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Abstract. Cutting planes for mixed integer problems (MIP) are nowa-
days an integral part of all general purpose software to solve MIP. The
most prominent,and computationally significant, class of general cutting
planes are Gomory mixed integer cuts (GMI). However finding other
classes of general cuts for MIP that work well in practice has been elu-
sive. Recent advances on the understanding of valid inequalities derived
from the infinite relaxation introduced by Gomory and Johnson for mixed
integer problems, has opened a new possibility of finding such an exten-
sion. In this paper, we investigate the computational impact of using a
subclass of minimal valid inequalities from the infinite relaxation, using
different number of tableau rows simultaneously, based on a simple sepa-
ration procedure. We test these ideas on a set of MIPs, including MIPLIB
3.0 and MIPLIB 2003, and show that they can improve MIP performance
even when compared against commercial software performance.

⋆ This research was partially funded by FONDECYT grant 1070749 and by ICM grant
P05-004F.
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1 Introduction

The most successful approach to solve general MIP today is branch and
cut, where general cutting planes are a crucial factor for the overall per-
formance. After the great success in the 90’s of using general purposes
cutting planes such as GMI cuts [9, 5], a great deal of research was de-
voted to extend those ideas to find other families of general cuts that
consistently outperform GMI cuts. However, results have been mixed,
and although there are several extensions that in theory are at least as
good as GMI cuts, in practice they do not seem to offer much advan-
tage. Most of the extensions have focused on deriving inequalities from
the master cyclic group problem introduced by Gomory and Johnson [11],
which look at a single constrained problem.

The theoretical importance of looking at multi-row relaxations has
been proved in a number of works. For instance, Cook et al. [6], show
an example with infinite Chvátal-Gomory rank (i.e. obtaining the convex
hull of the integer points by adding inequalities derived from one row
relaxations is impossible). Andersen et al. [3], prove that by looking at
inequalities generated from two row relaxations, the convex hull of the
Cook-Kannan-Schrijver example, can be obtained by adding a single cut.
This situation is extended to higher dimensions in the work of Yanjun Li
and Jean-Philippe P. Richard.

An interesting recent development has been the work of Andersen et
al. [3], Cornuéjols and Borozan [7] and Gomory [10]; who have proposed
to look at the so-called infinite relaxation problem, which was also in-
troduced by Gomory and Johnson [11], and where several constraint are
considered at the same time. The novelty of this relaxation is that it works
on a continuous relaxation, and looks at an arbitrary number of tableau
rows at the same time. Cornuéjols and Borozan [7] show that any mini-
mal valid inequality for the relaxation can be related to maximal, convex,
lattice-free polyhedrons; thus identifying relevant inequalities with simple
geometrical entities.

To the best of our knowledge, no computational test of the impact of
using cuts derived from this relaxation have been published. The main
contribution of this paper is to show that they are also very valuable
in practice, not only improving the root LP integrality GAP (GAPLP)
closed at the root node, but also in speeding-up the overall branch and
cut performance when compared with CPLEX [12] defaults.

The rest of the paper is organized as follows. Section 2 presents the
definition and basic results related to the infinite relaxation. Section 3
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presents the basic computational problems, tradeoffs, and main ideas
that guided the implementation, and also some further ideas to speed-
up cut-generation and possible alternative choices. Section 4 explain our
experiments, settings, and results.

2 The infinite relaxation

Consider a general mixed integer program (MIP)

min cx
s.t. Ax = b

xi ∈ Z ∀i ∈ I
xi ≥ 0 ∀i = 1, . . . , n,

(1)

where I ⊆ {1, . . . , n}, A ∈ Qm×n is of full row rank, c ∈ Qn, b ∈ Qm, and
x ∈ Qn. Branch and cut algorithms start by solving

min cx
s.t. Ax = b

xi ≥ 0 ∀i = 1, . . . , n,
(2)

the LP relaxation of (1), and obtain an optimal basic solution of the form

xB = f +
∑

j∈N

rjxj , (3)

where B is the set of basic variables satisfying B ⊆ {1, . . . , n}, |B| = m,
N is the set of non-basic variables defined as N = {1, . . . , n} \ B, and
f, rj ∈ Qm,∀j ∈ N , f ≥ 0. The basic solution is x∗ = (xB, xN ) = (f, 0),
and is an optimal solution to (1) if and only if x∗i ∈ Z,∀i ∈ I ′ = I ∩B. If
not, then one might try to find a valid inequality cutting off x∗ from the
feasible region of (2).

