
Per-Seat, On-Demand Air Transportation

Part I: Problem Description and an

Integer Multi-Commodity Flow Model

D. Espinoza, R. Garcia, M. Goycoolea, G.L. Nemhauser, M.W.P. Savelsbergh

Georgia Institute of Technology

Abstract

The availability of relatively cheap small jet planes has led to the creation of
on-demand air transportation services in which travelers call a few days in advance
to schedule a flight. A successful on-demand air transportation service requires an
effective scheduling system to construct minimum cost pilot and jet itineraries for
a set of accepted transportation requests. We present an integer multi-commodity
network flow model with side constraints for such dial-a-flight problems. We develop
a variety of techniques to control the size of the network and to strengthen the quality
of the linear programming relaxation, which allows the solution of small instances. In
Part II, we describe how this core optimization technology is embedded in a parallel,
large neighborhood, local search scheme to produce high-quality solutions efficiently
for large-scale real-life instances.

1 Introduction

The United States Department of Transportation (DOT) reports that Americans make
more than 405 million business trips of more than 50 miles each year ([32]). Of these trips,
84 percent do not cross regional boundaries and close to 20 percent involve travel of 250
to 1,000 miles.

Despite the length of the trips in the latter category, most of these trips are done by
automobile. This phenomenon can be explained by examining the air travel alternative. To
get from one regional airport to another, travelers typically have to connect through heavily
congested “hub” airports, often located many miles from their origins and destinations.
Missed connections and flight delays are common. Furthermore, travelers often have to
drive many miles to get to or from an airport serviced by a scheduled airline. In fact,
commercial flight service exists in only about 550 of the nation’s 5,000 public-use airports,
with a mere 67 of these airports accounting for 90 percent of domestic traffic. Add to

1

this the fact that airlines offer limited schedules at regional airports, and the air travel
alternative does not look very appealing.

As a consequence of these impediments, the DOT reports that the trend seems to
be that more and more travelers prefer driving rather than flying for trips between 200
and 500 miles. This is in part due to the changes taking place in the commercial airline
industry. Increased security at airports has resulted in longer waiting times, with the
associated frustrations, and thus longer travel times. Furthermore, due to the huge losses
suffered by the airlines in recent years (airlines worldwide have lost $25 billion dollars
and more than 400,000 jobs in 2002 and 2003), airlines have cut back and are operating
with a reduced schedule, affecting the flexibility of the business traveler, especially when
it concerns smaller regional airports.

Can this trend be reversed? Can an air travel alternative be developed that appeals
to the regional business traveler? Some people believe so.

New developments in avionics and airplane manufacturing have brought about a new
technology: the very light jet (VLJ), also called the microjet. Weighing less than 10,000
pounds, these aircraft can carry up to 5 passengers, fly distances of over 1,000 miles, reach
altitudes of 19,000-41,000 feet, and travel at speeds between 350-390 nautical miles per
hour (almost twice the altitude and speed of current turbo-prop airplanes). Priced at
slightly more than a million US dollars, these jets cost about one third of the price of
the typical small jets sold today. Several manufacturers are taking orders for VLJs with
Eclipse Aviation ([17]) being the first with deliveries in 2007.

The availability of relatively cheap small jet aircraft suggests a new air transportation
business: dial-a-flight, an on-demand service in which travelers call one day or a few days
in advance to schedule transportation. The advantages of such a system are obvious.
This service gives regional travelers the option of using small jets that fly to and from less
congested outlying airports, without packed parking lots, long lines at security checkpoints,
flight delays, and lost luggage, that are closer to where they live and where they want to
go. In fact, VLJs can land at nearly 5,000 of the 14,000 private and public landing strips
in the United States. By charging a discount fare for sharing cabin space with other
passengers, aggregation can greatly reduce costs while still ensuring a very convenient
service.

The idea of a dial-a-flight service to satisfy regional demand is rapidly becoming a
reality. In fact, even though VLJs are not yet available, air taxi services already exist
today. Linear Air ([24]) is providing air transportation in the northeastern United States.
Alpha Flying ([2]), Avantair ([1]), CitationShares ([9]), and FlexJet ([20]) offer fractional
ownership programs, in which you can buy flying time on a fleet of aircraft.

In October of 2007 DayJet Corporation ([13, 14]) began providing per-seat, on-demand
air transportation services in the southeast. The business model of DayJet is different from
the companies mentioned above in the sense that DayJet’s offerings include individual
seats (per-seat on-demand) as well as entire planes (per-plane on-demand) and therefore

2

the potential of much lower fares. Will this business model be successful? Ed Iacobucci,
founder and CEO of DayJet Corporation, believes that it is not only possible to successfully
run a per-seat, on-demand air service business, but it is possible to do so charging an
amount only slightly above non-discount coach fares of commercial airlines. In order for
the business to be profitable at these rates, each revenue flight segment should average a
load of around 1.3 paying passengers. And, Iacobucci says, the key to attaining such load
factors is optimization-based scheduling systems.

The dial-a-flight alternative has generated a lot of interest. Recent media coverage
includes The New York Times ([19]), The Wall Street Journal, USA Today, Business
Week, Newsweek, CNN, BBC, and much, much, more.

To effectively manage day-to-day operations at a per-seat, on-demand air service,
several optimization-based scheduling components need to be employed. The two key
components are: (1) an online accept/reject system to quickly inform passengers if their
air transportation requests can be serviced and at what price, and (2) an off-line scheduling
system to construct minimum cost pilot and jet itineraries for the next day once the
reservation deadline has passed.

In this two-part paper, we discuss the components of an off-line scheduling system
developed for and in collaboration with DayJet Corporation. The online accept/reject
system involves a very rapid (less than 15 seconds) heuristic search to see if a new request
can be fit in. This is a proprietary DayJet system which, unfortunately, we cannot present
here. Online accept/reject systems in other contexts have been studied, among others, by
and Benoit et al. ([3]), Bent and Van Hentenryck ([5]), Campbell and Savelsbergh ([8]),
and Van Hentenryck et al. ([33]).

In Part I, we introduce an integer multi-commodity network flow model with side con-
straints for the dial-a-flight problem and we develop a variety of techniques to control the
size of the network and to strengthen the quality of the linear programming relaxation.
The resulting technology allows the solution of small size instances. In Part II, the core
optimization technology is embedded in parallel local search scheme that makes our tech-
nology scalable so that high-quality solutions can be obtained efficiently for large-scale
real-life instances.

The remainder of Part I is organized as follows. In Section 2 we formally introduce
the dial-a-flight problem and we discuss its relation to other pickup and delivery problems
encountered in the literature. In Section 3 we place our research in context and identify
the specific contributions. In Section 4 we describe a novel multi-commodity network flow
model for the dial-a-flight problem. In Section 5 we discuss innovative construction and
aggregation algorithms to ensure the resulting optimization problem is of manageable size.
Finally, in Section 6, we present a computational study demonstrating the viability of the
proposed approach for small instances.

3

2 Problem Description

The dial-a-flight problem (DAFP) is concerned with the scheduling of a set of requests for
air transportation during a single day. A request specifies an origin airport, a destination
airport, an earliest acceptable departure time at the origin, a latest acceptable arrival time
at the destination, and the number of passengers and their weight. While service require-
ments could be handled differently, e.g., by specifying an earliest acceptable departure
time and a maximum trip time or a latest acceptable arrival time and a maximum trip
time, or simply a maximum trip time, DayJet’s market research indicates that an earliest
departure and a latest arrival time is what is preferred by business travelers. A fleet of
jet airplanes is available to provide the requested air transportation. Each jet has a home
base, a seat capacity limiting the number of passengers that can be accommodated, and
a weight capacity limiting the weight that can be accommodated. Each jet is available
for a certain period during the day, and has to return to its home base at the end of
the day. A set of pilots, stationed at the home bases of the airplanes, is available to fly
the jets. A pilot departs from the home base where he is domiciled at the start of his
duty and returns to the home base at the end of his duty. A pilot schedule has to satisfy
FAA regulations governing flying hours and duty period; a pilot cannot fly more than 8
hours in a day and his duty period cannot be more than 14 hours. Pilots do not change
aircraft during their duty. To ensure acceptable service an itinerary for a passenger will
involve at most two flights, i.e., at most one intermediate stop is allowed. Furthermore,
if there is an intermediate stop, both flights have to be on the same jet (a safeguard to
avoid waiting in case planes get delayed). A plane can deadhead (fly without passengers)
in order to pickup passengers at another airport or to return home. The minimum time
between an arrival at an airport and the next departure, called the turnaround time, is
given for each airport. The objective is to minimize the costs, while satisfying all requests
and respecting all constraints. A dispatcher has to decide which jets and pilots to use to
satisfy the requests and what the jet and pilot itineraries will be, i.e., the flight legs and
associated departure times.

We use the following notation to model the problem:

A: the set of all airports.
J : the set of all jets.
R: the set of all transportation requests.

Without loss of generality, we assume that the requests are ordered, i.e., R = {r1, r2, . . . , rs}.
Each request r ∈ R has the following attributes:

4

origin(r): the origin airport where passengers are to be picked up.
destination(r): the destination airport where passengers are to be dropped off.
earliest(r): earliest departure time.
latest(r): latest arrival time.
passengers(r): number of passengers flying together.
weight(r): total weight of passengers and luggage.

