
disctom 10399 399 13 98.16 0.00 1.10 10 1.30
ex3sta1 25599 17443 823 4.85 62.45 31.97 45 18.31
fast0507 63516 507 30 95.03 0.00 1.94 24 1.27
fit2d 10525 25 24 97.62 0.00 0.91 21 1.15
fit2p 16525 3000 18 97.45 0.00 1.09 16 1.12
fome20 139602 33874 264 98.95 0.00 0.61 214 1.23
fome21 279204 67748 745 99.29 0.00 0.41 650 1.15
fxm2-16 9502 3900 2 79.82 0.00 9.28 1 1.50
fxm2-6 3692 1520 0 63.05 0.00 18.47 0 1.70
fxm3 6 15692 6200 3 80.59 0.00 8.45 2 1.47
fxm4 6 53132 22400 16 87.29 0.00 5.62 3576 0.00
ge 21197 10099 35 68.30 19.58 9.59 18 1.93
gen4.pre 5648 1475 121239 0.00 1.60 98.32 77 1574.72
greenbea 7797 2392 16 93.33 0.00 4.05 9 1.67
greenbeb 7797 2392 9 62.48 0.00 29.80 5 1.79
grow15 945 300 1 10.85 0.00 70.68 0 12.98

Continued on Next Page. . .
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Table A.1 (continued)
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grow22 1386 440 2 29.34 0.00 57.13 0 11.76
grow7 441 140 0 5.39 0.00 77.08 0 17.67
ken-11 36043 14694 11 93.05 0.00 2.72 8 1.32
ken-18 259826 105127 1606 99.56 0.00 0.23 1544 1.04
ken-18.pre 129203 39856 524 99.38 0.00 0.30 478 1.09
kent 47920 31300 4 65.04 0.00 14.48 2 1.74
kl02 36770 71 1 68.86 0.00 0.00 1 1.52
large000 11072 4239 20 8.29 56.47 29.88 1 14.12
large001 10996 4162 9 20.64 32.48 31.24 2 5.63
large002 11084 4249 31 10.91 52.73 30.66 3 11.27
large003 11035 4200 16 18.80 48.12 22.98 2 7.04
large004 11086 4250 19 13.47 38.85 37.25 2 9.89
large005 11074 4237 14 20.27 48.18 21.74 3 5.53
large006 11086 4249 22 11.75 51.68 28.84 2 10.22
large007 11072 4236 23 13.27 49.03 30.23 3 8.99
large008 11085 4248 24 11.81 50.73 30.06 2 11.19
large009 11074 4237 28 11.05 43.00 39.43 3 10.83
large010 11084 4247 23 11.53 51.15 29.41 2 9.88
large011 11073 4236 22 14.36 45.05 33.24 2 9.23
large012 11091 4253 23 13.10 51.85 27.33 2 9.60
large013 11086 4248 21 16.56 50.54 25.59 3 7.84
large014 11109 4271 19 14.22 53.99 23.64 3 7.50
large015 11103 4265 20 14.50 48.92 28.93 2 8.20
large016 11125 4287 22 13.23 54.38 24.99 2 9.35
large017 11114 4277 14 22.84 39.04 28.88 3 5.17
large018 11134 4297 12 20.34 48.56 22.45 2 5.75
large019 11136 4300 11 23.09 45.28 22.31 2 5.31
large020 11152 4315 17 16.42 54.76 20.58 3 5.94
large021 11149 4311 18 19.57 53.18 19.44 3 6.19
large022 11146 4312 19 18.33 57.37 17.13 3 7.17
large023 11137 4302 18 21.37 49.30 20.55 3 5.79
large024 11123 4292 25 12.93 54.73 25.06 3 9.57
large025 11129 4297 32 9.23 47.91 35.84 3 11.99
large026 11108 4284 26 10.86 52.73 28.48 2 11.07
large027 11096 4275 17 15.34 55.37 20.35 2 7.70
large028 11135 4302 22 15.04 55.16 21.65 3 7.44
large029 11133 4301 25 15.29 52.20 25.06 3 9.60
large030 11108 4285 21 16.13 56.09 19.76 3 6.93
large031 11120 4294 26 12.42 47.00 33.94 3 9.95
large032 11119 4292 39 8.87 36.87 49.42 3 12.06
large033 11090 4273 19 14.63 57.79 19.38 2 8.11
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large034 11125 4294 37 12.85 39.07 43.00 4 9.07
large035 11122 4293 46 7.55 46.95 39.56 3 13.55
large036 11104 4282 33 10.82 39.04 45.04 3 12.22
lpl3 44366 10828 4 90.47 0.00 0.00 3 1.29
maros 2289 846 0 55.72 0.00 27.73 0 1.52
mitre 12778 2054 0 57.64 0.00 17.92 0 2.04
mkc 8736 3411 0 27.62 0.00 34.80 0 2.55
mod011 15438 4480 1 65.50 0.00 13.75 0 1.75
model11 25344 7056 11 93.68 0.00 3.20 9 1.20
model2 1591 379 0 45.01 0.00 32.47 0 2.49
model9 13136 2879 19 33.74 39.71 19.82 7 2.90
momentum1 47854 42680 36 91.93 0.00 4.46 52 0.68
momentum2 27969 24237 240 57.43 37.75 2.70 93 2.57
mzzv42z 22177 10460 106 99.46 0.00 0.25 5 21.23
nemsemm1 75358 3945 8 47.57 0.00 21.25 4 2.24
nemsemm2 49076 6943 6 73.83 0.00 11.03 3 1.65
neos 515905 479119 3693 99.65 0.00 0.17 13516 0.27