One possibility is to consider the following relaxation of (1):

z = f +
∑

i∈N∩I

(ri − ai)si +
∑

i∈N\I

risi,

z ∈ QI′ ,
s ≥ 0,

(4)

where we drop all basic continuous variables, drop the non-negativity
constraints on the basic integer variables, and where ai ∈ ZI

′

,∀i ∈ I ∩N ,
z = xI′ −

∑

i∈I∩N

aisi, and then relax si to be continuous. This relaxation

was considered in [3, 10] for the case |I ′| = 2.
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Gomory and Johnson [11] suggested relaxing (4) to an infinite-dimensional
space; following the notation in [7]; it can be described as:

x = f +
∑

finite rsr
x ∈ Zq

s ≥ 0

(5)

where sr is defined for every r ∈ Qq, and
∑

finite means that |r : sr >
0| ∈ N, i.e. s has finite support. This is called the infinite relaxation and
is denoted by Rf ,where the feasible solutions of Rf are vectors (x, s) with
finite support satisfying (5). Note that any valid inequality for (5) yields
a valid inequality for (1).

Borozan and Cornuéjols [7] studied minimal valid inequalities for (5),
proving the following theorem:

Theorem 1 (Minimal Valid Inequalities for Rf [7]). If f /∈ Zq, then

any minimal valid inequality that cuts off (f, 0):
i. Is of the form

∑

finite ψ(r)sr ≥ 1.
ii. ψ is positive, subadditive, homogeneous, convex and piecewise linear.

iii. If Bψ = {x ∈ Qp : ψ(x− f) ≤ 1}, then Bψ is convex, with no integral

point in its interior. Furthermore f ∈ Bψ.

iv. If ψ is finite, then ψ is a continuous nonegative homogeneous convex

piecewise linear function with at most 2q pieces.

v. If ψ is finite, then f is in the interior of Bψ and Bψ is a polyhedron

of at most 2q facets, and each of its facets contains an integral point

in its relative interior.

One of the consequences of Theorem 1 is that it allow us to identify
minimal valid inequalities ψ with the set Bψ, providing a simple geo-
metrical interpretation for them. We use this interpretation to chose a
sub-family of minimally valid inequalities for (5). It is worth mention-
ing that the results of Theorem 1 where simultaneously conjectured (and
partially proved) by Gomory in [10].

3 Selecting a subclass of valid inequalities, and separating

them

Thanks to the results in [7], the problem of finding minimal valid in-
equalities for (5), can be reduced to the problem of looking at maximal
lattice-free polyhedra in Qq, where the lattice is just Zq. Although the
characterization of all maximal lattice-free convex sets in the plane is
known [15], such a characterization is unknown for arbitrary dimensions.
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For general dimension q, we can define the following full-dimensional
maximal lattice-free bounded convex sets:

1. The simplex defined by the points {0,±kei : i = 1, . . . , q}.
2. The set Ba = 1

2 + {x : aδx ≤ aδδ, ∀δ ∈ ∆} where ∆ = {{−1
2 ,

1
2}
q},

0 < aδ ∈ Qq and aδi 6= 0,∀i = 1, . . . , q, δ ∈ ∆.

These two classes of sets represent the two extremes in terms of number
of facets; in the first family, each set has q+ 1 facets, while in the second
family, each set has 2q facets. Note also that each of their facets contains
an integer point in their relative interior, thus they define minimal valid
inequalities for (5).

For the case q = 2, Cornuéjols and Margot [8] proved that all simplex-
related sets (called triangle inequalities in [3]) are facet defining for Rf ,
but that not all Ba sets define facets of Rf . However, is easy to see
that there exist an arbitrarily small perturbation ε of a, such that Ba+ε
defines a facet ofRf . This observation, and the limited numerical precision
of floating point representation, justify, from a practical point of view,
overlooking the fact that some Ba do not define a facet of Rf for q = 2.
Although a similar result for arbitrary q is unknown, it seems reasonable
to conjecture that related arguments should show the importance of the
sets Ba in general.

This gives us a wide range of possible sets B to choose from. However,
if we restrict ourselves to sets that are symmetric with respect to each co-
ordinate axis, then, the only possible choice for B is the family Ba, where
all aδ ≡ a for some a ∈ Q

q
+ (we assume that 0 /∈ Q+). This restriction

implies that the resulting cut should be invariant under multiplication of
-1 to any constraint in (5).