Each jet j ∈ J has the following attributes:

home base(j): the home airport of the jet.
jet begin(j): the earliest time at which the jet can start.
jet end(j): the latest time at which the jet can finish.
capacity(j): the number of passenger seats in the jet.
max fly time(j): the total daily flying time limit (in minutes) for the jet.
max weight(j): the weight limit (in pounds) for the jet.

For airports a, b ∈ A we consider the quantities:

flight cost(a, b): the cost of flying between airports a and b.
flight time(a, b): the flying time (in minutes) between airports a and b.
turn around(a): the turnaround time (in minutes) at airport a, i.e., the

number of minutes which must elapse between an arrival
and departure of a specific jet at airport a.

relocate time(a, b):

{

0 if a = b

flight time(a, b) + turn around(b) otherwise.

We assume that time is measured in minutes, i.e., a time instant is an integer in
[0, 1440]. We often employ a specific discretization of the planning horizon. The set of all
time instants in the discretization will be denoted by T . The set Tj(a) ⊆ T represents
the time instants in which jet j ∈ J will be allowed to take-off from airport a ∈ A. The
discretization can (and often will) be different for each jet j ∈ J . For h = home base(j),
we assume that jet begin(j) and jet end(j) are in Tj(h). For each t ∈ T , j ∈ J , and
a ∈ A define ⌈t⌉j,a = min{t′ ∈ Tj(a) : t′ ≥ t} and ⌊t⌋j,a = max{t′ ∈ Tj(a) : t′ ≤ t};
whenever the jet and the airport are clear from the context, we may simply write ⌈t⌉ and
⌊t⌋.

The dial-a-flight problem is an example of a pickup and delivery problem. Pickup
and delivery problems have received a fair amount of attention in the vehicle routing
literature. Savelsbergh and Sol [30] and Desaulniers et al. [15] provide overviews of pickup
and delivery problems. The class of vehicle routing problems with pickups and deliveries
dealing specifically with passenger transportation is known under the name of dial-a-ride
problems. When dealing with passenger transportation, service related constraints and
objectives take on a more prominent role. These are typically aimed at controlling “user

5

inconvenience” in terms of ride time (the time between pickup and delivery), waiting time
(time spent in the vehicle when it is not in motion), and deviations from desired pickup and
delivery times. A discussion of modeling issues in dial-a-ride problems and an overview of
proposed algorithms can be found in Cordeau and Laporte [11]. Even though dial-a-flight
and dial-a-ride have many common characteristics, there are also some notable differences.
The dial-a-ride problem often arises in social services contexts, e.g., transportation of the
elderly, whereas the dial-a-flight problem is encountered exclusively in business settings.
As a result, there tends to be less flexibility in the specification of requests, especially in
terms of the desired service level, in dial-a-ride environments. Furthermore, in dial-a-ride
environments, request often have a common destination or a common origin (e.g., elderly
citizens needing to visit a hospital, or wanting to go to the mall), whereas in dial-a-flight
environments this rarely happens. Other relevant dial-a-ride papers include Dumas et
al. [16], Savelsbergh and Sol [31], Xu et al. [34], Ropke and Pisinger [28], Cordeau [10],
Borndorfer et al. [7], and Bent and Van Hentenryck [6].

Fractional ownership is another new development in the airline industry [23, 26, 22, 35].
Fractional ownership programs provide share sizes from one-sixteenth with 50 flying hours
per year to one-half with 400 flying hours per year. Usually, a partial owner requests a
flight, by specifying a departure station, a departure time, an arrival station, and an arrival
time, only days or hours ahead of time. The management company must assign a crew
and an available aircraft to serve this flight. While scheduling all the requested flights,
the management company tries to minimize total operational costs. Fractional ownership
leads to per-plane, on-demand air transportation as opposed to per-seat, on-demand air
transportation considered in this paper. The business model and resulting scheduling
problems are quite different, since the success of per-seat, on-demand air transportation
depends on the ability to effectively aggregate requests, i.e., use the same flight leg to
(partially) satisfy multiple transportation requests. Moreover, in fractional ownership
planes are typically requested for at least several hours at a time so the number of requests
that need to be dealt with are at least an order of magnitude less than in the per-seat,
on-demand scenario.

3 Motivation and Contribution

Although the dial-a-flight problem can be viewed as a dial-a-ride problem in which the
vehicles are jets, the current methodology that is available for these problems is not
adequate for the dial-a-flight problem. This is due to two reasons. First, in the dial-a-
flight problem “user-inconvenience” is not only controlled by imposing a maximum transit
time, as is typically done in dial-a-ride problems, but also by imposing that passengers
make at most one intermediate stop between their origin and destination. The second
reason is the sheer size of the problems which must be solved. DayJet is aiming to have

6

over 300 jets operating daily within two years. Thus, on a typical day, about 3000 accepted
reservations must be scheduled. State-of-the art dial-a-ride and vehicle routing algorithms
are well short of tackling such large problems in a short period of time.

There are two natural ways of modeling the off-line schedule optimization problem.
First, it can be viewed as an integer multi-commodity flow problem on a time-space net-
work in which all jets form a commodity. This involves a large number of commodities
and a huge number of nodes since the desired level of time granularity is minutes (see
Cordeau et al. ([12]) for a description of this model). More importantly, a prohibitively
large number of forcing constraints is required to model that requests can only be served
on an arc when there is a jet assigned to that arc as well. The alternative is a col-
umn generation/branch-and-price approach in which a column corresponds to a feasible
itinerary for one jet. This latter approach can produce a tighter linear programming
bound at the expense of having an exponential number of variables. In our preliminary
studies we considered both models. Neither produced the results we had hoped for. The
multi-commodity flow model could solve small instances with less than 4 planes, but so-
lution times grew exponentially with the number of planes so that even an instance with
8 planes could not be solved in the desired time because of the exponential growth in the
size of the network and the associated model. On the other hand, the column generation
model could not even solve the linear programming relaxation for instances with 20 planes
in a reasonable amount of time. The reason for this is that the subproblem for generating
columns is a very difficult constrained shortest path.

This led us to develop a new multi-commodity network flow formulation. Instead of
the natural integer multi-commodity flow on a time-space network, we opted for an integer
multi-commodity flow model on a time-activity network in which it is easier to handle the
constraint that limits the number of intermediate stops to at most one. This two-part
paper discusses this integer multi-commodity flow model on a time-activity network and
how it is used to provide high-quality solutions to real-life, large-scale instances of the
dial-a-flight problem.

In Part I, we describe and analyze the integer multi-commodity flow model. To achieve
acceptable computational performance, three specialized techniques had to be developed.
The first two reduce network size significantly and the third technique both reduces net-
work size and tightens the linear programming relaxation. They are: (1) a customized
network construction algorithm exploiting objective function characteristics; (2) a non-
regular time-discretization increasing granularity around important time instants; (3) a
network aggregation algorithm. The network aggregation algorithm contracts nodes, thus
incorporating information arising from side-constraints into the network model. The re-
sulting network, in which arcs correspond to partial routes that can be flown by a plane,
can be considered as achieving some of the advantages of a column generation approach in
which the variables correspond to a full route for a plane. Therefore the aggregation gives
us some of the benefits of a column generation formulation without having to design and

7

implement a full-scale branch-and-price algorithm. The efficacy of the resulting algorithm,
in terms of solution time and number of requests satisfied, is comparable to state-of-the
art algorithms used in other, similar applications. Instances with less than 50 requests (4
jets) are easy to solve and instances with 80 or more requests (8 jets) are hard to solve.
This is in line with recent computational results for the dial-a-ride problem ([10]) and the
capacitated vehicle routing problem ([21, 25]).

In Part II, we discuss the use of the integer multi-commodity flow model for solving
real-life, large-scale instances with several thousands of requests and several hundred jets.
We present a parallel local search algorithm that optimizes subsets of planes. To achieve
the desired computational performance, we give novel approaches to focus the search
on neighborhoods that provide good opportunities for improvement, as well as using an
asynchronous parallel implementation to explore a large number of neighborhoods. The
neighborhood designs are based on parameters such as number of jets, time discretization
level, and time of day. We develop customized metrics to select subsets of jets with a high
probability of leading to an improvement. Our adaptive neighborhood selection scheme
modifies the neighborhoods as the search progresses. Instances with about 3000 requests
and over 300 jets are handled routinely and effectively. While our results are not directly
comparable to recent computational results for the pickup and delivery problem with time
windows ([4, 28]), they show that our approach is capable of dealing with problems of at
least the same size in comparable time.

4 A Multi-Commodity Network Flow Model

We begin by describing a discretized time-space network model representing feasible
itineraries for a single jet airplane. The key events from the perspective of the jet are
modeled in this network, e.g., which flights to make, when to make them, and which
passengers to carry in each flight. Linking these networks together via constraints which
impose that all requests must be satisfied yields a multi-commodity network flow model
with side constraints.