neos1 133473 131581 650 99.37 0.00 0.32 688 0.95
neos2 134128 132568 1566 99.71 0.00 0.17 1149 1.36
neos3 518833 512209 84821 90.37 9.58 0.03 32243 2.63
nesm 3585 662 1 24.61 50.55 13.88 0 3.77
net12 28136 14021 5 89.91 0.00 4.54 3 1.57
nsct1 37882 22901 5 62.33 0.00 14.89 3 1.69
nsct2 37984 23003 5 65.83 0.00 13.84 2 2.30
nsct2.pre 19094 7797 5 72.45 0.00 10.76 4 1.26
nsir1 10124 4407 1 49.73 0.00 20.41 0 2.44
nsrand-ipx 7356 735 1 30.92 0.00 26.57 0 3.25
nug07 1533 602 1 91.90 0.00 7.04 1 1.86
nug08 2544 912 4 88.80 0.00 10.19 3 1.42
nug12 12048 3192 1990 96.72 0.00 3.26 1073 1.85
nug15 28605 6330 73010 96.10 2.11 1.79 47550 1.54
nw04 87518 36 4 49.53 0.00 16.15 2 1.77
nw14 123482 73 7 74.42 0.00 0.00 6 1.13
orna1 1764 882 4 3.20 0.00 46.87 0 38.57
orna2 1764 882 4 3.07 0.00 46.79 0 39.29
orna3 1764 882 5 3.83 0.00 48.80 0 30.80
orna4 1764 882 8 9.20 0.00 66.50 0 47.32
orna7 1764 882 5 7.72 0.00 45.40 0 15.67
osa-07 25067 1118 2 70.50 0.00 11.01 1 1.63
osa-60 243246 10280 74 92.79 0.00 2.55 65 1.15
osa-60.pre 234334 10209 133 97.16 0.00 1.00 107 1.24
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p010 29090 10090 12 87.94 0.00 7.72 8 1.46
p05 14590 5090 3 80.17 0.00 10.75 2 1.50
pcb1000 3993 1565 1 65.26 0.00 24.75 0 1.91
pcb3000 10770 3960 6 71.14 0.00 23.48 3 1.61
pds-06 38536 9881 4 83.89 0.00 7.37 2 1.47
pds-100 661603 156243 32125 99.95 0.00 0.04 34898 0.92
pds-20.pre 89523 10240 21 93.00 0.00 3.07 17 1.23
pds-30 204942 49944 1017 99.60 0.00 0.24 872 1.17
pds-40 279703 66844 3097 99.79 0.00 0.13 2195 1.41
pds-50 353155 83060 5689 99.87 0.00 0.08 6087 0.93
pds-60 429074 99431 14586 99.94 0.00 0.03 12250 1.19
pds-70 497255 114944 22021 99.95 0.00 0.03 19191 1.15
pds-80 555459 129181 24105 99.95 0.00 0.03 21683 1.11
pds-90 609494 142823 29525 99.96 0.00 0.02 29515 1.00
perold 2001 625 10 13.20 0.00 80.80 0 20.29
pf2177 10628 9728 4 78.55 0.00 17.39 2 1.58
pgp2 13254 4034 2 50.16 18.22 13.91 1 2.59
pilot.we 3511 722 8 10.50 33.30 40.58 1 12.29
pilot4 1410 410 4 5.90 19.09 61.33 0 21.99
pilotnov 3147 975 13 36.70 0.00 61.20 1 17.32
pldd000b 6336 3069 4 32.40 30.13 27.40 1 3.53
pldd001b 6336 3069 5 36.81 26.33 26.97 1 3.24
pldd002b 6336 3069 5 37.00 27.37 25.71 1 3.14
pldd003b 6336 3069 4 35.30 28.13 26.21 1 3.34
pldd004b 6336 3069 5 39.72 27.22 22.95 2 2.98
pldd005b 6336 3069 4 37.24 28.49 23.72 2 2.82
pldd006b 6336 3069 5 38.70 27.77 23.37 1 3.08
pldd007b 6336 3069 5 38.77 27.92 23.50 2 2.96
pldd008b 6336 3069 5 37.32 29.46 23.18 1 3.31
pldd009b 6336 3069 5 37.02 29.67 23.22 1 3.15
pldd010b 6336 3069 5 38.77 28.36 23.04 2 2.94
pldd011b 6336 3069 7 34.06 33.60 24.43 1 4.61
pldd012b 6336 3069 5 39.91 27.56 22.72 2 3.04
pltexpa3 16 102522 28350 8 27.84 34.75 16.15 2 3.74
pltexpa3 6 16042 4430 1 12.80 22.02 29.06 0 7.73
pltexpa4 6 97258 26894 8 26.59 36.20 15.93 2 4.05
primagaz 12390 1554 2 87.31 0.00 5.26 1 1.37
progas 3075 1650 40 1.95 0.00 74.38 1 55.85
protfold 3947 2112 2 83.23 0.00 12.36 1 1.08
qap12 12048 3192 484 87.75 0.00 12.20 454 1.07
qiu 2032 1192 2 19.26 71.08 6.09 0 6.02
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r05 14690 5190 5 83.73 0.00 8.33 3 1.67
rail2586 923269 2586 7088 99.32 0.00 0.31 7638 0.93
rail4284 1096894 4284 28088 99.80 0.00 0.09 25266 1.11
rail507 63516 507 29 94.80 0.00 2.03 25 1.18
rail516 47827 516 11 91.26 0.00 3.29 8 1.46
rail582 56097 582 24 94.17 0.00 2.15 21 1.14
rd-rplusc-21 126521 125899 69 69.56 0.00 26.32 41 1.70
rentacar 16360 6803 2 84.18 0.00 7.77 1 1.88
rlfddd 61521 4050 1 46.71 0.00 0.00 1 1.56
rlfdual 74970 8052 6 88.16 0.00 0.00 5 1.20
rlfprim 66918 58866 85 99.12 0.00 0.00 42 2.04
roll3000 3461 2295 1 77.45 0.00 11.01 0 1.49
rosen10 6152 2056 4 87.80 0.00 7.18 3 1.31
