
Computing with multi-row Gomory cuts

Daniel G. Espinoza

Departamento de Ingenieŕıa Industrial, Universidad de Chile, Av. República 701, Santiago,

837-0439, Chile

Abstract

Recent advances on the understanding of valid inequalities from the infinite
group relaxation has opened the possibility of finding a computationally effective
extension to GMI cuts. In this paper, we investigate the computational impact
of using a subclass of minimally-valid inequalities from this relaxation on a wide
set of instances.

Key words: mixed integer programming, cutting planes, multiple constraints.
2000 MSC: 90C11,
2000 MSC: 90C57

1. Introduction

The most successful approach to solve general MIP today is branch and cut,
where general cutting planes are a crucial factor for the overall performance.
After the great success in the 90’s of using general purpose cutting planes such
as GMI cuts [10, 4], a great deal of research was devoted to extend those ideas to
find other families of general cuts that could consistently outperform GMI cuts.
However, results have been mixed, and although there are several extensions
that in theory are at least as good as GMI cuts, in practice they do not seem
to offer much advantage. Most of these extensions have focused on deriving
inequalities from the master cyclic group problem introduced by Gomory and
Johnson [12], which look at problems with a single linear constraint.

The theoretical importance of looking at multi-row relaxations has been
proved in a number of works. Cook et al. [5], show an example with infinite
Chvátal-Gomory rank (i.e. obtaining the convex hull of the integer points by
adding inequalities derived from one row relaxations is impossible). However,
Andersen et al. [2], prove that by looking at inequalities generated from two
row relaxations, the convex hull of the Cook-Kannan-Schrijver example, can be
obtained by adding a single cut. Yanjun Li and Jean-Philippe P. Richard [15]
extend this situation to higher dimension.

An interesting recent development has been the work of Cornuéjols and
Borozan [6] and Gomory [11]; who have proposed to look at the so-called infinite

Email address: daespino@dii.uchile.cl (Daniel G. Espinoza)

Preprint submitted to Operations Research Letters October 23, 2009

relaxation problem, which was also introduced by Gomory and Johnson [12]. A
first property of this relaxation, is that it considers several constraints at the
same time, thus including cuts as in [2]. Secondly, it focuses on the relation
between a few integer variables and many continuous variables at the same
time, this may be relevant, since most problems do have integer and continuous
variables. Cornuéjols and Borozan [6] show that any minimal valid inequality
for the relaxation can be related to maximal, convex, lattice-free polyhedra;
thus identifying relevant inequalities with simple geometrical entities, moreover
Cornuéjols and Margot [7] provide a description of all facets of the infinite (and
finite) relaxation with two constraints, while Dey and Wolsey [8] studied the
case when some other variables are integer.

To the best of our knowledge, no extensive computational test of the im-
pact of using cuts derived from this relaxation have been published. The main
contribution of this paper is to computationally test a wide set of lattice-free
sets; show that, at least in terms of root LP integrality gap, there is an ad-
vantage at looking at relaxations derived from more than two rows; provide a
fairer comparison of the different approaches; and show that some relaxations
are also very valuable in practice, not only improving the LP gap closed at the
root node, but also in speeding-up the overall branch and cut performance when
compared with CPLEX [13] defaults.

The rest of the paper is organized as follows. Section 2 presents the defi-
nition and basic results related to the infinite relaxation. Section 3 define the
basic ground sets used for generating valid inequalities. Section 4 explain the
ideas used to separate each family of inequalities, and selection rules for cut-
generation. Section 5 explain our experiments, settings, and results. Finally,
Section 6 presents our conclusions and further questions.

Throughout the paper the following notation is used: Given S ⊂ Rn, a full-
dimensional closed set, we denote S◦ its interior and ∂S := S \S◦ its boundary.

A preliminary version of the present paper was presented at the 13th inter-
national IPCO conference, Bertinoro (Italy) May 26-28, 2008 [9].