4.1 The Individual Jet Network

For each jet j ∈ J , we define a feasible itinerary as a sequence of flights satisfying the
following conditions:

(R1) The jet begins and ends the itinerary at home base(j),

(R2) The jet begins the itinerary no earlier than jet begin(j) and ends the itinerary no
later than jet end(j),

(R3) The jet never carries more than capacity(j) passengers on a flight,

8

(R4) The jet never carries more than max weight(j) weight on a flight,

(R5) The jet does not fly more than max fly time(j) minutes during a day, and

(R6) The service requirements of passengers transported by the jet are met; that is, pas-
sengers are picked up at their origin and dropped off at their destination within their
specified time window with at most one intermediate stop, and without changing
airplanes during their trip.

The Individual Jet Network allows us to model any feasible itinerary for a given jet
j ∈ J in terms of a flow between two nodes in the network. Nodes in this network represent
key decisions taken from the perspective of the jet as it travels during the day between
different airports. These decisions are of three types: Standby, Departure, and Loading
decisions. Deciding to remain in “standby” allows a jet to wait, idle, at an airport. A
“departure” decision involves deciding where to fly next, and “loading” decisions involve
choosing which requests to satisfy. In Figure 4.1 we illustrate possible sequences of such
events as represented in an individual jet network.

Arrive at

Airport “a′′

Connecting

passengers?

Standby mode

(Waiting)
Departure

(a, b)

Load direct

f light

passenger

Load indirect

f light

passenger

Arrive at

Airport “b′′

No Yes

Figure 1: Key Events From The Perspective of an Airplane

We now give a formal description of the network model in terms of nodes and arcs.

9

4.1.1 Nodes

Let R[a, t, b] be the set of all requests r ∈ R with origin(r) = a and destination(r) = b

which can be serviced by a direct flight departing from a at time t. That is, the set of all
requests r ∈ R such that t ≥ earliest(r) and t + flight time(a, b) ≤ latest(r). Let
R[a, t1, c, t2, b] be the set of all requests r ∈ R with origin(r) = a and destination(r) = b

which can be serviced by an indirect flight through airport c departing from a at time t1 and
departing from c at time t2, i.e., such that t1 ≥ earliest(r), t1+relocate time(a, c) ≤
t2 and t2 + flight time(c, b) ≤ latest(r). Furthermore, let R[a, t] be the set of all
requests r ∈ R with origin(r) = a which can be serviced by a flight starting at time t,
i.e., R[a, t] = ∪b∈AR[a, t, b] ∪ (∪c∈A:c 6=a∧c 6=b,t′≥tR[a, t, c, t′, b]).

Stand-By Nodes. For every airport a ∈ A and every instant t ∈ Tj(a) define a node
Sj(a, t). This node models that jet j is idle, or in stand-by mode, that is, without any
passengers onboard, and ready to take off at airport a at time t.

Gate Nodes. For every pair of airports a, b ∈ A and every instant t ∈ Tj(a) define
a node Gj(a, t, b). This node models that jet j will depart from airport a to airport b at
time t.

Direct Loading Nodes. For each t ∈ Tj(a), and each r ∈ R[a, t, b] node DLj(a, t, b, r)
models that request r will be satisfied with a direct flight on jet j departing at time t.

Indirect Loading Nodes. For each t1 ∈ Tj(a), t2 ∈ Tj(c), and each r ∈ R[a, t1, c, t2, b]
node ILj(a, t1, c, t2, b, r) models that request r will be satisfied indirectly by jet j flying
from airport a to airport c at time t1, and then flying from airport c to airport b at time
t2.

Terminal Nodes. Let h = home base(j), t1 = jet begin(j), and t2 = jet end(j).
Let T b

j ≡ Sj(h, t1) and T e
j ≡ Sj(h, t2). Nodes T b

j and T e
j are called the terminal nodes for

jet j.

4.1.2 Arcs

Idle Arcs For every airport a ∈ A and every pair of time instants t1, t2 ∈ Tj(a) such that
t2 > t1 put an arc from Sj(a, t1) to Sj(a, t2).

Departure Arcs For every pair of airports a, b ∈ A and every time instant t ∈ Tj(a)
put an arc from Sj(a, t) to Gj(a, t, b).

Loading Arcs For every pair of airports a, b ∈ A, every time instant t ∈ Tj(a),
and every service request r ∈ R[a, t, b] introduce an arc from Gj(a, t, b) to DLj(a, t, b, r).
Likewise, for every a, b, c ∈ A, every t1 ∈ Tj(a), t2 ∈ T (j, c), and every r ∈ R[a, t1, c, t2, b]
put an arc Gj(a, t1, b) to ILj(a, t1, c, t2, b, r).

Aggregation Arcs For each pair of requests r1, r2 ∈ R[a, t, b] such that r1 < r2 intro-
duce an arc from DLj(a, t, b, r1) to DLj(a, t, b, r2). For each request r1 ∈ R[a, t1, b] and
request r2 ∈ R[a, t1, b, t2, c] introduce an arc from DLj(a, t1, b, r1) to ILj(a, t1, b, t2, c, r2).

10

For each pair of requests r1, r2 ∈ R[a, t1, b, t2, c] such that r1 < r2 put an arc from
ILj(a, t1, b, t2, c, r1) to ILj(a, t1, b, t2, c, r2). (Note that by design aggregation of direct
flights happens before aggregation of indirect flights.)

Relocation Arcs For each pair of airports a, b ∈ A and every pair of time instants
t1 ∈ Tj(a), t2 ∈ T (j, b) such that t2 = ⌈t1 + relocate time(a, b)⌉ put an arc from
Gj(a, t1, b) to Sj(b, t2).

Direct Flight Arcs For each pair of airports a, b ∈ A, each time instant t1 ∈ Tj(a),
and each request r ∈ R[a, t1, b] put an arc from DLj(a, t1, b, r) to Sj(b, t2), where t2 =
⌈t1 + relocate time(a, b)⌉.

Indirect Flight Arcs For each triple of airports a, b, c ∈ A, time instant t1 ∈
Tj(a), time instant t2 ∈ Tj(b), and each request r ∈ R[a, t1, b, t2, c] put an arc from
ILj(a, t1, b, t2, c, r) to Gj(b, t2, c).

4.1.3 A Small Example

Consider a single jet problem instance defined by airports A = {a, b, c}, and assume that
flight time(a, b) = 3, flight time(b, c) = 3, and flight time(a, c) = 5. Suppose that
turn around(·) = 1 for all airports, and that we need to satisfy the requests given in
Table 1. An example of the corresponding individual jet network is given in Figure 2.

Table 1: Flight requests

r origin(r) earliest(r) destination(r) latest(r)

r1 a 1 b 5

r2 a 1 c 8

r3 b 4 c 9

Figure 3 depicts two possible itineraries for the jet. In the first itinerary, the jet satisfies
request r1 by means of a direct flight from a to b, and then deadheads from b to airport
c. In the second itinerary, the jet satisfies requests r1, r2 and r3. To do this, the jet picks
up r1 and r2 at airport a, drops off r1 and picks up r3 at airport b, and then drops off r2

and r3 at airport c.

4.1.4 Observations

Before describing the multi-commodity network flow formulation, we highlight some im-
portant characteristics of the individual jet networks. First, and most importantly, the
individual jet networks are acyclic. Furthermore, every feasible itinerary for jet j corre-
sponds to a path from node T b

j to node T e
j in the individual jet network, but the converse

11

t=7

t=4

t=1

t=8

t=5

t=2

t=9

t=6

t=3

t=10Airport c S(c, 7) S(c, 8) S(c, 9) S(c, 10)

Airport b S(b, 4) S(b, 5) S(b, 6)

G(b, c) G(b, c) G(b, c)

Airport a S(a, 1) S(a, 2) S(a, 3)

G(a, b) G(a, c) G(a, b) G(a, c) G(a, c)

DL(r1)

IL(r2)

DL(r1)

IL(r2)

DL(r2) DL(r2) DL(r2)

DL(r3) DL(r3) DL(r3)

Figure 2: Individual Jet Network

is not always true. That is, not every path going from T b
j to T e

j corresponds to a feasible

itinerary. A path from T b
j to T e

j will always satisfy conditions (R1), (R2), and (R6) as
these are explicitly modeled in the network. However, conditions (R3), (R4), and (R5)
may not be satisfied by every path, and a path from T b

j to T e
j may satisfy a request more

than once.

4.2 A Multi Commodity Network Flow Formulation

A solution to the dial-a-flight problem consists of a set of feasible itineraries, one for each
jet j ∈ J , satisfying all of the service requests r ∈ R at minimum cost. We formulate
this problem as a network flow based integer program. For each jet j ∈ J we formulate
a min-cost flow problem in which one unit of flow is sent from node T b

j to T e
j in the

corresponding individual network, adding side constraints to ensure that each individual

12

t=7

t=4

t=1

t=8

t=5

t=2

t=9

t=6

t=3

t=10Airport c S(c, 7) S(c, 8) S(c, 9) S(c, 10)

Airport b S(b, 4) S(b, 5) S(b, 6)

G(b, c) G(b, c) G(b, c)

Airport a S(a, 1) S(a, 2) S(a, 3)

G(a, b) G(a, c) G(a, b) G(a, c) G(a, c)

DL(1)

IL(2)

DL(1)

IL(2)

DL(2) DL(2) DL(2)

DL(3) DL(3) DL(3)

Figure 3: Two possible itineraries in the jet-network

jet itinerary satisfies constraints (R3)-(R5). Then, a constraint is generated which links
all of these network flow problems together by imposing that all requests must be satisfied
exactly once.