rosen2 3080 1032 2 78.35 0.00 11.52 1 1.53
route 44817 20894 21 95.02 0.00 2.23 15 1.35
sc205-2r-1600 70427 35213 9 89.21 0.00 4.90 42613 0.00
sc205-2r-200 8827 4413 1 86.87 0.00 6.03 1 1.33
sc205-2r-400 17627 8813 7 95.54 0.00 1.95 6 1.14
sc205-2r-800 35227 17613 25 97.56 0.00 1.08 5670 0.00
scagr7-2b-64 20003 9743 9 94.27 0.00 2.42 7 1.33
scagr7-2c-64 5027 2447 0 71.02 0.00 11.87 0 1.61
scagr7-2r-108 8459 4119 1 81.65 0.00 7.84 1 2.00
scagr7-2r-216 16883 8223 5 92.39 0.00 3.15 4 1.25
scagr7-2r-432 33731 16431 23 90.14 2.78 3.19 23 0.99
scagr7-2r-54 4247 2067 0 68.88 0.00 14.20 0 1.57
scagr7-2r-64 5027 2447 0 72.61 0.00 12.31 0 1.80
scagr7-2r-864 67427 32847 119 94.91 2.36 1.27 127 0.94
scfxm1-2b-16 6174 2460 1 70.18 0.00 14.77 0 1.59
scfxm1-2b-64 47950 19036 54 79.65 14.93 2.92 28 1.95
scfxm1-2r-128 47950 19036 57 77.19 17.72 2.73 41 1.41
scfxm1-2r-16 6174 2460 1 71.12 0.00 15.11 0 1.61
scfxm1-2r-256 95694 37980 272 89.98 7.90 1.15 184 1.48
scfxm1-2r-27 10277 4088 2 77.98 0.00 10.88 1 1.44
scfxm1-2r-32 12142 4828 2 83.58 0.00 8.11 2 1.46
scfxm1-2r-64 24078 9564 15 67.63 22.77 5.23 9 1.74
scfxm1-2r-96 36014 14300 30 68.55 23.98 4.01 18 1.64
scrs8-2r-256 16961 7196 1 62.42 0.00 16.82 0 1.90
scrs8-2r-512 33857 14364 4 84.95 0.00 6.65 3 1.41
scsd8-2b-64 41040 5130 29 90.86 3.90 2.30 26 1.11
scsd8-2c-64 41040 5130 8 70.02 11.70 8.11 4 1.94
scsd8-2r-108 17360 2170 3 61.22 16.97 10.06 1 2.03
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Table A.1 (continued)
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scsd8-2r-216 34640 4330 18 86.97 6.13 3.04 10 1.86
scsd8-2r-432 69200 8650 79 93.66 3.17 1.40 56 1.40
scsd8-2r-54 8720 1090 1 48.16 16.40 16.51 0 2.63
scsd8-2r-64 10320 1290 1 51.22 19.54 13.40 1 2.04
scsd8 3147 397 1 19.71 59.79 12.35 0 5.04
sctap1-2b-64 40014 15390 3 85.07 0.00 0.00 2 1.49
sctap1-2r-108 16926 6510 0 59.08 0.00 0.00 0 1.95
sctap1-2r-216 33774 12990 1 78.39 0.00 0.00 1 1.42
sctap1-2r-480 74958 28830 4 83.04 0.00 0.00 4 1.17
seymour 6316 4944 4 93.86 0.00 2.86 3 1.26
seymourl 6316 4944 4 93.92 0.00 2.91 3 1.26
sgpf5y6 554711 246077 7188 78.93 20.78 0.13 1316 5.46
sgpf5y6.pre 58519 19499 28 5.70 86.56 3.36 1 18.98
slptsk 6208 2861 33 23.75 0.00 63.34 7 4.60
small002 1853 713 1 5.19 45.45 34.18 0 20.02
small006 1848 710 1 10.14 43.12 28.44 0 12.96
small007 1848 711 1 10.11 46.65 27.18 0 11.14
small008 1846 712 1 8.96 46.99 27.40 0 12.80
small009 1845 710 1 11.60 43.02 27.60 0 9.59
small010 1849 711 1 10.97 40.43 28.96 0 10.02
small015 1813 683 1 9.98 39.38 29.94 0 10.80
south31 53846 18425 137 97.29 0.00 1.11 108 1.27
sp97ar 15862 1761 9 90.35 0.00 3.92 5 1.68
stair 823 356 7 1.68 0.00 93.79 0 72.29
stocfor2 4188 2157 1 73.08 0.00 11.76 0 1.60
stocfor3 32370 16675 45 97.54 0.00 1.01 41 1.11
stormG2 1000 1787306 528185 36698 99.92 0.00 0.03 29504 1.24
stormG2 1000.pre 1410155 377036 9145 99.73 0.00 0.12 8922 1.02
stormG2-125 223681 66185 325 98.80 0.00 0.53 193 1.68
stormG2-125.pre 176405 47161 51 94.35 0.00 2.43 52 0.98
stormg2-27 48555 14441 8 89.83 0.00 4.29 6 1.31
stormg2-8 14602 4409 1 70.29 0.00 12.86 0 1.82
sws 26775 14310 1 46.99 0.00 20.82 1 2.62
t0331-4l 47579 664 124 84.11 0.00 13.52 99 1.25
t1717 74436 551 75 93.83 0.00 4.05 70 1.08
testbig 48836 17613 24 97.11 0.00 1.22 22 1.09
ulevimin 51195 6590 70 96.52 0.00 1.84 318 0.22
us04 28179 163 4 80.39 0.00 7.18 3 1.55
watson 1 585082 201155 742 76.73 18.42 2.27 919 0.81
watson 1.pre 239575 65266 317 81.18 12.77 3.05 247 1.28
wood1p 2838 244 2 9.04 0.00 55.05 0 14.15
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Table A.1 (continued)
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woodw 9503 1098 1 81.21 0.00 10.84 1 1.82