From this point on, we focus on this kind of lattice-free sets. We
assume that f ∈ (0, 1), and define f ′ = f − 1

2e, where e is the vector of all
ones. With this, ψa (the function related to Ba) can be defined as follows:

ψa(r) =

{

0 if r = 0

2 max
δ∈∆

{

φδ(a,r)
ao−φδ(a,f ′) : φδ(a, r) > 0

}

if r 6= 0
, (6)

where φδ(a, b) =
∑

(aiδibi : i = 1, . . . , q) and ao = 1
2a · e.

Note that the amount of work to compute ψa(r) is exponential in q,
however, one can speed up the process by using gray-code enumeration of
∆. In our code we use Knuth’s loopless gray binary generation (LGBG)
algorithm [13] to speed-up the computation of ψa(r), moreover, we com-
pute ψa(r) for all required r at the same time. Additional speed gains can
be achieved by noting that in LGBG, index i changes its value exactly
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2q−i times during the algorithm, thus sorting each row in decreasing or-
der by number of non-zeros should decrease the amount of total work.
Finally, another factor of two can be gained by maintaining a list of
r : φδ(a, r) > 0.

Another problem is to choose appropriate vectors a. One possibility is
to use branching pseudo-cost values (see [1, 14] for details on pseudo-cost
branching) to define the ai. Instead, we use ai = 1,∀i = 1, . . . , q, but
select the fractional variables to consider using branching pseudo-cost
information.

For integer non-basic variables we select ai in (4), such that ri
′

=
ri − ai ∈ [−1

2 ,
1
2 ]q, in the hope of obtaining small coefficients for ψa(r

i′).
Note, that such a choice may not be the best possible.

To improve numerical stability of the cuts, we choose from fractional
variables that are away from the nearest integer by at least 2−12; also,
the ratio between the smallest and largest absolute value in the cut
should not exceed 215; if the minimum non-zero absolute coefficient in
the cut (|c|min) is above one, we divide the resulting cut by |c|min; we
discard cuts whose violation is below 2−10; finally, we add cuts only
at the root node of the branch and cut run. The code is available at
http://dii.uchile.cl/~daespino.

4 Computational Results

Our computing environment is a Linux 2.6.22 machine with 1Gb. of RAM,
with a 3GHz. Intel Pentium 4 CPU with 1Mb of cache; all the code is
written in C, and was compiled with GCC 4.2.0 with optimization flags
-O3.

Our cutting scheme was embedded as a cut-callback in CPLEX 10.2,
and is called after CPLEX has added its own cuts. In every call we add
at most one cut, but the procedure may be called many times during the
optimization process. Our procedure adds cuts only at the root node. We
compare our results against CPLEX defaults, with pre-processing turned
on; this include automatic generation of clique cuts, lifted cover cuts,
implied bound cuts, lifted flow cover cuts, flow path cuts and Gomory
fractional cuts.

Our test set of MIP instances contains all MIPLIB 3.0 [4], MIPLIB
2003 [2], and other problems from the literature. The full test set con-
tained 173 problems, from where we discard all problems (29) where the
GAPLP after solving with CPLEX 10.2 defaults was below 0.1%; then we
discard all problems (34) CPLEX could solve to optimality within five
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seconds of CPU time; then we discarded all problems (15) where neither
CPLEX nor our cutting procedure could improve the root LP bound1;
finally, we discarded all problems (8) where our cutting procedure could
not add any cut2. This reduced our test-set to 87 problems.

berlin 5 8 0 CMS750 4 glass4 marketshare1 marketshare2
neos19 neos818918 neos823206 net12 noswot
p2m2p1m1p0n100 railway 8 1 0 rd-rplusc-21 usAbbrv.8.25 70 van

Table 1. Problems where neither CPLEX nor our procedure could improve the root
LP value.

bg512142 dano3mip dano3mip.pre dg012142
harp2 mod011 momentum3 neos4

Table 2. Problems where our procedure could not add any cut to the problem.