Let Vj and Ej denote the set of all nodes and arcs in the individual jet network
corresponding to each j ∈ J . For each arc e ∈ Ej define a binary variable,

xe =

{

1 if jet j uses arc e,
0 otherwise.

For each individual jet network (Vj , Ej) with j ∈ J , we require that a single unit
of flow must go from node T b

j to node T e
j by imposing the network flow conservation

13

constraints (where tail(e) and head(e) denote the tail and the head of arc e)

∑

e∈Ej :tail(e)=T b
j

xe = 1 ∀j ∈ J

∑

e∈Ej :head(e)=T e
j

xe = 1 ∀j ∈ J

∑

e∈Ej :head(e)=v

xe =
∑

e∈Ej :tail(e)=v

xe ∀v ∈ Vj \ {T
b
j , T e

j } ∀j ∈ J .

Next, we consider the side constraints.
Capacity (R3) Consider airports a, b ∈ A and a time instant t1 ∈ T . To each

arc e ∈ Ej into a direct loading node DLj(a, t1, b, r), into an indirect loading node
ILj(a, t1, b, t2, c, r), and into an indirect loading node ILj(c, t3, a, t1, b, r) assign consump-

tion q
a,b,t1
e = passengers(r), and to all other arcs e ∈ Ej assign consumption q

a,b,t1
e = 0.

For each jet and each flight segment, we impose a jet capacity constraint

∑

e∈Ej

qa,b,t
e xe ≤ capacity(j) ∀a, b ∈ A, ∀t ∈ T , ∀j ∈ J

limiting the number of passengers on the flight.
Weight (R4) Similarly, we assign consumption w

a,b,t1
e = weight(r) to each arc e ∈

Ej into a direct loading node DLj(a, t1, b, r), into an indirect loading node ILj(a, t1, b, t2, c, r),

and into an indirect loading node ILj(c, t3, a, t1, b, r), and q
a,b,t1
e = 0 to all other arcs

e ∈ Ej . Then, for each jet and each flight segment, we impose a jet weight constraint

∑

e∈Ej

wa,b,t
e xe ≤ max weight(j) ∀a, b ∈ A, ∀t ∈ T , ∀j ∈ J

limiting the total weight on the flight.
Flying Time (R5) To each arc e ∈ Ej into a gate node Gj(a, t, b) assign flying time

fe = flight time(a, b). To all other arcs assign flying time fe = 0. For each jet, we
impose a flying time constraint

∑

e∈Ej

fexe ≤ max fly time(j) ∀j ∈ J

limiting the amount of time it is in the air.
We also need a constraint to link together all of the individual jet networks and to

impose that all requests are satisfied.

14

Request Satisfaction Consider a request r ∈ R. To each loading arc e ∈ E involving
request r assign sr

e = 1. To all other arcs assign sr
e = 0. We impose the constraint

∑

j∈J

∑

e∈Ej

sr
exe = 1 ∀r ∈ R

which guarantees that each request must be satisfied exactly once.
Since each Individual Jet Network is acyclic, we need not be concerned about the

existence of sub-tours (or closed directed cycles) in the solution. That is, every feasible
solution to the constraints defined above must consist of |J | paths, one for each jet j ∈ J
going from node T b

j to T e
j .

Finally, the objective function is defined as a linear function on the flights made by
each individual jet.

Objective Function To each arc e ∈ E into a gate node Gj(a, t, b) assign cost ce =
flight cost(a, b). To all other arcs assign cost ce = 0. These costs are used to specify
the objective function of the problem, which is

min
∑

j∈J

∑

e∈Ej

cexe.

We have chosen to use the flying time fe for arc e as a proxy for the cost ce because
operational costs primarily depend on fuel consumption. (Pilots are salaried employees.)
It is a proxy because fuel consumption is not a linear function of the flying time. Planes
use more fuel during take off and landing and fuel use also depends on the weight of the
plane (determined by the people and fuel aboard).

Aggregating jets

The multi-commodity network flow model presented above has a time-discretized network
for each jet and models feasible jet itineraries as paths through these networks. Observe
that for all jets j ∈ J with home base(j) = a, jet begin(j) = t1, and jet end(j) = t2
the networks (Vj , Ej) are identical. If we define jet class J [a, t1, t2] to be the set of jets with
home base(j) = a, jet begin(j) = t1, and jet end(j) = t2, then rather than modeling
the itineraries of jets in jet class J [a, t1, t2] as paths in separate networks, we can model
them as a flow through a single network. This reduces the number of the networks as well
as the symmetry in the formulation and may therefore make the problem easier to solve.
The disadvantage of working with a flow formulation instead of a path formulation is that
side constraints can only be imposed in aggregate form. For example, we can only impose
that the combined flying time of the jets in a jet class does not exceed a certain limit.
We can no longer limit the flying time of an individual jet. There are ways to deal with
these issues, but all of them reduce the potential benefits of the flow formulation. Initial
computational experiments with the flow formulation showed only minor improvements.
Therefore, the flow formulation has not been pursued in any depth.

15

5 Constructing the Network

The network flow formulation described in the previous section gets very large very quickly.
However, by being careful and intelligent it is possible to create a much smaller formulation
that still contains an optimal solution. In addition to being smaller, the formulation
may also result in a tighter linear programming relaxation. The creation of this smaller
formulation proceeds in two phases. In the first phase, we carefully construct the individual
jet networks, trying to prevent the inclusion of nodes and arcs that will not be part of an
optimal solution. In the second phase, we judiciously analyze substructures in the network
(some times in combination with side constraints) to see if we can reduce its size.

5.1 The Rolling Forward Algorithm

To ensure the creation of an individual network of acceptable size, we exploit the following
three observations:

(P1) Feasibility considerations may lead to the elimination of arcs. Each jet is
constrained by the earliest time at which it can depart from its home base and the latest
time by which it must return. Also, each jet has constraints limiting its flying time and the
number of passengers and weight aboard at any time. Therefore, for any given jet j ∈ J ,
many of the arcs in the individual jet network as defined in the previous section cannot
actually be used in any feasible path going from T b

j to T e
j . For example, consider an airport

a ∈ A and time instants t1 < t2 ∈ Tj(a). In order for an idle arc connecting standby nodes
Sj(a, t1) and S(a, t2) to be usable, the following sequence of events must be possible: the
jet must be able to fly from its home base to airport a and complete the turnaround by
time t1, fly back to its home base from airport a taking off at time t2, while satisfying
the flying time limit and staying within its duty period. As another example consider two
airports a, b ∈ A, a time instant t ∈ Tj(a), and two requests r1, r2 ∈ R[a, t, b]. In order for
an aggregation arc connecting direct loading nodes DLj(a, t, b, r1) and DLj(a, t, b, r2) to
be usable, the following sequence of events must be possible: the jet must be able to fly
from its home base to airport a and complete the turnaround by time t, fly to airport b,
turnaround, and have enough time to return to its home base from airport b within its duty
period. In addition, the combined number of passengers and weight of requests r1 and
r2 cannot be more than the passenger and weight limit, respectively, and the maximum
flying time cannot be exceeded.

(P2) Optimality considerations may lead to the elimination of nodes and arcs.
Given that costs are a function of the flights in an itinerary, flights have to occur for one
of the following reasons: (a) to pick up a passenger, (b) to drop off a passenger, or (c) to
return to the home base. Since we are assuming that a jet can fly between any pair of

16

airports, there is no need to make two consecutive flights without any passengers aboard.

(P3) Objective function characteristics may lead to the elimination of nodes
and arcs. If the cost of a flight does not depend on its departure time, then the costs
of itineraries that are identical except for flight departure times are the same. In such
situations, it suffices to construct individual jet networks in which at least one of these
itineraries can be found. We exploit this observation by only including flight arcs (direct
and indirect) in the individual jet networks corresponding to earliest possible departures.

Next, we describe how these observations can be used to construct a network for jet
j ∈ J consisting of nodes V̂j and arcs Êj contained in Vj and Ej, respectively, that still
contains at least one optimal solution. Because this algorithm constructs the resulting
graph in chronological order with respect to the time at which events take place, we call
it the Rolling Forward Algorithm.