Table A.2: Comparison for primal simplex on instances without hot-start. Here we show
the total running time for the exact LP solver and the original QSopt code, we also show
the percentage of time spend on solving the double LP approximation, the extended float
approximation (if any), and the checking process in rational arithmetic for the exact LP
solver code, the last column shows the ratio of the running time of the exact code versus
the running time of the original QSopt code. All running times are in seconds. The runs
where made using a Linux workstation with 4Gb of RAM, and with an AMD Opteron 250
CPU.
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atlanta-ip 70470 21732 6288 34.23 65.60 0.13 525 11.98
co9 25640 10789 1458 5.16 94.09 0.48 99 14.75
d2q06c 7338 2171 280 5.27 71.55 21.83 12 23.97
dano3mip 17075 3202 2268 5.16 94.22 0.56 127 17.92
dano3mip.pre 16988 3151 8261 2.85 96.75 0.38 123 67.06
de063155 2340 852 4 12.51 71.86 7.18 0 27.64
de063157 2424 936 9 2.57 90.11 5.03 0 87.44
delf013 8588 3116 33 9.52 72.11 14.28 1 30.15
ds 68388 656 185612 98.96 1.03 0.00 82 2262.15
fome11 36602 12142 37831 3.23 96.76 0.01 432 87.54
fome12 73204 24284 18127 11.11 88.83 0.05 1040 17.42
fome13 146408 48568 31938 10.10 89.84 0.05 3384 9.44
fxm3 16 105502 41340 2100 6.76 92.89 0.07 103 20.31
gen 3329 769 4383 4.84 71.66 23.09 29 151.28
gen1 3329 769 2885 7.79 69.11 22.69 29 100.85
gen2 4385 1121 29028 0.34 7.62 91.91 71 408.09
gen4 5834 1537 133088 0.28 63.13 36.52 106 1257.43
iprob 6002 3001 1 83.72 0.00 5.29 1 1.49
jendrec1 6337 2109 23 86.04 0.00 6.74 13 1.81
l30 18081 2701 7371 0.16 99.83 0.00 150 49.17
lp22 16392 2958 3566 10.37 88.89 0.71 161 22.22
lp22.pre 11565 2872 3057 12.16 87.15 0.67 148 20.60
maros-r7 12544 3136 1367 0.96 88.81 5.49 14 100.84
mod2 66502 34774 10375 3.22 96.48 0.20 1031 10.06
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Table A.2 (continued)
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mod2.pre 54286 27186 6796 7.53 92.06 0.30 976 6.97
model10 19847 4400 2390 2.70 90.05 6.76 101 23.72
model3 5449 1609 86 6.72 90.58 2.02 4 24.63
model4 5886 1337 116 6.68 90.69 1.65 5 24.08
model5 13248 1888 114 20.60 76.87 1.26 5 23.32
model6 7097 2096 157 15.86 69.46 13.50 6 24.32
model7 11365 3358 403 10.50 86.90 2.12 20 20.55
momentum3 70354 56822 37243 2.04 45.11 52.19 1121 33.22
msc98-ip 36993 15850 3443 20.79 79.17 0.01 103 33.56
mzzv11 19739 9499 618 24.93 74.89 0.04 59 10.49
nemspmm1 10994 2372 423 15.47 83.28 0.99 19 22.07
nemspmm2 10714 2301 575 4.66 91.31 3.55 28 20.40
nemswrld 34312 7138 9893 2.77 93.79 3.28 586 16.88
neos.pre 476610 440494 3227 99.89 0.00 0.00 2923 1.10
nl 16757 7039 437 9.19 90.37 0.22 29 15.01
nsir2 10170 4453 11 14.41 74.38 2.00 0 23.91
pilot.ja 2928 940 59 12.44 65.10 19.57 1 41.89
pilot 5093 1441 618 2.11 38.23 57.71 13 47.74
pilot87 6913 2030 9493 0.64 25.86 72.69 31 301.75
pilot87.pre 6375 1885 7518 0.72 9.14 89.13 34 224.28
rat1 12544 3136 1988 0.58 98.80 0.38 16 123.99
rat5 12544 3136 2018 2.34 16.21 79.37 12 169.72
rat7a 12544 3136 5988 2.66 97.32 0.00 56 106.20
self 8324 960 53900 0.09 73.26 26.26 502 107.28
stat96v1 203467 5995 11054 2.93 97.02 0.00 565 19.56
stat96v4 65385 3173 71393 0.46 85.62 8.33 2897 24.64
stat96v5 78086 2307 13770 0.68 42.34 44.62 78 176.90
stp3d 364368 159488 102211 45.55 54.43 0.01 6795 15.04
watson 2 1023874 352013 86852 8.94 90.99 0.02 8091 10.73
world 67240 34506 32604 0.98 98.97 0.03 1034 31.52
world.pre 55916 27057 9320 10.11 89.79 0.04 872 10.69