2. The infinite relaxation

Consider a general mixed integer program (MIP)

min
{

cx : Ax = b, x ∈ Rn+, xi ∈ Z∀i ∈ I
}

, (1)

where I ⊆ {1, . . . , n}, A ∈ Qm×n is of full row rank, c ∈ Qn, b ∈ Qm. Branch
and cut algorithms start by solving

min
{

cx : Ax = b, x ∈ Rn+
}

, (2)

the LP relaxation of (1), and obtain an optimal basic feasible solution satisfying

xB = f +
∑

(

rjxj : j ∈ N
)

,

where B is the set of basic variables satisfying B ⊆ {1, . . . , n}, |B| = m, N
is the set of non-basic variables defined as N = {1, . . . , n} \ B, and where

2

f, rj ∈ Qm,∀j ∈ N , f ≥ 0. The basic solution is x∗ = (xB , xN) = (f, 0), and
is an optimal solution to (1) if and only if x∗i ∈ Z,∀i ∈ I ∩ B. If not, then one
might try to find a valid inequality cutting off x∗ from the feasible region of (2).
For simplicity, we will assume that B ∩ I = B. One possibility is to consider
the following relaxation of the feasible region of (1):

Rf (r̃
i : i ∈ N) :=

{

(x′, s) ∈ Zm × RN+ : x′ = f +
∑

(r̃isi : i ∈ N)
}

, (3)

where r̃i = ri for i ∈ N \ I, r̃i = ri − ai for i ∈ N ∩ I for some fixed ai ∈ Zm.
Note that if f is fractional, then (f, 0) /∈ Rf (r̃

i : i ∈ N). This relaxation was
considered in [2, 11] for the case m = 2.

Gomory and Johnson [12] suggested relaxing (3) to an infinite-dimensional
space; following the notation in [6]; it can be described as:

Rf :=

(x, s) ∈ Zm × R
Qm

+ : x = f +
∑

r∈Qm

rsr, s with finite support

, (4)

This is called the infinite relaxation and its only parameter is f ∈ Qm. Note
that any valid inequality for (4) yields a valid inequality for (3), which in turn
can be transformed into a valid inequality for (1).

Borozan and Cornuéjols [6] studied minimal valid inequalities for (4), proving
the following:

Theorem 2.1 ([6]). If f /∈ Zq, then any minimal valid inequality that cuts off

(f, 0):
i. Is of the form

∑

finite ψ(r)sr ≥ 1.
ii. ψ is positive, sub-additive, homogeneous, convex and piecewise linear.

iii. If Bψ = {x ∈ Rp : ψ(x − f) ≤ 1}, then Bψ is convex, with no integral

point in its interior. Furthermore f ∈ Bψ.

iv. If ψ is finite, then ψ is a continuous non-negative homogeneous convex

piecewise linear function with at most 2q pieces.

v. If ψ is finite, then f ∈ Bψ
◦ and Bψ is a polyhedron of at most 2q facets,

and each of its facets contains an integral point in its relative interior.

3. Selecting a subclass of valid inequalities

3.1. The Sets:

Since we are interested in generating minimal inequalities, in the light of
Theorem 2.1, we restrict ourselves to families of bounded, maximal, lattice-free
polyhedra Bψ ⊂ Rn satisfying Theorem 2.1.v.

Although the characterization of all maximal lattice-free convex sets in the
plane is known [16], such a characterization is unknown for arbitrary dimensions.
For this reason we test three simple families.

Finally, note that for a valid inequality ψ, the set Bψ is the set of fractional
points around f forbidden by the inequality. This suggest that the volume of
Bψ may provide a quality measure of the strength of the implied cut.

3

Definition 3.1 (T1n). We define

T1n :=
{

x ∈ Rn : x ≥ 0, etx ≤ n
}

,

where e is the vector of all ones.

It is easy to see that T1n is defined by n+1 inequalities, each of them containing
one integer point in its relative interior; T1n

◦∩Zn = ∅; and its volume is nn/n!.
i.e. it is a bounded, convex, maximal, lattice-free set in Rn.

Definition 3.2 (Gn). We define

Gn := 1/2e+
{

x : δtx ≤ n/2, ∀δ ∈ {−1, 1}n
}

Note that Gn is just the cross polytope in Rn containing the 0-1 hypercube, it
is defined by 2n inequalities, each of them containing exactly one integer point
in its relative interior; and its volume is nn/n!. i.e. it is a bounded, convex,
maximal, lattice-free set in Rn.