The algorithm is initialized by setting V̂ := {T b
j }, Ê := ∅, and t = 0. For any given

t ∈ T , let V̂ [t] consist of the nodes in V̂ corresponding to events taking place at time t.
Whenever a node is added to the set V̂ , it is labeled unprocessed. The algorithm iterates
forward through time by selecting unprocessed nodes in V̂ [t] and processing them. When
V̂ [t] contains several nodes, they are processed in the following order: Standby nodes,
Gate nodes, Direct Loading nodes, and finally Indirect Loading nodes. Processing a node
v involves identifying all possible events that can directly follow the event represented by
node v, creating nodes representing these subsequent events (unless the network already
contains nodes representing these events), and adding arcs connecting v to these (new)
nodes. Once all nodes in V̂ [t] are processed, t is set to the next t′ > t such that V̂ [t′]
is non-empty. The algorithm proceeds in this way until all nodes in V̂ are processed.
Because the analysis of possible subsequent events is done using observations (P1), (P2),
and (P3), every node v in the constructed network will be such that it is in some feasible
path from T b

j to T e
j . Note that when processing nodes in V̂ [t], only nodes in V̂ [t′] with

t′ ≥ t are added.
To each airport, time instant pair (a, t), with a ∈ A and t ∈ T , we may possibly

add labels indicating that there are passengers arriving at their destination, or that there
are passengers arriving and connecting to their final destination(s). When the algorithm
begins, the pair (home base(j), jet begin(j)) is labeled as final-stop. All other pairs
(a, t) are unlabeled, but this can change as nodes are added to V̂j. The possible labels
are final-stop, and middle-stop(b), for all b ∈ A. Note that a pair (a, t) may have several
labels.

The processing of a node depends on the airport a, the time t, the labels defined at
(a, t), the time discretization, and the type of node. The details of the processing of nodes,
even though important for the overall success of the solution approach, are tedious and
repetitive. Therefore, they are presented in the appendix.

17

5.2 Time Discretizations

Executing the optimization algorithm with Tj(a) equal to all integer points in [0, 1440],
corresponding to the minutes in a 24-hour day, typically results in the generation of an
excessively large network, even if the network is constructed carefully using the Rolling
Forward Algorithm. In this section, we discuss methods for generating customized dis-
cretizations strictly contained in [0, 1440]. This means that for each jet j ∈ J and for
each airport a ∈ A we need to define the set Tj(a) to be suitably small without sacrificing
our goal of finding high quality solutions. We will describe some heuristics which gave
the best empirical results. The starting point for all of our discretization schemes will be
to choose an integer parameter ∆ ∈ {1, . . . , 1440}, and, using this value, define a regular-
interval time discretization (0,∆, 2∆, ..., k∆), where k∆ ≤ 1440 and (k + 1)∆ > 1440. To
these time instants, we add three other types of time instants which capture key moments
during the day:

1. For each request r ∈ R and for j ∈ J that can feasibly satisfy request r, add the
earliest time t

j
r at which jet j can pick up the passengers in request r to Tj(a).

2. For each jet j ∈ J and each take-off time t at airport a in the best known feasible
schedule (usually generated by a heuristic before starting the optimization process),
add time instant t to Tj(a). This ensures that the best known feasible schedule can
be represented in the resulting network.

3. For each airport, add additional time instants (typically integer multiples of ⌈∆
2 ⌉)

during congested periods of the day, i.e., periods of the day with a high number of
anticipated take-offs.

5.3 Aggregation

Even though the network formulation is judiciously constructed it may still be large, may
have many side constraints, and may have a weak linear programming relaxation. In order
to reduce the size of the formulation and to increase the strength of the linear programming
relaxation, we perform various aggregations.

The idea of aggregation is very natural and can be used in any network. It is especially
useful when there are tight side constraints. We will introduce our aggregation procedures
for general networks, and then discuss how these procedures apply to the dial-a-flight
network.

Consider a network N with nodes V and arcs A. Assume that there are k resources
(which are consumed additively), and let vector ra ∈ R

k
+ represent the amount of resources

consumed when traversing arc a ∈ A. Let R ∈ R
k
+ represent the total resources available,

and for each a ∈ A let xa be a binary variable indicating whether or not we use arc a.

18

Assume that we wish to find a min-cost flow of one integer unit from a node s ∈ V to a
node t ∈ V , such that the resource usage constraint

∑

a∈A

raxa ≤ R

is satisfied.
For each node v ∈ V , let δ(v) represent the set of all arcs incident to v. Define δ−(v)

(δ+(v)) as the set of all arcs in δ(v) whose head (tail) is v and let r−(v) (r+(v)) be such
that for each i ∈ 1, . . . , k, r−i (v) (r+(v)) represents the minimum consumption of resource
i required to get from node s to node v (node v to node t).

An iteration of the aggregation algorithm works as follows:

1. Choose a node v ∈ V .

2. Delete node v and all arcs in δ(v) from N .

3. For each arc e ∈ δ−(v) and each arc f ∈ δ+(v) define an arc ef such that its
tail coincides with the tail of e and its head coincides with the head of f . Define
ref = re + rf . If r−(tail(e)) + ref + r+(head(f)) ≤ R then add edge ef to N .

Consider a network N with nodes {A,B,C,D,E,M} connected to each other as de-
picted in Figure 4(a). Assume that aggregation algorithm chooses node M . In Figure 4(b)
we see what the resulting network looks like if the resource constraints do not allow us
to eliminate any arcs in Step 3 of the aggregation algorithm. In Figure 4(c) we see what
the resulting network may look like if the resource constraints do allow us to eliminate
arcs in Step 3 of the aggregation algorithm (in this case the elimination of arcs (A,C) and
(B,D)).

A

B

M

C

D

E
(a)

A

B

C

D

E
(b)

A

B

C

D

E
(c)

Figure 4: The Aggregation Algorithm

If the resource constraints are loose and few arcs are eliminated in Step 3 of the
aggregation algorithm, the size of the network may greatly increase. In fact, at each

19

iteration of the aggregation algorithm one could potentially be adding a quadratic number
of arcs relative to the number of arcs removed. As a precaution, we choose a parameter
κ ∈ N+ and the aggregation algorithm only deletes nodes v ∈ V such that |δ−(v)||δ+(v)| ≤
|δ−(v)| + |δ+(v)| + κ. Even for κ = 0, the aggregation algorithm can greatly reduce the
number of nodes and arcs by eliminating path-like and fork-like structures, which seem
to be very common in sparse networks such as the individual jet networks. For κ > 0
significant network size reductions can be obtained when resource limits are tight causing
many arcs to be eliminated in Step 3 of the aggregation algorithm. We have observed that
choosing Direct and Indirect Loading nodes in Step 1 of the aggregation algorithm can be
very effective due to the restrictive seat and weight capacity of the jets.

We define two arcs e1, e2 ∈ A to be parallel if there is no directed path in N containing
both e1 and e2. A set of arcs F ⊆ A is said to be parallel if every pair of arcs in F is
parallel. Furthermore, we define the support of constraint (Ri)

∑

e∈A(re)ixe ≤ Ri to be
Ai = {e ∈ A : (re)i 6= 0}. Without loss of generality we may assume that every arc e ∈ Ai

is such that (re)i ≤ Ri, else the arc can be removed from the network.
Now observe that if the supporting arcs Ai of a constraint (Ri) are parallel, then

constraint (Ri) can be dropped. This is due to the fact that when the set of arcs Ai is
parallel, any path from T b

j to T e
j includes at most one arc e from Ai and that arc will

satisfy (re)i ≤ Ri.
This observation can be exploited to eliminate side-constraints. Consider a set of nodes

U ⊆ V with the following properties: (1) every arc e ∈ Ai for some (Ri) has head(e) ∈ U ,
and (2) there does not exist a directed path starting and ending in U . Then, if one
aggregates every node in U , constraint (Ri) can be eliminated. This is true because when
we aggregate every node in U , every pair of arcs generated by the aggregation will be
parallel and these arcs define the support of constraint (Ri) in the aggregated network.

In the individual jet networks, capacity and weight side constraints can be eliminated
with relative ease by successive aggregation iterations. Recall from Section 4.2 that there
is one capacity constraint for each set of indices a, b ∈ A, t ∈ T , and j ∈ J , and for each
of these index sets, the edges with positive coefficients in the corresponding constraints
are such that they are incident to a few specific nodes in the network.

5.4 Multiple Shifts

In the application developed for DayJet, there are two pilot shifts per day, one morn-
ing shift and one afternoon shift (shift changes happen only at the home base). More
specifically, two time intervals are specified. Together the two time intervals cover the
operating hours in a day. Each time interval has a beginning time and an ending time.
The first time interval ends some time after the second time interval begins, i.e., the time
intervals overlap. The first time interval has to contain the morning shift and the second
time interval has to contain the afternoon shift. The change in the problem is that now

20

a jet must return to its home base sometime between the beginning of the second time
interval and the ending of the first time interval so that there may be a pilot change. Pilot
changes are assumed to be quick, i.e., they don’t take any longer than the turnaround
time at the home base, and are allowed to occur while there are connecting passengers
on board. After pilots are swapped, it is required that the jet returns to the home base
before the second shift ends. Also, the maximum flying time constraint is imposed for
each individual shift since the FAA regulation is intended to limit the total daily flying
hours of individual pilots.

In order to deal with the shift change, it suffices to use two copies of the individual jet
network for each jet (one for each shift), and linking each of these by arcs going through
the home base in the time window during which pilot changes must take place. The
same basic ideas used to build the rolling forward algorithm can be modified to take into
account the pilot changes. One simply must be careful to enumerate all possible cases by
which the shifts can change at the home base. Given that the methodology is exactly the
same, and that the notation and case analysis required for the two shift case is much more
extensive, we will not go into details. However, given the relevance of the two-shift model
to the actual application, we will report computational results for two shifts rather than
just one.