A.2 Dual Simplex
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Table A.3: Comparison for dual simplex on instances with hot-start. Here we show the
total running time for the exact LP solver and the original QSopt code, we also show
the percentage of time spend on solving the double LP approximation, the extended float
approximation (if any), and the checking process in rational arithmetic for the exact LP
solver code, the last column shows the ratio of the running time of the exact code versus
the running time of the original QSopt code. All running times are in seconds. The runs
where made using a Linux workstation with 4Gb of RAM, and with an AMD Opteron 250
CPU.
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10teams 2255 230 1 87.90 0.00 7.87 0 1.37
25fv47 2392 821 4 73.96 0.00 17.92 1 3.23
80bau3b 12061 2262 2 82.65 0.00 7.58 1 2.07
a1c1s1 6960 3312 0 23.39 0.00 33.33 0 4.17
aa01 9727 823 8 94.83 0.00 2.99 6 1.20
aa03 9452 825 4 91.76 0.00 3.82 3 1.10
aa3 9452 825 3 91.75 0.00 3.93 3 1.21
aa4 7621 426 2 83.78 0.00 8.56 1 1.34
aa5 9109 801 3 91.74 0.00 4.06 3 1.14
aa6 7938 646 2 86.62 0.00 6.36 1 1.39
aflow40b 4170 1442 1 93.19 0.00 3.09 1 1.45
air03 10881 124 1 57.64 0.00 16.94 0 1.73
air04 9727 823 8 94.90 0.00 2.91 6 1.21
air05 7621 426 2 87.89 0.00 5.43 1 1.34
air06 9453 825 4 91.42 0.00 4.18 3 1.09
aircraft 11271 3754 1 81.60 0.00 7.71 1 1.39
arki001 2436 1048 11 1.75 93.21 2.94 0 55.48
bas1lp 9872 5411 51 97.56 0.00 1.09 17 3.04
baxter 42569 27441 13 92.25 0.00 3.48 11 1.18
baxter.pre 29709 18917 8 72.84 8.54 8.79 4 1.79
bnl2 5813 2324 2 89.32 0.00 4.97 0 5.73
car4 49436 16384 13 14.56 0.00 78.82 2 7.78
cari 1600 400 1 18.54 0.00 35.11 0 6.16
ch 8762 3700 3 71.69 9.87 10.41 2 1.76
complex 2431 1023 16 76.60 0.00 22.48 8 2.14
cq5 12578 5048 180 17.56 81.20 0.80 9 20.32
crew1 6604 135 1 83.41 0.00 7.47 1 1.69
cycle 4760 1903 7 4.46 92.07 1.86 0 61.66
czprob 4452 929 0 67.66 0.00 17.52 0 1.76
d6cube 6599 415 1 59.63 0.00 25.53 0 2.12
danoint 1185 664 0 79.50 0.00 12.74 0 1.44
dbic1 226435 43200 447 98.64 0.00 0.79 7836 0.06
dbir1 46159 18804 16 84.36 0.00 6.36 16 1.01
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dbir2 46261 18906 10 75.86 0.00 9.40 6 1.61
dbir2.pre 32091 7228 5 52.38 0.00 18.70 2 2.43
de063155 2340 852 1 8.85 9.13 53.75 0 2.44
de080285 2424 936 1 10.37 18.69 48.01 0 11.00
degen3 3321 1503 2 89.08 0.00 7.99 1 2.65
delf000 8592 3128 3 12.47 33.30 35.18 0 10.15
delf001 8560 3098 3 10.13 33.65 37.60 0 11.88
delf002 8595 3135 3 12.77 32.23 36.15 0 10.67
delf003 8525 3065 4 12.39 17.79 46.39 0 10.63
delf004 8606 3142 9 8.26 34.65 42.93 1 16.08
delf005 8567 3103 6 12.71 18.77 49.79 1 8.41
delf006 8616 3147 9 7.56 14.89 64.83 1 15.52
delf007 8608 3137 11 8.00 28.75 50.21 1 17.38
delf008 8620 3148 12 7.00 24.12 58.11 1 16.84
delf009 8607 3135 16 4.48 20.70 66.45 1 19.57
delf010 8619 3147 11 7.43 31.25 50.55 1 14.82
delf011 8605 3134 7 12.74 34.43 37.22 1 9.54
delf012 8622 3151 10 8.48 29.11 50.42 1 17.27
delf013 8588 3116 13 6.64 31.09 51.84 1 17.60
delf014 8642 3170 6 14.16 29.85 38.81 1 10.21
delf015 8632 3161 7 10.42 26.34 50.00 1 10.25
delf017 8647 3176 6 10.98 28.79 44.60 1 12.17
delf018 8667 3196 6 11.34 36.76 39.08 1 11.39
delf019 8656 3185 3 15.88 23.82 35.30 0 6.55
delf020 8685 3213 6 15.66 35.94 31.25 1 7.82
delf021 8679 3208 6 12.17 42.85 29.04 1 9.53
delf022 8686 3214 6 11.02 41.21 31.36 1 11.08
delf023 8686 3214 7 11.25 38.27 34.02 1 9.53
delf024 8673 3207 12 8.76 29.72 47.08 1 13.85
delf025 8661 3197 9 13.73 35.87 36.24 1 10.73
delf026 8652 3190 9 12.36 37.63 35.52 1 11.62
delf027 8644 3187 7 10.82 38.84 34.39 1 8.89
delf028 8629 3177 8 14.36 34.54 35.68 1 10.12
delf029 8633 3179 7 11.16 36.36 36.64 1 10.47
delf030 8668 3199 8 11.03 29.65 43.40 1 10.93
delf031 8631 3176 8 10.39 39.64 34.86 1 9.71
delf032 8663 3196 9 9.26 39.97 36.98 1 13.31
delf033 8629 3173 8 11.49 39.84 34.10 1 14.27
delf034 8630 3175 9 7.38 39.31 39.47 1 13.03
delf035 8661 3193 9 14.93 37.52 33.63 1 14.52