Definition 3.3 (T2′n). We define

T2′n :=

x :
(Rj)

j−1
∑

i=1

xi ≤ xj , j = 1..n

(Rn+1) etx ≤ 2n − 1

,

and the vectors {vk,n}
n+1

k=1
where (vk,n)i = 0 if i < k, (vk,n)k = 2k(1− 2−n) and

(vk,n)i = 2i−1(1 − 2−n) if i > k.

It is easy to check that vk,n is the vertex of T2′n defined by the intersection of

all constraints but (Rk). Moreover, its volume is
(

2
n+1

2 − 2
1−n

2

)n

/n!, which is

considerable bigger than the volume of T1n as n grows.

Proposition 3.1. There is no point z ∈ Zn in the interior of T2′n and each

facet has an integer point in its relative interior.

Proof. Define T2n = T2′n + vo, where (vo)i = 1 − 2i−1. Since vo is an integer
vector, is enough to prove that T2n is lattice free and that each facet has an
integer point in its relative interior.

Note that T2n is the set of points x ∈ Rn satisfying
j−1
∑

i=1

xi − xj ≤ j − 1, for

j = 1, . . . , n and etx ≤ n.
We proceed by induction on n. By definition T21 = Conv Hull{0, 1}, thus

the statement holds for n = 1. Now, suppose it holds for n − 1. First, note
that (vo + vk,n)1 ∈ {0, 2(1 − 2−n)}, then projx1

(T2n) = [0, 2 − 21−n]. Define
S1 := ({x : x1 = 0} ∩ T2n ∩ Zn) and S2 := ({x : x1 = 1} ∩ T2n ∩ Zn). Then
T2n ∩ Zn can be re-written as S1 ∪ S2, but all points in S1 satisfy R1 at
equality. Moreover, all points in {(0, y) : y ∈ T2n−1 ∩ Zn−1} only satisfy R1
at equality. For points in S2, note that {x : x1 = 1} ∩ T2n = {x ∈ Rn : x =
(1, y), y ∈ T2n−1}, then, by our hypothesis, all integer points in S2 satisfy some
constraint of T2n. �

4

3.2. Properties of the selected families:

For the case n = 2, Cornuéjols and Margot [7] proved that, assuming f ∈
Bψ

◦, T12, T22 (called triangle inequalities in [2]) are facet defining for Rf , but
that G2 is not. However, it is easy to prove that a small perturbation of any of
the inequalities defining G2, makes the resulting inequality a facet of Rf . This
observation, and the limited numerical precision of floating point representation,
justify, from a practical point of view, overlooking the fact that G2 does not
define a facet of Rf for n = 2.

For n > 2, it is easy to extend the results of [7], and prove that all sets in
both T1n and T2n are facets of Rf . However, whether a similar extension can
be made for Gn, is unclear.

Note also that the sets T1n, T2n and Gn contain the 0-1 hypercube in Rn,
thus, if we rotate in 180 degrees any axis around 1

2
e, or if we permute variables,

we also obtain maximal lattice-free sets. Gn, is not affected by any of this trans-
formations; T1n generate 2n different sets; and T2n generate 2n(n−1)! different
sets. We will abuse notation, and call, each individual set a configuration, and
the family of sets will be denoted, for fixed n, Gn, T1n and T2n respectively.

4. Separating the inequalities

4.1. From lattice-free sets to cuts

Given a convex lattice-free set S, f ∈ S◦, by Theorem 2.1, if λ is such
that λr ∈ ∂S, then ψS(r) = 1/λ. In our case, each set S is given by a set
of inequalities {aix ≤ bi}

m
i=1, thus λ = min{λi : λi ≥ 0, i = 1, . . . ,m} where

λi := (bi − aif)/air, and where we assume that ±1/0 = ±∞. In other words,
ψS(r) = max{air/(bi − aif) : air ≥ 0, i = 1, . . . ,m}.