6 Computational Results

In order to assess the value of the proposed multi-commodity network flow formulation and
the effectiveness of the rolling forward algorithm, the flexible discretization approach, and
the aggregator, we performed a series of computational experiments on instances provided
by DayJet.

DayJet provided three sets of 23 instances. Each instance consists of a list of service
requests covering 17 airports in the southeastern United States. In addition, DayJet pro-
vided for each instance the best feasible schedule generated by their internally developed
and proprietary heuristic, which they developed to determine whether requests could be
accepted. In the first set of instances, there is a fleet of 8 jets and an average of 81.36
requests with an average of 101.10 passengers. In the second set of instances, there is a
fleet of 6 jets and an average of 65.73 requests with an average of 80.95 passengers. Finally,
in the third set of instances, there is a fleet of 4 jets and an average of 43.40 requests with
an average of 53.56 passengers.

All the computational experiments were conducted on a cluster of 2.4 ghz Dual AMD
250 computers with 4 GB of RAM each. The source code was written in the C program-
ming language, compiled with gcc version 3.4.3, and executed in Red Hat Enterprise Linux
ES, release 4. All linear and integer programs were solved using CPLEX version 9.0.

Given the fact that a feasible schedule is available for each instance, our primary

21

interest is evaluating whether our technology is able to obtain improved solutions in a
reasonable amount of time. Even though our technology is capable of finding an optimal
solution and proving its optimality, it is unlikely that this can be accomplished in an
acceptable amount of time for larger instances, therefore our focus is on improving given
feasible schedules. This focus is reflected in the presentation of computational results,
where we show improvements over the best known feasible schedule. Starting with a
feasible solution definitely helps the integer program because the feasibility problem is
itself difficult and without the upper bound provided by a feasible solution the search tree
might be larger.

The goal of our computational experiments is to gain an understanding of (1) the
quality of the formulation obtained by the Rolling Forward algorithm (2) the impact of
the discretization scheme that is used (3) the impact of the network aggregation techniques,
and, foremost, (4) can the technology significantly improve the solutions obtained by the
DayJet heuristic in a reasonable amount of time.

The results of the computational experiments are presented in Tables 2-4. A time
limit of 4 hours was imposed on the solution time of each integer program with optimality
tolerance set to 0.01%. Linear programs at root nodes were solved using the barrier
algorithm. Pseudo reduced cost branching was used and the up branch was always explored
first. CPLEX’ heuristics were turned off. Finally, the value of the schedule produced by
the DayJet Corporation heuristic was provided as an initial upper bound.

For the base experiment, we constructed the jet networks using the Rolling Forward
Algorithm with the most basic time discretization (i.e., ∆ = 1440, which means only the
“special” time instants) and without using the Aggregation Algorithm. The results are
shown in Table 2, which gives the problem set used (PSET), the fleet size (JETS), the
average percentage improvement over the initial solution after 4 hours of computation
(IMPROVE), the average percentage gap between the best upper and lower bounds after
4 hours of computation (LP-GAP), the number of instances for which we were able to
find an improving solution (FEAS), and the number of instances for which we were able
to complete the search (OPT).

Table 2: Results for the base experiment.

PSET JETS IMPROV LP-GAP FEAS OPT
1 8 6.16 26.20 11 0
2 6 7.88 12.81 20 3
3 4 6.02 4.61 17 15

We observe that even with this basic formulation, we are able to obtain improved
schedules for many instances and that the average reduction in flying time is substantial,
between 6 and 8 percent. On the other hand, the remaining integrality gaps after four
hours of computing are still quite large, especially for the larger instances.

22

Next, we evaluate the impact of the aggregation algorithm and analyze how this impact
varies based on how aggressively we delete nodes. For each problem set, we test several
different values of the parameter κ, which controls how aggressively we are with deleting
nodes. In addition, we introduce a special level of aggregation, denoted by “noGL,” in
which we contract all gate and loading nodes, regardless of their in and out degrees.

The results are shown in Table 3. In addition to the information provided for the
base experiment, we include the level of aggregation (AGG), i.e., the parameter κ, the
number of columns in the formulation after aggregation relative to the number of columns
in the formulation before aggregation (COLS), the number of rows in the formulation after
aggregation relative to the number of rows in the formulation before aggregation (ROWS),
and the number of non-zeros in the formulation after aggregation relative to the number
of non-zeros in the formulation before aggregation (NZS).

Table 3: Aggregation

PSET AGG IMPROV LP-GAP ROWS COLS NZS FEAS OPT
1 0 6.16 26.20 100.00 100.00 100.00 11 0

2 8.87 18.86 41.77 72.10 91.30 15 0
4 11.52 13.79 36.13 73.21 99.48 20 1
6 11.84 12.85 34.15 75.42 106.71 21 1
8 12.90 10.95 32.75 78.80 116.26 22 2
10 13.68 9.59 32.08 81.57 124.03 22 2
12 13.77 9.20 31.60 84.49 132.03 22 2
14 14.62 7.85 31.27 87.17 139.32 23 3
16 14.05 8.27 30.96 90.35 147.97 22 3

“noGL” 15.73 2.99 29.21 293.95 914.64 22 7
2 0 7.88 12.81 100.00 100.00 100.00 20 3

2 8.41 9.76 41.62 70.82 88.73 22 6
4 9.12 7.48 36.80 71.62 95.63 23 8
6 9.50 6.3 35.20 73.34 101.35 23 9
8 9.57 5.42 34.01 76.21 109.63 23 12
10 9.58 5.18 33.45 78.49 115.96 23 14
12 9.67 4.91 33.09 80.61 121.70 23 13
14 9.77 4.64 32.78 82.60 127.30 23 15
16 9.74 4.40 32.57 84.96 133.76 23 14

“noGL” 10.00 2.11 31.36 158.19 399.62 23 16
3 0 6.02 4.61 100.00 100.00 100.00 17 15

2 6.02 4.17 42.41 70.97 88.44 17 16
4 6.02 3.36 38.40 71.40 93.96 17 16
6 6.02 2.88 37.03 72.70 98.24 17 16
8 6.02 2.15 36.15 74.74 104.12 17 16
10 6.02 2.02 35.72 76.03 107.71 17 17
12 6.02 1.67 35.36 78.11 113.21 17 17
14 6.02 1.67 35.16 79.44 116.70 17 17
16 6.02 1.57 35.01 80.74 120.38 17 17

“noGL” 6.02 1.01 34.40 101.64 189.45 17 17

The impact of the Aggregation Algorithm is most apparent in the first problem set,
i.e., for the larger instances. In fact, for this problem set, using the “noGL” level of

23

aggregation results in an improved solution for 22 out of the 23 instances compared to
only 11 improved solutions without aggregation, and an average reduction of flying time
of 15.73%, which is more than twice the reduction obtained without aggregation (6.16%).
Furthermore, we see that the reductions in flying time increase gradually from 6.16% to
15.73% as we increase the level of aggregation and we observe a similar change, although
more pronounced (from 26.2% to 2.99%), for the decrease in the integrality gap. The fact
that the decrease in integrality gap is more pronounced indicates that aggregation not only
improves the IP solutions found, but also the LP solutions found. This same phenomenon
can be observed for the second and third problem sets. In the third problem set, with the
smallest instances, there is the least amount of change. In fact, the aggregation does not
increase the number of instances for which an improvement is found and the reduction
in flying time remains the same. Only the integrality gap becomes smaller (reduces from
4.61% to 1.01%). This suggests that the quality of the schedules produced by the DayJet
heuristic degrades as the instances become larger, thus leaving more room for improvement
by our optimization technology. In fact, we believe that for the third problem set, we have
produced the optimal schedule for all instances, which means that the DayJet heuristic
found the optimal schedule for six instances. It is important to note that while the use
of the Aggregation Algorithm results in improved performance it comes at price. The
problem size increases, especially in terms of number of non-zeros, when the aggregation
level increases, which affects the time it takes to solve linear programs.

The time it takes to solve linear programs during the search, especially the time it
takes to solve the linear program at the root, may affect the time it takes to reach a
first or substantially improved solution. This time is important as we are also developing
parallel local search technology to solve large-scale instances (see Espinoza et al. [18]).
To get some insight into how quickly improved solutions are obtained, we conducted an
experiment in which the running time of the search was limited to 5, 15, and 30 minutes.
The results are given in Table 4.

The results show that even if we allow only a limited amount of time we are able to
find improvements, but that there is a clear qualitative difference between the improved
solutions found after 5, 15, and 30 minutes. Furthermore, there is no longer a gradual
monotonic change in the number of instances for which an improvement is found and
in the reduction of flying time when we increase the level of aggregation. In fact, for
Problem Set 1, the largest number of instances for which an improvement is found occurs
with aggregation level 12 instead of with “noGL.” This is probably due to the fact that a
larger part of the search space can be explored due to faster linear programming solving.

In the final experiment, we analyze the importance of the selected time discretization.
We chose aggregation level 10 for all experiments and as before a time limit of 4 hours
was imposed. The results are presented in Table 5. The second column (DISC) specifies
the discretization parameter ∆ used.