delf036 8629 3170 8 10.46 41.78 33.03 1 12.71
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Table A.3 (continued)
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deter0 7391 1923 0 58.01 0.00 18.73 0 2.19
deter1 21264 5527 1 71.03 0.00 11.57 1 1.74
deter2 23408 6095 2 50.33 7.66 18.46 1 2.37
deter3 29424 7647 2 74.48 0.00 10.74 1 1.75
deter4 12368 3235 1 34.77 9.25 26.14 0 3.51
deter5 19632 5103 1 68.13 0.00 13.26 1 1.73
deter6 16368 4255 1 45.41 8.65 20.73 0 2.73
deter7 24528 6375 2 52.11 8.01 17.91 1 2.37
deter8 14736 3831 1 67.13 0.00 13.59 0 1.87
df2177 10358 630 3 57.18 0.00 37.15 1 2.51
dfl001 18301 6071 231 71.79 25.65 2.37 157 1.47
dfl001.pre 12953 3881 124 73.91 22.60 3.23 86 1.45
disctom 10399 399 8 97.13 0.00 1.42 10 0.74
ds 68388 656 164 95.94 0.00 2.13 66 2.50
ex3sta1 25599 17443 2654 2.14 77.71 19.77 127 20.87
fast0507 63516 507 39 96.18 0.00 1.50 41 0.96
fit2d 10525 25 1 32.55 0.00 25.97 1 1.21
fit2p 16525 3000 14 96.64 0.00 1.52 11 1.24
fome20 139602 33874 140 98.02 0.00 1.15 106 1.32
fome21 279204 67748 334 98.59 0.00 0.75 276 1.21
fxm2-16 9502 3900 2 81.50 0.00 8.39 1 2.07
fxm2-6 3692 1520 0 62.76 0.00 17.30 0 1.62
fxm3 6 15692 6200 3 80.50 0.00 8.52 2 1.43
fxm4 6 53132 22400 16 87.20 0.00 5.73 3540 0.00
ge 21197 10099 17 46.05 29.97 18.58 6 2.65
greenbea 7797 2392 29 96.53 0.00 2.07 8 3.58
greenbeb 7797 2392 9 63.86 0.00 28.76 15 0.62
grow15 945 300 2 22.90 0.00 63.66 0 6.84
grow22 1386 440 5 11.18 0.00 79.24 1 8.48
grow7 441 140 1 9.68 0.00 77.75 0 12.96
jendrec1 6337 2109 12 73.33 0.00 12.97 5 2.40
ken-11 36043 14694 3 74.03 0.00 10.47 2 1.57
ken-18 259826 105127 266 97.55 0.00 1.22 242 1.10
ken-18.pre 129203 39856 84 96.11 0.00 1.85 71 1.18
kent 47920 31300 2 39.47 0.00 24.44 1 2.76
kl02 36770 71 4 80.11 0.00 7.15 4 1.00
large000 11072 4239 8 7.70 44.01 34.27 0 15.77
large001 10996 4162 14 32.48 27.99 28.08 4 3.61
large002 11084 4249 19 10.60 39.55 40.40 2 11.21
large003 11035 4200 10 16.78 31.23 35.48 1 7.64
large004 11086 4250 24 7.62 34.64 48.69 1 18.15
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large005 11074 4237 8 15.44 32.22 35.94 1 8.66
large006 11086 4249 16 7.01 36.93 45.02 1 17.85
large007 11072 4236 17 9.37 38.22 42.13 1 12.55
large008 11085 4248 18 8.30 38.28 43.40 1 14.45
large009 11074 4237 24 8.22 29.92 54.21 1 21.26
large010 11084 4247 16 7.73 37.43 43.84 1 16.28
large011 11073 4236 16 10.65 35.02 44.13 1 11.02
large012 11091 4253 16 9.01 38.32 41.73 1 12.49
large013 11086 4248 13 10.40 40.15 37.55 1 11.68
large014 11109 4271 12 10.30 38.60 38.59 1 12.45
large015 11103 4265 14 8.84 37.62 42.26 1 14.17
large016 11125 4287 14 8.43 40.57 39.29 1 16.74
large017 11114 4277 8 12.73 31.31 40.14 1 10.70
large018 11134 4297 7 13.81 33.44 37.61 1 10.28
large019 11136 4300 6 16.78 34.45 29.94 1 7.25
large020 11152 4315 10 17.75 42.31 26.30 1 10.65
large021 11149 4311 10 14.25 46.22 25.58 1 7.06
large022 11146 4312 9 12.64 46.99 25.98 1 11.63
large023 11137 4302 12 17.08 40.48 29.33 1 10.63
large024 11123 4292 18 14.94 40.15 34.41 2 8.12
large025 11129 4297 24 11.88 31.31 47.66 2 9.98
large026 11108 4284 19 15.55 33.44 40.23 3 6.53
large027 11096 4275 13 18.63 41.38 27.57 3 5.04
large028 11135 4302 17 20.59 39.85 28.71 2 7.15
large029 11133 4301 18 13.22 40.89 35.44 2 9.35
large030 11108 4285 15 14.81 44.87 28.86 2 8.27
large031 11120 4294 20 11.99 32.89 46.64 2 8.87
large032 11119 4292 32 7.43 23.27 63.34 2 16.52
large033 11090 4273 15 18.39 45.00 25.69 3 5.84
large034 11125 4294 29 8.73 25.76 58.99 2 14.50
large035 11122 4293 31 7.16 31.41 52.62 2 17.76
large036 11104 4282 27 7.58 25.72 60.38 2 14.47
lpl3 44366 10828 4 91.75 0.00 0.00 4 1.20
maros 2289 846 0 57.24 0.00 26.60 0 2.20
mitre 12778 2054 1 71.75 0.00 11.43 0 1.73
mkc 8736 3411 20 99.28 0.00 0.34 14 1.47
mod011 15438 4480 1 72.35 0.00 11.60 1 0.71
model11 25344 7056 10 90.31 0.00 5.37 9 1.18
model2 1591 379 0 52.69 0.00 29.41 0 1.00
model6 7097 2096 65 21.88 8.51 66.83 9 6.95
momentum1 47854 42680 24 86.93 0.00 7.65 16 1.52