Given a cut, ax ≥ 1, we use as a quality measure 1/‖a‖1. Thus, given f
and a family of sets S, the problem of finding the best inequality, reduce to
computing a for all configurations and keep the best cut. Although the work
is exponential in n, for n small enough this is not a problem. The process of
iterating over {−1, 1}n was implemented using gray-code enumeration [14], and
the process of iterating over all permutations of n was implemented using the
plain changes algorithm [14]. The main advantage of these algorithms is that
the difference between one configuration and the next is small (no more than
two elements differ). Thus allowing to save part of previous computations.

4.2. Getting relevant relaxations from a tableau

An important problem is to choose an appropriate relaxation of the form (3).
In principle any set of tableau rows with integer basic variables, at least one of
them fractional, would provide a relaxation from where we can derive a sepa-
rating cut. In our implementation, given a target number of tableau rows k,
we sort all integer variables by fractional value, and compute the associated
tableau row for the variable. This tableau is computed as a linear combina-
tion of the original constraints. Tableau rows considered numerically unstable,

5

are discarded from the list. We iterate until no more fractional variables are
available, or the target number of tableau rows k has been selected.

Once a set of tableau-rows has been selected, we need to define the coeffi-
cients ai for the non-basic integer variables. In principle, the only restriction is
that ai ∈ Zk, however, since we prefer smaller coefficients in the cut, we would
like the resulting vector ri−ai to be small. For simplicity, in our case we choose
them as the integer part of the vector ri. Note that the problem of choosing
the best ai is related to the problem studied in [8]. This define a relaxation as
in (3).

For each family of inequalities, we keep up to five cuts according to the
previously defined quality measure, and add them to the current relaxation
using a cut callback. The procedure may be called several times during the
optimization process, but cuts will be added only at the root node.

4.3. Some numerical considerations

In order to improve the numerical stability of the resulting cuts, we discard

tableau rows ax = b such that max{|ai|}
min{|ai|}

> 4000. All coefficients with absolute

value below 10−6 are considered as zero. We test that each computed tableau
row has one basic variable, and that the basic coefficient is one, i.e. |abasic−1| ≤

1e− 6. We also discard cuts ax ≥ 1 such that max{|ai|}
min{|ai|}

> 32000.

5. Computational Results

Our main aim is to show that cuts derived from the infinite group relaxation
can have a positive impact in practice on a wide set of test instances. With this
objective in mind, we use as base reference CPLEX 11.0, and compare both
the LP bound obtained at the root node after cut generation, and the final
performance of the branch and bound algorithm.

5.1. The Instances:

Our set of MIP instances contains all MIPLIB 3.0 [3], MIPLIB 2003 [1], and
other problems from the literature, the resulting test set contains 173 problems.
Since we are interested in the effect of cutting planes, we discarded all problems
(51) whose root LP gap (measured as the gap between the optimal and the best
LP value at the root node) was below 0.5% on all configurations. Furthermore,
we discarded all problems (11) where the root LP time (with cutting enabled)
for all configurations was over 30 minutes. This leaved us with 111 test cases.

5.2. Root LP Comparisons:

We denote by zbLP the LP value obtained with CPLEX’s default configu-
ration with aggressive pre-processing enabled; zIP the optimal or best know

6

solution for a problem; and z∗LP the best root LP bound found among all con-
figurations. We define two quality measures: closed gap at root node (CGAP)
and relative loss against best achieved bound (RLOSS) as

CGAP :
zLP − zbLP
zIP − zbLP

, RLOSS :
zLP − z∗LP

max{1, |zIP |, zIP − zbLP }
.

-6

-4

-2

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 101 111

D
iff

er
en

ce
w

it
h

C
P

L
E

X
p
er

fo
rm

an
ce

p
ro

fi
le

Instances

CPLEX (35.16%)
G2 (37.41%)
G3 (37.46%)
G4 (36.57%)
G5 (36.38%)
G6 (36.02%)
G7 (37.31%)
G8 (36.12%)
G9 (37.57%)
G10 (36.92%)