At first glance, the results may appear counterintuitive as decreasing the level of gran-

24

Table 4: Time Limit

PSET AGG 5 minutes 15 minutes 30 minutes
IMPROV FEAS OPT IMPROV FEAS OPT IMPROV FEAS OPT

1 0 .00 0 0 .26 1 0 3.05 5 0
4 2.72 4 0 4.57 7 0 7.80 13 0
8 3.48 4 0 6.54 10 0 10.03 18 2
12 4.46 7 0 7.77 12 0 11.76 20 1
16 3.97 6 2 8.19 14 3 10.77 17 3

“noGL” 4.70 6 4 7.65 10 5 12.44 18 6
2 0 3.33 9 2 4.71 12 2 5.52 12 2

4 5.97 15 3 6.99 18 4 8.22 18 4
8 7.30 19 6 7.88 21 8 8.50 21 8
12 7.30 19 9 8.24 22 10 9.35 22 10
16 7.56 19 10 8.55 22 12 9.03 22 12

“noGL” 8.68 21 12 9.93 23 13 9.96 23 13
3 0 4.43 17 12 4.45 17 13 4.45 17 15

4 4.45 17 14 4.45 17 16 4.45 17 16
8 4.45 17 15 4.45 17 16 4.45 17 16
12 4.45 17 16 4.45 17 16 4.45 17 17
16 4.45 17 16 4.45 17 16 4.45 17 16

“noGL” 4.45 17 16 4.45 17 16 4.45 17 17

ularity does not lead to improved solutions. In fact, the worst results are obtained with
the finest level of discretization (note that for problem set 1 with discretization level 1 an
improvement was found for only one of the 23 instances!) and the level of discretization
does not seem to have much of an impact for discretization levels greater than or equal
to 15 (for problem set 1 the improvements found range between 13.05 and 14.39). This
demonstrates, most likely, that the set of “special” time instants added to the time in-
stants of the discretization are crucial to obtaining high quality schedules. The results
also clearly demonstrate that the problem size explodes at discretization levels of 5 or
less. Given a limited amount of computing time, it appears that a smaller formulation
more than makes up for the added precision in finer discretizations and allows us to find
improving solutions more often and with larger reductions in flying time.

DayJet expects to operate with a fleet of 300 jets by 2008 with an expectation that the
fleet should be several times larger by 2011. Therefore, DayJet needs schedule optimiza-
tion technology that can efficiently handle instances of the dial-a-flight problem involving
hundreds of jets and thousands of requests. The integer multi-commodity network flow
model with side constraints discussed above cannot be used directly to satisfy their needs.
In Part II ([18]), we demonstrate that by embedding this core optimization technology in
a parallel local search scheme, it is possible to produce high-quality solutions efficiently
for large-scale real-life instances.

25

Table 5: Discretization

PSET DISC IMPROV LP-GAP NZ COLS ROWS FEAS
1 1 .85 18.01 771.04 797.85 765.30 1

5 9.97 14.83 238.64 242.31 239.10 15
10 11.81 12.49 164.35 166.11 164.98 19
15 13.88 9.66 141.94 142.80 142.36 22
30 13.05 10.71 118.34 118.59 118.55 20
60 13.56 9.93 108.24 108.36 108.40 21
120 14.39 8.80 103.58 103.78 103.70 22
240 13.89 9.43 101.90 102.10 101.96 21
1440 14.30 8.87 100.00 100.00 100.00 22

2 1 6.26 10.04 923.26 980.63 917.70 16
5 8.96 6.67 277.48 287.79 279.81 21
10 9.25 6.39 184.24 188.59 185.66 22
15 9.93 5.25 155.15 157.58 155.93 23
30 9.55 5.53 123.61 124.77 124.14 22
60 9.52 5.38 111.06 111.33 111.22 23
120 9.28 5.64 104.92 105.01 104.98 22
240 9.68 5.11 102.59 102.73 102.64 23
1440 9.58 5.18 100.00 100.00 100.00 23

3 1 6.46 1.93 1075.14 1153.60 1061.50 17
5 6.45 1.88 324.88 340.28 328.39 17
10 6.13 1.99 210.23 215.40 211.61 17
15 6.13 2.06 174.21 176.74 175.20 17
30 5.75 1.96 132.14 132.24 132.25 17
60 5.71 2.03 115.61 114.87 115.22 17
120 5.68 2.06 106.67 107.03 106.88 17
240 5.68 2.02 103.97 104.01 103.95 17
1440 5.68 2.07 100.00 100.00 100.00 17

Acknowledgement

We would like to thank the DayJet corporation for financial support of this research and
data, and the DayJet team consisting of Ed Iacobucci, Alex Khmelnitsky, Bruce Sawhill,
Bob Spaulding, and Eugene Taits for many valuable and stimulating discussions.

References

[1] Avantair. http://www.avantair.com.

[2] Alpha Flying. http://www.planesense.aero/whoweare.htm

[3] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic con-
straint programming: A study of online multi-choice knapsack with deadlines. Proc.
Internat. Conf. Constraint Programming (CP-2001), 6176, 2001.

26

[4] R. Bent and P. van Hentenryck. A two-stage hybrid algorithm for pickup and delivery
problems with time windows. Lecture notes in computer science 2833. Proc. Internat.
Conf. Constraint Programming (CP-2003), 123-137, 2003.

[5] R. Bent and P. van Hentenryck. Scenario-Based Planning for Partially Dynamic Vehicle
Routing with Stochastic Customers. Operations Research 52, 977-987, 2004.

[6] Bent R., P. Van Hentenryck 2005. A two-stage hybrid algorithm for the pickup and de-
livery vehicle routing problem with time windows. Computers and Operations Research
33, 875-893.

[7] Borndorfer, R., M. Grotschel, F. Klostermeier, C. Kuttner 1997. Telebus Berlin: Vehi-
cle Scheduling in a Dial-a-Ride System. Preprint SC 97-23. Konrad-Zuse-Zentrum fur
Informationstechnik Berlin.

[8] A. Campbell and M. Savelsbergh. Decision Support for Consumer Direct Grocery
Initiatives. Transportation Science 39, 313-327, 2005.

[9] CitationShares. http://www.citationshares.com/

[10] J.-F. Cordeau. A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations
Research 54, 573-586, 2006.

[11] Cordeau, J.F., G. Laporte. 2003. The Dial-a-Ride Problem (DARP): Variants, Mod-
eling Issues and Algorithms. 4OR - Quarterly Journal of the Belgian, French, and
Italian Operations Research Societies 1, 89-101.

[12] J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M.W.P. Savelsbergh. Transportation
on Demand. In Handbooks in Operations Research and Management Science: Trans-
portation, 429-466, 2007.

[13] DayJet Corporation. www.dayjet.com.

[14] Dayjet Corporation. 2005. How to Keep Air Transportation Moving at the Speed of
Business. Whitepaper. www.dayjet.com.

[15] Desalniers, G., J. Desrosiers, A. Erdman, M.M. Solomon, and F. Soumis. 2002. VRP
with Pickup and delivery. In P. Toth and D. Vigo (eds.). The Vehicle Routing Problem,
SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 137-153.

[16] Dumas, Y., J. Desrosiers, F. Soumis. 1991. The Pickup and Delivery Problem with
Time Windows. European Journal of Operations Research 54, 7-22.

[17] Eclipse Aviation Corp. www.eclipseaviation.com.

27

[18] Espinoza, D., R. Garcia, M. Goycoolea, G.L. Nemhauser, M.W.P. Savelsbergh. 2006.
Per-Seat, On-Demand Air Transportation Part II: Parallel Local Search.

[19] Fallows, J. 2005. Fly Me to the Moon? No, but the Next Best Thing. The New York
Times, July 10.

[20] FlexJet. http://www.flexjet.com.

[21] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Arago, M. Reis, E. Uchoa and
R. F. Werneck. Robust branch-and-cut-and-price for the Capacitated Vehicle Routing
Problem. Mathematical Programming 106, 491-511, 2006.

[22] Hicks, R., R. Madrid, C. Milligan, R. Pruneau, M. Kanaley, Y. Dumas, B. Lacroix,
J. Desrosiers, and F. Soumis. 2005. ”Bombardier Flexjet Significantly Improves its
Fractional Ownership Operations.” Interfaces 35, 49-60.

[23] Keskinocak, P. and S. Tayur. 1998. ”Scheduling of Time-Shared Jet Aircraft,” Trans-
portation Science 32, 277-294.

[24] Linear Air. http://www.linearair.com.

[25] J. Lysgaard, A.N. Letchford and R.W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming 100, 423-445,
2004.

[26] Martin, C., D. Jones, P. Keskinocak. 2003. ”Optimizing on-demand aircraft schedules
for fractional aircraft operators”, Interfaces 33, 22-35.

[27] MarquisJet. www.marquisjet.com

[28] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science 40, 455-472,
2006.

[29] SATSair. www.satsair.com.

[30] Savelsbergh, M.W.P., M. Sol. 1995. The General Pickup and Delivery Problem. Trans-
portation Science 29, 17-29.