Continued on Next Page. . .

156



Table A.3 (continued)
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momentum2 27969 24237 1673 9.74 89.57 0.38 75 22.41
mzzv42z 22177 10460 120 99.50 0.00 0.23 151 0.80
nemsemm1 75358 3945 9 54.05 0.00 18.79 5 2.05
nemsemm2 49076 6943 5 69.99 0.00 12.67 3 1.56
neos 515905 479119 3720 99.63 0.00 0.18 11674 0.32
neos1 133473 131581 603 99.30 0.00 0.36 5571 0.11
neos2 134128 132568 1598 99.75 0.00 0.14 1176 1.36
neos3 518833 512209 62840 99.97 0.00 0.02 60070 1.05
nesm 3585 662 1 65.85 6.55 15.64 1 2.07
net12 28136 14021 10 94.72 0.00 2.34 10 1.08
nsct1 37882 22901 9 79.44 0.00 8.46 6 1.55
nsct2 37984 23003 6 73.85 0.00 10.55 10 0.64
nsct2.pre 19094 7797 3 55.99 0.00 17.15 2 2.00
nsir1 10124 4407 2 70.14 0.00 12.44 0 3.32
nsir2 10170 4453 2 63.92 0.00 14.40 1 2.70
nsrand-ipx 7356 735 1 29.45 0.00 27.45 0 6.60
nug07 1533 602 1 81.64 0.00 15.30 0 1.55
nug08 2544 912 5 95.36 0.00 3.99 3 1.88
nug12 12048 3192 10118 99.34 0.00 0.66 1046 9.67
nug15 28605 6330 52036 98.78 0.00 1.22 48229 1.08
nw04 87518 36 5 58.81 0.00 13.26 2 2.09
nw14 123482 73 7 60.49 0.00 13.36 4 1.71
orna1 1764 882 4 7.13 0.00 45.02 0 13.51
orna2 1764 882 5 8.43 0.00 44.22 0 13.84
orna3 1764 882 5 6.34 0.00 47.64 0 14.44
orna4 1764 882 8 4.05 0.00 70.19 0 30.48
orna7 1764 882 5 10.21 0.00 44.24 0 11.90
osa-07 25067 1118 3 78.82 0.00 8.03 2 1.47
osa-60 243246 10280 408 98.66 0.00 0.46 360 1.14
osa-60.pre 234334 10209 361 98.95 0.00 0.36 318 1.14
p010 29090 10090 12 87.71 0.00 7.76 10 1.19
p05 14590 5090 3 80.35 0.00 10.99 2 1.43
pcb1000 3993 1565 1 54.99 0.00 32.48 1 1.39
pcb3000 10770 3960 4 59.45 0.00 33.17 2 2.22
pds-06 38536 9881 3 82.26 0.00 7.56 2 1.58
pds-100 661603 156243 3730 99.62 0.00 0.24 3821 0.98
pds-20.pre 89523 10240 20 92.37 0.00 3.42 80 0.24
pds-30 204942 49944 460 99.16 0.00 0.47 396 1.16
pds-40 279703 66844 1456 99.59 0.00 0.25 984 1.48
pds-50 353155 83060 1955 99.64 0.00 0.21 1727 1.13
pds-60 429074 99431 2423 99.63 0.00 0.22 2054 1.18
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Table A.3 (continued)
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pds-70 497255 114944 19885 99.94 0.00 0.04 2318 8.58
pds-80 555459 129181 3773 99.68 0.00 0.20 3104 1.22
pds-90 609494 142823 4328 99.70 0.00 0.18 3373 1.28
pf2177 10628 9728 17 94.93 0.00 4.19 18 0.97
pgp2 13254 4034 5 22.32 66.84 4.67 0 19.53
pilot.ja 2928 940 18 5.20 0.00 85.70 1 23.09
pilot.we 3511 722 4 23.37 0.00 44.22 1 5.56
pilot4 1410 410 3 7.04 7.41 70.00 0 20.36
pilotnov 3147 975 7 7.27 0.00 88.66 0 15.20
pldd000b 6336 3069 2 32.03 0.00 42.48 0 4.07
pldd001b 6336 3069 1 31.52 0.00 42.41 0 3.76
pldd002b 6336 3069 1 31.74 0.00 41.94 0 3.73
pldd003b 6336 3069 1 32.15 0.00 41.50 0 3.86
pldd004b 6336 3069 1 32.09 0.00 39.67 0 3.80
pldd005b 6336 3069 1 32.75 0.00 39.82 0 3.80
pldd006b 6336 3069 2 17.78 18.22 45.42 0 6.87
pldd007b 6336 3069 3 17.69 18.25 45.81 0 6.98
pldd008b 6336 3069 3 19.76 17.81 44.59 0 5.94
pldd009b 6336 3069 1 34.74 0.00 38.34 0 3.34
pldd010b 6336 3069 3 18.46 17.76 45.35 0 6.21
pldd011b 6336 3069 3 20.80 17.54 44.04 0 5.32
pldd012b 6336 3069 3 19.16 17.70 45.55 0 6.82
pltexpa3 16 102522 28350 301 14.50 84.50 0.43 12 26.14
pltexpa3 6 16042 4430 11 13.52 81.71 2.14 0 29.19
pltexpa4 6 97258 26894 453 16.89 82.47 0.28 13 33.72
primagaz 12390 1554 1 84.05 0.00 6.77 1 1.42
progas 3075 1650 39 1.16 0.00 74.99 0 118.89
protfold 3947 2112 7 93.01 0.00 6.02 3 2.36
qap12 12048 3192 989 95.06 0.00 4.92 4860 0.20
qiu 2032 1192 1 29.10 57.41 8.50 0 12.54
r05 14690 5190 4 79.40 0.00 10.82 3 1.40
rail2586 923269 2586 5449 99.14 0.00 0.40 4901 1.11
rail4284 1096894 4284 15457 99.65 0.00 0.15 14748 1.05
rail507 63516 507 24 93.66 0.00 2.47 23 1.04
rail516 47827 516 13 91.96 0.00 3.00 12 1.06
rail582 56097 582 21 93.27 0.00 2.53 21 0.99
rat1 12544 3136 35 66.66 0.00 21.49 77 0.46
rd-rplusc-21 126521 125899 83 78.94 0.00 16.82 47 1.76
rentacar 16360 6803 2 84.92 0.00 7.43 4 0.63
rlfddd 61521 4050 1 49.96 0.00 0.00 1 1.82
rlfdual 74970 8052 2 64.37 0.00 0.00 47 0.04
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rlfprim 66918 58866 29 97.29 0.00 0.00 24 1.19
roll3000 3461 2295 1 80.98 0.00 9.44 0 1.70
rosen10 6152 2056 4 88.12 0.00 6.85 1 4.27
rosen2 3080 1032 2 78.18 0.00 11.76 0 4.02
route 44817 20894 2 58.50 0.00 17.80 1 2.02
sc205-2r-200 8827 4413 1 87.86 0.00 5.94 1 1.27
sc205-2r-400 17627 8813 7 95.44 0.00 1.98 6 1.15
scagr7-2b-64 20003 9743 9 94.27 0.00 2.47 5 1.64
scagr7-2c-64 5027 2447 0 72.06 0.00 13.30 0 1.15
scagr7-2r-108 8459 4119 1 81.95 0.00 8.06 1 1.23
scagr7-2r-216 16883 8223 6 92.79 0.00 2.99 5 1.20
scagr7-2r-432 33731 16431 24 96.45 0.00 1.48 21 1.16
scagr7-2r-54 4247 2067 0 71.19 0.00 13.02 0 1.24
scagr7-2r-64 5027 2447 1 75.25 0.00 11.77 0 1.28
scagr7-2r-864 67427 32847 139 94.86 2.77 1.11 154 0.90
scfxm1-2b-16 6174 2460 1 71.09 0.00 14.98 0 1.90
scfxm1-2b-64 47950 19036 32 95.12 0.00 2.44 31 1.02
scfxm1-2r-16 6174 2460 1 71.96 0.00 14.34 0 1.95
scfxm1-2r-27 10277 4088 2 81.48 0.00 9.07 1 1.61
scfxm1-2r-32 12142 4828 3 85.74 0.00 7.11 2 1.89
scfxm1-2r-64 24078 9564 9 90.97 0.00 4.38 6 1.41
scfxm1-2r-96 36014 14300 67 91.70 4.92 1.81 17 3.86
scrs8-2r-256 16961 7196 1 66.85 0.00 15.04 1 1.72
scrs8-2r-512 33857 14364 5 86.94 0.00 5.92 3 1.42
scsd8-2b-64 41040 5130 1 33.33 0.00 25.55 0 3.15
scsd8-2c-64 41040 5130 1 32.42 0.00 25.82 0 3.11
scsd8-2r-108 17360 2170 1 9.52 33.74 24.60 0 10.50
scsd8-2r-216 34640 4330 2 17.16 19.66 27.05 0 6.55
scsd8-2r-432 69200 8650 5 20.39 33.79 18.64 1 6.52
scsd8-2r-54 8720 1090 0 9.74 13.06 36.57 0 13.58
scsd8-2r-64 10320 1290 0 10.76 0.00 31.47 0 8.10
scsd8 3147 397 0 45.53 19.75 19.54 0 2.81
sctap1-2b-64 40014 15390 2 78.35 0.00 0.00 1 1.46
sctap1-2r-108 16926 6510 0 46.51 0.00 0.00 0 2.13
sctap1-2r-216 33774 12990 1 64.25 0.00 0.00 1 1.72
sctap1-2r-480 74958 28830 4 79.98 0.00 0.00 3 1.24
self 8324 960 51601 0.09 63.85 35.65 190 272.00
seymour 6316 4944 7 96.56 0.00 1.60 6 1.24
seymourl 6316 4944 8 96.46 0.00 1.73 6 1.24
sgpf5y6.pre 58519 19499 88 3.68 93.79 1.12 2 49.22
slptsk 6208 2861 36 28.96 0.00 59.00 3 10.59
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Table A.3 (continued)