Figure 1: Difference of CGAP for Gn config-
urations against CPLEX CGAP

-123

-63

-31

-15

-7

-3

-1

0

2 4 8 16 32 64
%

lo
ss

Instances

CPLEX (-1.91%)
G2 (-0.70%)
G3 (-0.92%)
G4 (-0.89%)
G5 (-1.47%)
G6 (-1.66%)
G7 (-1.17%)
G8 (-1.55%)
G9 (-1.21%)
G10 (-1.15%)

Figure 2: Performance profile of RLOSS for
Gn configurations

-6

-4

-2

0

2

4

6

8

10

1 11 21 31 41 51 61 71 81 91 101 111

D
iff

er
en

ce
w

it
h

C
P

L
E

X
p
er

fo
rm

an
ce

p
ro

fi
le

Instances

CPLEX (35.16%)
T12 (36.14%)
T13 (36.24%)
T14 (36.58%)
T15 (36.26%)
T16 (36.25%)
T17 (36.10%)
T18 (35.76%)
T19 (35.98%)
T110 (35.99%)

Figure 3: Difference of CGAP for T1n config-
urations against CPLEX CGAP

-123

-63

-31

-15

-7

-3

-1

0

2 4 8 16 32 64

%
lo

ss

Instances

CPLEX (-1.91%)
T12 (-1.59%)
T13 (-1.62%)
T14 (-1.27%)
T15 (-1.55%)
T16 (-1.19%)
T17 (-1.86%)
T18 (-1.84%)
T19 (-1.64%)
T110 (-1.92%)

Figure 4: Performance profile of RLOSS for
T1n configurations

-6

-4

-2

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 101 111

D
iff

er
en

ce
w

it
h

C
P

L
E

X
p
er

fo
rm

an
ce

p
ro

fi
le

Instances

CPLEX (35.16%)
T22 (37.19%)
T23 (37.12%)
T24 (37.26%)
T25 (37.17%)

Figure 5: Difference of CGAP for T2n config-
urations against CPLEX CGAP

-123

-63

-31

-15

-7

-3

-1

0

2 4 8 16 32 64

%
lo

ss

Instances

CPLEX (-1.91%)
T22 (-1.83%)
T23 (-1.39%)
T24 (-0.98%)
T25 (-1.44%)

Figure 6: Performance profile of RLOSS for
T2n configurations

We tested Gn and T1n for n = 2, . . . , 10 and T2n for n = 2, . . . , 5. In each
round of cuts we added up to five cuts, and we added up to 100 cuts in total, all

7

of them at the root node. As base comparison, we tested CPLEX defaults with
aggressive pre-solve enabled and with a cut-factor limit of ten, i.e. we limit the
total number of cuts to be added (from CPLEX and from our procedure) to be
up to nine times the number of original constraints. These computations where
carried out in a Linux 2.6.9 machine with 16Gb of RAM, and two Quad-Core
Intel Xeon E5420 processor.

Figures 1, 3 and 5 show the difference of performance profiles for CGAP
using as base CPLEX’s results, they also show the arithmetic average of CGAP.
Figures 2, 4 and 6 show the performance profile for RLOSS using a logarithmic
scale on both plot axes, they also show the arithmetic average of RLOSS.

-6

-4

-2

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 101 111

D
iff

er
en

ce
w

it
h

C
P

L
E

X
p
er

fo
rm

an
ce

p
ro

fi
le

Instances

CPLEX (35.16%)
G9 (37.57%)
T14 (36.56%)
T24 (37.26%)

Figure 7: Difference of CGAP for best config-
urations against CPLEX CGAP

-123

-63

-31

-15

-7

-3

-1

0

2 4 8 16 32 64

%
lo

ss

Instances

CPLEX (-1.91%)
G2 (-0.70%)
T16 (-1.19%)
T24 (-0.98%)

Figure 8: Performance profile of RLOSS for
best configurations

Figure 7 and 8 summarizes the performance of the best configuration for
each family of lattice-free sets. If we look at CGAP, the best configuration is
G9, with an average of 37.57% of closed gap at root node, which is 2.51 points
better than CPLEX. For RLOSS, CPLEX is dominated by G2, T16 and T24.
The best configuration is G2, with an average of -0.70%, which is 1.21 points
better than CPLEX.