[31] Savelsbergh, M.W.P., M. Sol. 1998. DRIVE: Dynamic Routing of Independent Vehi-
cles. Operations Research 46, 474-490.

[32] United States Department of Transportation. 2003. America on the Go: US Business
Travel. www.bts.gov.

28

[33] P. van Hentenryck, R. Bent, and T. Vergados. Online Stochastic Reservation Sys-
tems. Second International Conference on the Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR-06),
2006.

[34] Xu, H., Z.L. Chen, S. Rajagopal, S. Arunapuram. 2001. Solving a Practical Pickup
and Delivery Problem. Transportation Science 37, 347-364.

[35] Yao, Y., W. Zhao, O. Ergun, and E. Johnson. ”Crew Pairing and Aircraft
Routing for On-Demand Aviation with Time Windows.” Available at SSRN:
http://ssrn.com/abstract=822265.

29

Appendix

Processing Standby Nodes

Consider a jet j at airport a at time t. Assume that this jet has no passengers on board
and that it is ready for take-off. There are two possible decisions regarding the jet: either
wait at airport a until some future time t′, or fly to some other airport.

If the jet waits, then we may assume it is doing so for one of two reasons: (i) it is
waiting to pick up some passenger whose origin is a, but whose earliest departure time is
greater than t, or (ii) it is currently at its home base and will not be operated anymore
during the day. Observe that we are applying (P3) when making these assumptions. There
is no reason for jet j to wait if after doing so it will only carry passengers available at time
t. If the jet is to only satisfy requests already available, it will do so immediately.

If the jet is to depart somewhere it will do so for one of three reasons: either (i) the
jet will relocate empty in order to pick up passengers at another airport, (ii) the jet will
load some passengers at this airport and take them somewhere (either their destination,
or some middle-stop where additional passengers could be picked up), or (iii) the jet will
pick up no more passengers during the day, and will relocate empty to its home base. Note
that here we can apply property (P2). Ideally, we would like to allow the jet to relocate
empty only if it has just arrived with passengers on board. This is where the labels come
into play. If (a, t) is labeled as a final-stop then there exists some itinerary in which jet j

arrives with passengers to airport a and is next ready to fly at t. In this case, relocation
without loading must be allowed at the node. Otherwise we can prohibit it.

Formally, this is done as follows. Consider a node Sj(a, t) to be processed.
1. Add an idle arc to model that the jet may wait for passengers not yet available for

pick-up. Let t2 be the next moment in time after t at which a new passenger is available
for pickup in airport a. Formally, let t2 = min{t′ > t : R[t′, a] \ R[t, a] 6= ∅}. If t2 exists,
then add (Sj(a, t), Sj(a, t2)).

2. If at the home base, add an idle arc connecting to the terminal node so as to allow
the jet to retire for the day. That is, if a is the home base of the jet, then add (Sj(a, t), T e

j).
3. Add departure arcs to allow satisfaction of requests whose origin is airport a. That

is, for every b ∈ A such that R[a, t, b] is non-empty, add (Sj(a, t), Gj(a, t, b)). For every
c ∈ A and t2 ∈ T such that R[a, t, b, t2, c] is non-empty, add (Sj(a, t), Gj(a, t, b)).

4. Add departure arcs allowing the jet to relocate after passengers have been dropped
off. That is, if (a, t) has a final-stop label, then add (Sj(a, t), Gj(a, t, b)) for every b ∈ A.

Processing Gate Nodes

Consider a jet j which is at airport a at time t1. Assume that it has been decided that this
jet will immediately fly to airport b. The next decisions correspond to which passengers

30

(if any) will be loaded.
If no passengers are to be loaded, then by (P2) we may assume that passengers have

just been dropped off. In this case we may further assume that the jet is either (i)
relocating in order to pick someone up at airport b, (ii) relocating to its home base in
order to finish up for the day, or (iii) taking indirect passengers to their destination. If the
jet is relocating (as opposed to dropping off indirect passengers) and not retiring for the
day, it will not fly again from b until some passenger is picked up there; that is, we can
assume the jet has no need to fly two consecutive relocation flights. Note that because of
(P2) we know that case (i) can only happen if (a, t1) has a final-stop label, and case (iii)
can only happen if (a, t1) has a middle-stop(b) label.

If passengers are to be loaded then either (i) all of them have destination b, or (ii)
there exists some airport c such that all of them have destination b or c. In case that we
decide to load passengers whose final destination is c, we must decide at what time to
depart from b. We may decide to take-off from b as soon as possible, or we may decide to
wait in order to pick up some passenger that become available later in the day at b.

Formally, this is done as follows. Consider a node Gj(a, t1, b) to be processed. Let
t2 = ⌈t1 + relocate time(a, b)⌉, i.e., the first time at which jet j will be available for
take-off from airport b after flying there from a at time t1. Let t+2 = min{t ∈ T (j, b) :
t ≥ t2 and R[b, t] is non-empty}, i.e., the first time (no earlier than t2) at which a request
becomes available for pick-up at airport b; if no such time exists, set t+2 = +∞.

1. Check if the jet should be allowed to take off without picking up any passengers. If
(a, t1) has a final-stop label, then add relocation arc (Gj(a, t1, b), Sj(b, t

+
2)) to model that

the jet may take off without having loaded any passengers, and will be ready at airport
b as soon as there are passengers available there (and no earlier). If (a, t1) has a middle-
stop(b) label, then add indirect direct flight arc (Gj(a, t1, b), Sj(b, t2)) to model that the
jet may take off without having loaded any passengers (in order to drop off connecting
passengers), and be ready at b as early as possible (in case it needs to relocate). Mark
(b, t2) as a final-stop if an arc was added.

2. Check if the jet can load any passengers that will fly directly to their destination.
For every request r ∈ R[a, t1, b] (if any), add loading arc (Gj(a, t1, b),DLj(a, t1, b, r)). By
this we are allowing jet j to load any request r whose origin is a, whose destination is b,
and which can be satisfied by the flight departing at t1.

3. Check if the jet can load any passengers that will fly indirectly to their destination.
Let Γ = {t2} ∪ {t > t2 : R[b, t] \ R[b, t − 1] is non-empty}, i.e., the time instants at which
new requests become available for pick-up at airport b. For every t3 ∈ Γ, every c ∈ A, and
every r ∈ R[a, t1, b, t3, c] (if any), add loading arc (Gj(a, t1, b), ILj(a, t1, b, t3, c, r)). Mark
(b, t3) as a middle-stop(c) if an arc was added.

4. If no arcs were added out of node Gj(a, t1, b), eliminate the node.

Processing Direct Loading Nodes

31

Consider a jet j which is at airport a. Assume it has been decided that: (i) j will fly
to airport b at time t1, and (ii) j will satisfy a request r whose origin is a and whose
destination is b. After these decisions have been made, it is possible to decide that (iii)
j will satisfy another request r2 whose origin is a and whose destination is b, (iv) j will
satisfy a request r2 whose origin is a and whose destination is not b, or (v) j will satisfy
no more requests and fly directly to b.

Formally, this is done as follows. Consider a node DLj(a, t1, b, r) to be processed. Let
t2 = ⌈t1 + relocate time(a, b)⌉, i.e., the first time at which jet j will be available for
take-off from airport b after flying there from a at time t1.

1. Model that we may wish to satisfy additional requests by direct flights. For every
request r′ ∈ R[a, t1, b] such that r′ > r, add loading arc (DLj(a, t1, b, r),DLj(a, t1, b, r

′)).
2. Model that we may wish to satisfy additional requests by indirect flights. Let

Γ = {t2} ∪ {t > t2 : R[b, t] \ R[b, t − 1] is non-empty}, i.e., the time instants at which
new requests become available for pick-up at airport b. For every t3 ∈ Γ, every c ∈ A and
every r′ ∈ R[a, t1, b, t3, c] (if any), add loading arc (DLj(a, t1, b, r), ILj(a, t1, b, t3, c, r

′)).
3. Model that we may not wish to satisfy requests with this flight. Add direct flight

arc (DLj(a, t1, b, r), Sj(b, t2)). Mark (b, t2) as a final-stop.

Processing Indirect Loading Nodes

Consider a jet j which is at airport a. Assume it has been decided that: (i) j will fly from
airport a to airport b at time t1, (ii) j will fly from airport b to airport c at time t2, and
(iii) j will satisfy a request r whose origin is a and whose destination is c. After these
decisions have been made, it possible to decide that (iv) j will satisfy another request r2

whose origin is a and whose destination is c, or (v) j will satisfy no more requests and fly
directly to b.

Formally, this is done as follows. Consider a node ILj(a, t1, b, t2, c, r) to be processed.
1. Model that we may wish to satisfy additional requests by indirect flights. For every

request r′ ∈ R[a, t1, b, t2, c] such that r′ > r, add loading arc (ILj(a, t1, b, t2, c, r), ILj(a, t1, b, t2, c, r
′)).

2. Model that we may not wish to satisfy more requests with this flight. Add indirect
flight arc (ILj(a, t1, b, t2, c, r), Gj(b, t2, c)). Mark (b, t2) as a middle stop(c).

32