We tested six configurations, CPLEX defaults (C0), and the configura-
tions T2N5, T5N5, T10N5, T10N1k and T15N1k3, where TxxNyy signifies
the adding of up to yy cuts generated using up to xx tableau rows. The
first four configurations where run with a time limit of one hour, while
the last two configurations where run with a time limit of 20 minutes.
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Tables 3, 4, 5 present our computational results over the reduced
test-set. The first column indicates the problem name; the following six
columns, give the root LP bound and the running time for the correspond-
ing configuration; finally, the last column, has the optimal/best known
solution for instance, and then the maximum of the closed GAPLP, de-

1 Table 1 contain the list of all such problems.
2 Table 2 contain the list of all such problems.
3 1k stand for 1000, i.e. a thousand.
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Fig. 4. Closed GAPLP by configuration

fined as (ZLP −ZCPX)/(ZIP −ZCPX)4 over all configurations, and then
the maximum of the same quantity over the T*N5 configurations.

Figure 1 summarizes the best speed-up factor over CPLEX defaults
obtained over all instances (31) that finished to optimality on all six
configurations, the geometric average speed-up was 31%. Also, looking
at problems where at least one configuration had finished to optimality,
CPLEX was faster by at least 5% in 10 cases, while in 16, 16, 14, 11, 9
cases configurations T2N5, T5N5, T10N5, T10N1k, T15N1k, where faster
by at least 5% respectivelly. Figure 2 summarizes the best closed GAPLP

over CPLEX default (1) and the best closed GAPLP over CPLEX when
we limit the code to add up-to five cuts at the root node (2). The number
of cases where each configuration had the best root LP value where 18,
19, 27, 22, 43, 38, for C0, T2N5, T5N5, T10N5, T10N1k and T15N1k
respectively.

Figure 3 shows the number of cuts added for each configuration. Note
that for the T*N1k configurations, more than 80% of the instances re-
quired less than 40 cuts. On the other hand, it seems that the more
tableau rows we use to generate cuts, the less number of total cuts our
procedure needs. Figure 4 shows the closed GAPLP for each configuration;
where negative values (i.e. the procedure performs worse than CPLEX)
are displayed in the left part of the graph. Again from this figure it seems
clear that there are advantages to considering more than one tableau row
at the same time; in fact, the results for two tableau rows are consistently
poorer than configurations that use more tableau rows in the cutting
procedure.

4 where ZLP is the root LP value for the configuration, ZIP is the value of the op-
timal/best solution known for the problem, and ZCPX is the value of the root LP
obtained with CPLEX defaults.
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5 Final Remarks and Conclusions

We have shown that even simple subclasses of inequalities derived from
the infinite relaxation can have an important impact both on overall
branch and cut performance, and on the GAPLP closed at the root node.
These results point towards both trying to identify important classes of
inequalities for Rf for higher dimensions, and to find good computational
implementation choices for them.

Although the implementation is numerically conservative, still, there
are some numerical issues when cuts are used within the branch and
bound tree. There are also instances where the cuts generated tend to be
parallel to previous ones, causing again numerical issues.

There are many possibilities to explore, like adding more than one cut
in every iteration, choosing different sets of tableau to work on, choosing
different ground sets Ba, and testing the impact of inequalities derived
form simplex-like ground sets.



10

References

1. T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Op. Res.

Letters, 33:42–54, 2005.
2. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research

Letters, 34:4:361–372, 2006.
3. K. Andersen, Q. Louveaux, R. Weismantel, and L. A. Wolsey. Inequalities from two

rows of a simplex tableau. In M. Fischetti and D. P. Williamson, editors, IPCO,
volume 4513 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag,
2007.

4. R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB: A test set of mixed integer
programming problems. SIAM News, 25:16, 1992.

5. R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory
and practice - closing the gap. In Proceedings of the 19th IFIP TC7 Conference

on System Modelling and Optimization, pages 19–50, Deventer, The Netherlands,
2000. Kluwer, B.V.