While in most cases the results of G2, T12 and T22 where dominated by some
Gn, T1n and T2n, they were not always dominated, thus proving that looking
into relaxations with more rows can be valuable, but at the same time, showing
that this is not always the case. Identifying when either case holds remains
unanswered.

Another interesting point to note is that, in general, Gn was better than
T2n, which in turn was better than T1n, even though Gn is never a facet of Rf .

5.3. Branch and Cut Comparisons

Our main goal here is to show that the cuts may be helpful when evaluated
within a branch and cut scheme, and at the same time see the effect of looking
at relaxations with more than two rows.

For those instances that can be solved by at least one configuration, the
quality measure will be total running time. For those instance that could not
be solved by any configuration, the quality measure will be the closed gap to
the optimal (or best known) solution.

8

To simplify comparisons and avoid interference from other components within
B&B, we used best bound node selection rule for all runs, and disable CPLEX
internal heuristics for feasible solutions.

We tested configuration G1, . . . , G10, T11, . . . , T110 and T21. . . . , T210 and
CPLEX defaults. Each instance was run under each configuration with a run-
ning time limit of five hours. These computations where carried out in a Linux
2.6.9 machine with 16Gb of RAM, and two Quad-Core Intel Xeon CPU E5420.

Out of the total 111 instances, five instances failed (in more than twenty
tests) due to memory limits; we discarded them to have fairer comparisons.
Another group of eleven instances were solved in under five seconds by all tests
(but T27, . . . , T210), and where discarded from the set of instances (to avoid
comparisons of very small running times). The rest where separated into two
groups: those that were solvable within five hours by at least one test (52), and
those that could not be solved by any configuration (43).

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

%
cl

os
ed

ga
p

% Instances

CPLEX (77.51%)
G5 (78.78%)
T26 (78.70%)
T18 (78.86%)

Figure 9: Time performance on finished in-
stances and geometric average

0

20

40

60

80

100

1 1.41421 2 2.82843 4 5.65685 8 11.3137 16

%
In

st
an

ce
s

× slower than best

CPLEX (2.03)
G3 (1.96)
G2 (1.94)
T26 (4.14)
T17 (1.93)

Figure 10: Closed gap performance on unfin-
ished instances

Figure 10 shows the best time performance on solved instances; while figure 9
show the best closed gap performance on unsolved instances. Table 1 show the
results for all tested configurations.

On instances where at least one test finished, we can see that both G2 and
T17 are faster (in geometric mean) by 5% than CPLEX; and if we look to plain
average running time, G3, T17 and T26 are 20%, 26% and 24% faster, respec-
tively, than CPLEX. In the rest of the cases, after five hours of running time, we
could get between 1.4% and 1.6% better bounds for most tested configurations.

6. Final Remarks and Conclusions

We have shown that even simple subclasses of inequalities derived from the
infinite relaxation can have a positive impact both on overall branch and cut
performance, and on the closed gap at the root node.

These results also point towards both trying to identify important classes of
inequalities for Rf for higher dimensions, and to find good computational imple-
mentation choices for them. Moreover, the question of when a given relaxation
is better suited to generate cuts is still open.

9

Geo. avg. closed gap Avg. closed gap
t CPLEX G T1 T2 t CPLEX G T1 T2
2 77.51 78.27 78.83 76.43 2 87.03 87.85 88.42 86.51
3 77.51 77.88 78.76 78.13 3 87.03 87.42 88.38 87.62
4 77.51 78.05 78.25 78.53 4 87.03 87.51 87.78 88.12
5 77.51 78.78 78.05 78.06 5 87.03 88.39 87.57 87.60
6 77.51 78.25 77.06 78.70 6 87.03 87.88 86.56 88.27
7 77.51 78.27 78.60 78.14 7 87.03 87.81 88.21 87.70
8 77.51 78.50 78.86 78.25 8 87.03 88.09 88.41 87.79
9 77.51 78.41 78.41 67.47 9 87.03 87.97 88.00 82.38