P
ro

b
le

m
n
am

e

N
u
m

b
er

of
co

lu
m

n
s

N
u
m

b
er

of
ro

w
s

Q
S
op

t
ex

ti
m

e

%
D

ou
b
le

p
re

ci
si

on

%
E

x
te

n
d
ed

p
re

ci
si

on

%
E

x
ac

t
ch

ec
k

Q
S
op

t
ti

m
e

T
im

e
ra

ti
o

small002 1853 713 1 5.43 26.97 46.93 0 18.42
small006 1848 710 1 7.10 31.48 38.38 0 16.81
small007 1848 711 1 6.48 35.03 36.77 0 18.42
small008 1846 712 1 4.63 35.12 37.43 0 26.71
small009 1845 710 0 4.48 30.96 38.89 0 23.38
small010 1849 711 0 4.62 23.84 43.55 0 19.57
small015 1813 683 0 2.68 27.25 41.84 0 37.36
south31 53846 18425 148 97.48 0.00 1.02 125 1.18
sp97ar 15862 1761 3 72.95 0.00 11.04 3 1.30
stair 823 356 7 1.59 0.00 93.87 0 119.36
stocfor2 4188 2157 1 73.80 0.00 11.76 0 2.54
stocfor3 32370 16675 47 97.55 0.00 1.01 21 2.20
stormG2 1000 1787306 528185 6251 99.51 0.00 0.21 5767 1.08
stormG2 1000.pre 1410155 377036 4336 99.43 0.00 0.25 3642 1.19
stormG2-125 223681 66185 86 95.66 0.00 1.90 76 1.13
stormG2-125.pre 176405 47161 56 94.70 0.00 2.29 50 1.12
stormg2-27 48555 14441 4 80.75 0.00 8.37 3 1.44
stormg2-8 14602 4409 1 56.68 0.00 18.18 0 2.00
sws 26775 14310 1 35.29 0.00 25.57 0 3.40
t0331-4l 47579 664 122 85.01 0.00 12.70 113 1.08
t1717 74436 551 116 95.96 0.00 2.65 108 1.08
testbig 48836 17613 27 97.33 0.00 1.13 10 2.64
ulevimin 51195 6590 69 96.52 0.00 1.81 56 1.23
us04 28179 163 2 48.73 0.00 18.81 1 3.22
watson 1.pre 239575 65266 5180 13.08 86.41 0.26 250 20.70
wood1p 2838 244 2 28.40 0.00 43.19 0 5.30
woodw 9503 1098 3 89.74 0.00 5.57 2 1.32
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Table A.4: Comparison for dual simplex on instances without hot-start. Here we show
the total running time for the exact LP solver and the original QSopt code, we also show
the percentage of time spend on solving the double LP approximation, the extended float
approximation (if any), and the checking process in rational arithmetic for the exact LP
solver code, the last column shows the ratio of the running time of the exact code versus
the running time of the original QSopt code. All running times are in seconds. The runs
where made using a Linux workstation with 4Gb of RAM, and with an AMD Opteron 250
CPU.
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atlanta-ip 70470 21732 4665 57.16 42.70 0.07 280 16.65
co5 13767 5774 260 11.04 87.88 0.64 13 19.54
co9 25640 10789 1418 2.01 97.21 0.50 70 20.13
cq9 23056 9278 747 19.17 78.90 1.45 47 15.98
d2q06c 7338 2171 277 3.73 73.23 21.67 10 28.04
dano3mip 17075 3202 2583 7.40 92.17 0.38 213 12.12
dano3mip.pre 16988 3151 3065 7.39 92.23 0.34 229 13.40
de063157 2424 936 9 1.65 90.91 5.09 1 12.62
fome11 36602 12142 6141 21.42 78.49 0.07 330 18.61
fome12 73204 24284 11381 13.19 86.71 0.08 915 12.44
fome13 146408 48568 28294 9.67 90.26 0.06 2373 11.92
fxm3 16 105502 41340 1693 5.76 93.79 0.09 122 13.88
gen 3329 769 17867 1.38 80.70 17.82 13 1412.32
gen1 3329 769 17602 1.42 80.40 18.08 13 1384.79
gen2 4385 1121 45421 0.37 3.38 96.16 59 775.09
gen4 5834 1537 53448 1.18 6.98 91.67 15 3648.04
gen4.pre 5648 1475 53630 0.11 3.16 96.57 3 16445.97
iprob 6002 3001 9 97.76 0.00 0.82 4 2.24
l30 18081 2701 10427 0.67 98.79 0.50 44 239.70
lp22 16392 2958 1932 13.59 85.46 0.90 89 21.66
lp22.pre 11565 2872 1963 21.11 78.00 0.85 86 22.84
maros-r7 12544 3136 2284 0.55 93.33 3.28 31 74.66
mod2 66502 34774 6827 5.10 94.43 0.32 671 10.17
mod2.pre 54286 27186 5276 16.94 82.55 0.35 413 12.76
model10 19847 4400 2361 1.70 90.94 6.87 0 2361070.00
model3 5449 1609 91 14.81 82.58 1.95 4 23.66
model4 5886 1337 118 7.12 90.28 1.63 14 8.16
model5 13248 1888 148 18.02 79.94 1.07 6 24.31
model7 11365 3358 388 8.03 84.14 7.34 18 21.08
model9 13136 2879 103 15.01 81.68 1.91 12 8.64
momentum3 70354 56822 34138 4.72 50.75 43.79 1703 20.04
msc98-ip 36993 15850 2140 23.28 76.65 0.02 187 11.45
mzzv11 19739 9499 5090 3.83 96.15 0.01 314 16.22

Continued on Next Page. . .
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Table A.4 (continued)
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nemspmm1 10994 2372 413 12.87 85.85 1.01 30 13.64
nemspmm2 10714 2301 571 2.97 92.97 3.57 39 14.64
nemswrld 34312 7138 10009 2.77 93.84 3.24 402 24.92
neos.pre 476610 440494 56336 13.01 86.97 0.00 5623 10.02
nl 16757 7039 77 97.76 0.00 1.40 13 5.92
perold 2001 625 31 9.63 55.10 33.14 0 90.47
pilot 5093 1441 623 1.70 41.05 55.31 7 83.83
pilot87 6913 2030 7724 0.38 9.01 89.63 59 129.92
pilot87.pre 6375 1885 7463 0.45 9.29 89.24 57 131.38
rat5 12544 3136 8787 0.24 81.05 18.22 46 192.53
rat7a 12544 3136 70876 0.19 14.75 84.89 281 252.49
sc205-2r-1600 70427 35213 7621 0.15 98.70 0.00 45504 0.17
sc205-2r-800 35227 17613 2518 0.09 97.71 0.00 11643 0.22
scfxm1-2r-128 47950 19036 446 23.43 76.04 0.17 38 11.77
scfxm1-2r-256 95694 37980 2174 11.40 88.39 0.07 196 11.11
sgpf5y6 554711 246077 31050 14.93 85.01 0.01 788 39.43
stat96v1 203467 5995 22920 1.12 97.33 1.00 277 82.85
stat96v4 65385 3173 39202 0.42 69.77 19.65 452 86.71
stat96v5 78086 2307 7503 1.22 40.98 34.60 28 266.17
stp3d 364368 159488 111680 56.49 43.50 0.00 6340 17.61
watson 1 585082 201155 29168 21.64 78.25 0.03 2758 10.58
watson 2 1023874 352013 196670 4.70 95.27 0.01 8424 23.35
world 67240 34506 11138 3.16 96.47 0.26 1102 10.11
world.pre 55916 27057 6759 7.40 92.13 0.34 610 11.07
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de Bruxelles, Annales, Seconde Partie, Mémories, vol. 35, pp. 1–16, 1911.

[35] Dhiflaoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Schömer, E.,
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