6. W. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer pro-
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Configuration C0 T2N5 T5N5 T10N5 T10N1k T15N1k Results

Problem
Root LP Root LP Root LP Root LP Root LP Root LP Best Sol.
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) CGap1/CGap2

a1c1s1
9770.47 9797.84 9854.74 9799.46 9799.46 9823.78 11503.4
3592.91 3593.45 3592.71 3594.60 1193.85 1194.55 4.86%/4.86%

A1C1S1
9804.58 9862.15 9869.86 9838.56 9838.56 9829.37 11503.4
3587.77 3600.33 3594.44 3584.48 1195.51 1196.85 3.84%/3.84%

A2C1S1
9468.86 9394.16 9394.16 9320.6 9320.6 9385.61 10938.8
3590.22 3598.84 3598.90 3591.90 1195.77 1194.16 -5.08%/-5.08%

aflow30a
1075.14 1081.59 1074.58 1074.58 1074.58 1075.27 1158

66.62 55.56 45.79 50.67 48.33 50.86 7.79%/7.79%

aflow40b
1059.61 1058.88 1059.61 1062.55 1062.55 1062.94 1168
3585.42 3563.11 3597.93 3596.80 1193.03 1194.28 3.07%/2.71%

air04
55645.7 55664.6 55660.4 55663.3 55667 55664.9 56137

42.33 75.30 48.47 64.48 154.15 405.37 4.33%/3.86%

air05
25957.8 25972 25970.5 25973.7 25978.6 25973.7 26374

31.48 83.59 79.81 66.11 500.72 295.92 5.00%/3.83%

B1C1S1
15496.3 15471.8 15463.4 15529 15529 15451.8 24881.7
3577.55 3586.90 3586.32 3579.90 1191.87 1192.43 0.35%/0.35%

B2C1S1
16012.5 16112.2 16165.8 15969.5 15969.5 16213 26282.5
3587.55 3590.03 3588.81 3589.90 1190.73 1192.06 1.95%/1.49%

bc1
2.47 2.47 2.47 2.47 2.48 2.47 3.34

274.66 493.91 436.80 880.40 923.93 585.60 0.47%/0.26%

bell3a
873792 873792 873792 873792 873792 873792 878430

7.09 7.17 7.53 7.22 7.54 7.28 0.00%/0.00%

biella1
3.0605e+06 3.0605e+06 3.0605e+06 3.0605e+06 3.0605e+06 3.0605e+06 3.0678e+06

3590.18 3591.99 3532.93 3593.41 1191.94 1195.15 -0.27%/-0.29%

bienst1
15.11 15.49 14.98 14.99 14.99 15.25 46.75

431.12 850.79 331.77 475.22 463.64 503.64 1.20%/1.20%

bienst2
15.28 15.35 15.35 15.28 15.28 15.27 54.6

3586.40 3599.01 3566.95 3591.94 1194.88 1195.43 0.18%/0.18%

blp-ar98
6086.37 6086.76 6087.58 6087.57 6088.08 6088.14 6217.86
3563.80 3559.50 3563.07 3566.11 1165.68 1179.48 1.35%/0.92%

blp-ic97
3928.3 3928.38 3928.83 3928.46 3928.64 3928.81 4057.94

3569.97 3377.47 3586.15 3400.25 1181.92 1176.14 0.41%/0.41%

blp-ic98
4376.19 4376.8 4378.04 4378.59 4381.97 4379.05 4531.39
3560.93 3540.84 3595.65 3541.67 1142.70 1158.75 3.72%/1.55%

blp-ir98
2283.19 2283.67 2283.51 2284.5 2286.22 2287.46 2342.32
541.68 606.95 725.03 467.55 922.14 973.49 7.22%/2.20%

core2586-950
935.94 935.95 935.95 935.95 935.95 935.95 974

3423.24 3502.65 3587.97 3598.87 1411.34 1205.72 0.01%/0.01%

core4284-1064
1054.08 1054.08 1054.08 1054.08 1054.08 1054.08 1086
3598.72 3599.71 3599.47 3545.67 1196.53 1209.14 0.01%/0.00%

core4872-1529
1510.91 1510.91 1510.91 1510.91 1510.91 1510.91 1568
3305.73 3598.09 3545.04 3599.30 1196.74 1196.19 0.00%/0.00%

danoint
62.73 62.73 62.73 62.73 62.73 62.73 65.67

3589.38 3599.02 3598.22 3594.90 1198.09 1197.23 0.02%/0.02%

dc1c
1.7582e+06 1.7575e+06 1.7575e+06 1.7575e+06 1.7575e+06 1.7575e+06 1.8478e+06

3591.28 3591.33 3591.63 3432.11 1192.99 1181.32 -0.84%/-0.84%

dc1l
1.7445e+06 1.7445e+06 1.7445e+06 1.7446e+06 1.7446e+06 1.7445e+06 1.8517e+06