10 77.51 70.55 78.45 55.83 10 87.03 85.95 88.03 73.66

Geo. avg. slower than best Avg. running time
t CPLEX G T1 T2 t CPLEX G T1 T2
2 2.03 1.94 2.20 2.21 2 2616 2114 2258 2775
3 2.03 1.96 2.18 2.25 3 2616 2087 2054 2313
4 2.03 2.17 2.13 2.48 4 2616 2433 2109 2263
5 2.03 2.13 1.98 2.64 5 2616 2413 1957 2258
6 2.03 2.02 2.22 4.14 6 2616 2302 2424 1971
7 2.03 2.21 1.93 12.43 7 2616 2447 1915 2381
8 2.03 2.28 2.23 66.87 8 2616 2522 2452 7975
9 2.03 2.01 2.11 205.16 9 2616 2456 1922 18000

10 2.03 2.17 2.24 231.26 10 2616 2505 2309 18000

Table 1: Summary of results for all tests: on columns, different configurations; on rows,
maximum tableau rows used in the relaxation.

There are many possibilities to explore, like adding several cuts in every
iteration from different relaxations, choosing several sets of tableau rows to
work on, choosing different ground sets Bψ, and separate maximally violated
inequalities for the current relaxation instead of using fixed templates from the
infinite relaxation.

Questions like how good is the infinite relaxation closure, or even an approx-
imation of it, are still open.

7. Acknowledgments

Special thanks to an anonymous referee for his or her criticism and sugges-
tions, which led to a much improved presentation of this paper. We also thanks
the generous support of FONDECYT grant 1070749 and ICM grant P05-004F.

References

[1] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research

Letters, 34(4):1–12, 2006.

[2] K. Andersen, Q. Louveaux, R. Weismantel, and L. A. Wolsey. Inequalities
from two rows of a simplex tableau. In M. Fischetti and D. P. Williamson,

10

editors, IPCO, volume 4513 of Lecture Notes in Computer Science, pages
1–15. Springer-Verlag, 2007.

[3] R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB: A test set of mixed
integer programming problems. SIAM News, 25:16, 1992.

[4] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP:
Theory and practice - closing the gap. In Proceedings of the 19th IFIP TC7

Conference on System Modelling and Optimization, pages 19–50, Deventer,
The Netherlands, 2000. Kluwer, B.V.

[5] W. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer
programming problems. Mathematical Programming, 47:155–174, 1990.

[6] G. Cornuéjols and V. Borozan. Minimal valid inequalities for integer con-
straints. George Nemhauser Symposium, Atlanta, July 2007.

[7] G. Cornuéjols and F. Margot. On the facets of mixed integer programs
with two integer variables and two constraints. Mathematical Programming,
120(2):429–456, 2009.

[8] S. S. Dey and L. A. Wolsey. Lifting integer variables in minimal inequali-
ties corresponding to lattice-free triangles. In A. Lodi, A. Panconesi, and
G. Rinaldi, editors, IPCO 2008, volume 5035 of Lecture Notes in Computer

Science, pages 463–475, 2008.

[9] D. Espinoza. Computing with multi-row gomory cuts. In A. Lodi, A. Pan-
conesi, and G. Rinaldi, editors, IPCO 2008, volume 5035 of Lecture Notes

in Computer Science, pages 214–224, 2008.

[10] R. E. Gomory. An algorithm for the mixed integer problem. Technical
Report RM-2597, RAND Corporation, 1960.

[11] R. E. Gomory. Corner polyhedra and two-equation cutting planes. George
Nemhauser Symposium, Atlanta, July 2007.

[12] R. E. Gomory and E. L. Johnson. Some continuous functions related to
corner polyhedra, part I. Mathematical Programming, 3:23–85, 1972.

[13] ILOG CPLEX Division, Incline Village, Nevada, 89451, USA. CPLEX 11.0

Reference Manual, 2007.

[14] D. E. Knuth. The Art of Computer Programming, volume 4. Addisoin-
Wesley, 1st. edition, February 2005.

[15] Y. Li and J.-P. P. Richard. Cook, kannan and schrijver’s example revisited.
Discrete Optimization, 5(4):724–734, 2008.

[16] L. Lovász. Geometry of numbers and integer programming. In M. Iri and
K. Tanabe, editors, Mathematical Programming: Recent Developments and

Applications, pages 177–210. Springer, 1989.

11