3588.70 3588.79 3588.84 3587.28 1194.80 1195.38 0.02%/0.02%

dolom1
6.5563e+06 6.5563e+06 6.5563e+06 6.5563e+06 6.5563e+06 6.5563e+06 1.49e+08

3588.23 3586.81 3587.44 3585.06 1189.61 1190.51 0.00%/0.00%

ds
59.54 59.56 59.49 59.59 59.59 59.35 447.01

3584.19 3582.82 3585.46 3584.17 1194.23 1212.81 0.01%/0.01%

fast0507
172.15 172.17 172.18 172.18 172.18 172.18 174

2340.49 2862.75 1119.82 2467.56 1170.02 1250.19 1.95%/1.87%

gesa2-o
2.5731e+07 2.5729e+07 2.5733e+07 2.5731e+07 2.5731e+07 2.5731e+07 2.5779e+07

8.79 6.39 5.62 6.37 6.22 15.37 4.50%/4.50%

liu
560 560 560 560 560 560 1174

3476.32 3467.47 3463.13 3452.70 1152.16 1153.31 0.00%/0.00%

Table 3. Results over reduced test set, part I
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Configuration C0 T2N5 T5N5 T10N5 T10N1k T15N1k Results

Problem
Root LP Root LP Root LP Root LP Root LP Root LP Best Sol.
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) CGap1/CGap2

manna81
-13229.5 -13227.5 -13226.8 -13226.1 -13221.9 -13220.8 -13164
3540.39 3548.56 3548.17 3524.98 1181.63 1180.20 13.22%/5.21%

mas74
10506.2 10555.8 10558.9 10535.5 10535.5 10538.2 11801.2
2548.22 3203.12 2437.62 2299.57 1185.31 1180.43 4.07%/4.07%

mas76
38908 38925.2 38934.3 38911.1 38911.1 38911.8 40005.1
241.62 189.35 175.21 325.39 319.60 210.48 2.40%/2.40%

misc07
1425 1425 1425 1425 1425 1425 2810
23.53 38.43 28.10 44.54 61.50 21.00 0.00%/0.00%

mkc1
-611.85 -611.85 -611.85 -611.85 -611.85 -611.85 -607.21

19.25 20.48 39.64 99.49 89.70 58.91 0.00%/0.00%

mkc
-582.39 -582.39 -582.39 -582.39 -579.15 -581.79 -563.23
3547.53 3550.57 3562.28 3567.50 1172.77 1181.56 16.91%/0.00%

momentum1
96250.1 96250.1 96250.1 96250.1 96250.1 96250.1 109143
3592.25 3590.55 3594.12 3593.23 1193.81 1182.12 0.00%/0.00%

momentum2
10702.1 10702.1 10705.4 10702.6 10702.6 10705.2 12314.2
3591.55 738.17 3288.60 3593.40 1196.20 749.59 0.20%/0.20%

msc98-ip
1.9702e+07 1.9702e+07 1.9702e+07 1.9702e+07 1.9702e+07 1.9702e+07 1.98e+07

3583.89 3549.60 3593.76 3586.20 1196.60 1195.54 0.00%/0.00%

mzzv11
-22066.1 -22067.3 -22066.2 -22063.3 -22061.5 -22067 -21718

548.37 471.03 819.70 541.25 491.16 551.90 1.32%/0.81%

mzzv42z
-20830.7 -20826.7 -20789 -20787.2 -20787.2 -20822.6 -20540

130.53 140.58 155.44 157.69 161.51 226.87 14.96%/14.96%

neos10
-1187.33 -1185.79 -1185.77 -1185.12 -1184.66 -1185.34 -1135

23.15 22.85 21.30 29.77 26.81 61.57 5.10%/4.23%

neos11
6 6 6 6 6 6 9

446.38 405.21 192.80 216.16 231.75 203.14 0.00%/0.00%

neos12
9.51 9.51 9.51 9.51 9.51 9.51 13

644.55 971.43 1111.82 883.34 1099.59 656.93 -0.01%/-0.01%

neos13
-112.97 -112.75 -107.98 -109.42 -112.4 -112.63 -95.47
3596.18 3596.89 3696.19 3596.15 1190.17 1197.57 28.51%/28.51%

neos14
66464.1 66387.1 66381.6 66439.7 66439.7 66536.2 74333.3
1555.23 1181.56 1426.66 1037.64 1007.33 1193.10 0.92%/-0.31%

neos15
70411.4 70172.5 70409 70418.4 70418.4 70415.8 80835
3591.99 3597.23 3595.22 3588.92 1197.49 1198.19 0.07%/0.07%

neos17
0.03 0.03 0.03 0.02 0.02 0.02 0.15

3057.75 315.74 776.98 514.16 517.12 1192.86 0.13%/0.13%

neos18
13 13 13 13 13 13 16

325.23 3575.88 2547.07 3572.41 1183.89 1051.34 0.00%/0.00%

neos20
-470.8 -470.8 -470.8 -470.8 -470.8 -470.8 -434
186.19 61.84 84.35 134.95 124.60 124.43 0.00%/0.00%

neos21
2.72 2.74 2.73 2.73 2.74 2.75 7

91.88 107.15 89.11 108.62 107.98 114.33 0.71%/0.45%

neos22
777536 777786 777676 777702 777702 777821 779715

66.65 52.88 49.44 36.72 38.65 62.01 13.09%/11.51%

neos23
63.81 63.81 63.81 63.82 64.16 63.82 137

653.86 1958.24 2709.85 813.83 1195.49 525.27 0.48%/0.02%

neos2
-4069.79 -4056.09 -4039.14 -4070.69 -4028.29 -3927.78 454.86

14.81 15.08 13.36 16.30 19.03 52.29 3.14%/0.68%

neos3
-5664.36 -5630.32 -5655.1 -5643.04 -5643.04 -5731.26 368.84

54.28 53.25 54.06 69.07 63.54 80.71 0.56%/0.56%

neos5
13.33 13.32 13.33 13.33 13.33 13.33 15

3197.48 3579.64 3580.21 3367.37 1193.82 1194.55 0.00%/0.00%

neos7
692631 693168 693268 692631 692631 692532 721934
137.84 59.85 59.72 51.88 51.01 1091.68 2.17%/2.17%

neos9
793.25 792.25 793.5 791.75 793.14 791.75 798

3587.56 3586.40 3585.06 3586.00 1191.12 1190.05 5.26%/5.26%

nsrand-ipx
50181.8 50183.1 50184.8 50184.2 50187.8 50186.2 51200
3588.37 3575.79 3583.57 3609.45 1185.31 1198.76 0.58%/0.30%

Table 4. Results over reduced test set, part II
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Configuration C0 T2N5 T5N5 T10N5 T10N1k T15N1k Results

Problem
Root LP Root LP Root LP Root LP Root LP Root LP Best Sol.
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) CGap1/CGap2

nsrand ipx
50181.8 50183.1 50184.8 50184.2 50187.8 50186.2 51200
3579.66 3583.67 3579.68 3571.66 1193.02 1203.12 0.58%/0.30%

nug08
204.28 204.31 204.33 204.33 204.37 204.37 214
47.44 63.14 73.89 90.37 126.99 185.04 0.92%/0.54%

nw04
16380.3 16771.3 16779.9 16781.3 16792.6 16787.9 16862

58.00 46.19 51.81 52.10 112.66 907.47 85.59%/83.25%

opt1217
-20 -19 -19 -19 -19 -19 -16

3553.84 3542.62 3544.18 3530.90 1193.49 1190.35 25.00%/25.00%

pk1
0 0 0 0 0 0 11

153.16 143.84 112.56 162.38 168.46 195.87 0.00%/0.00%

protfold
-41.09 -39.92 -41.09 -41.09 -39.42 -39.78 -31

3599.38 3599.40 3599.40 3598.46 1199.45 1199.71 16.53%/11.63%

qap10
333.5 333.5 333.48 333.51 333.52 333.51 340

395.29 951.54 399.66 450.92 486.25 507.83 0.34%/0.23%

qiu
-923.04 -926.83 -926.83 -923.04 -923.04 -923.04 -132.87

77.25 92.21 95.20 77.66 74.46 68.85 0.00%/0.00%

rail507
172.15 172.17 172.17 172.17 172.18 172.18 174

3570.21 3320.39 3564.49 3559.79 1160.16 1255.95 1.82%/1.46%

ran14x18 1
3362.27 3363.59 3363.68 3363.22 3363.22 3361.99 3735
3588.84 3587.58 3587.68 3589.10 1195.36 1195.84 0.38%/0.38%

roll3000
12243.9 12257.5 12257.8 12259.4 12259.4 12260.1 12890
3592.85 3596.57 3595.23 3592.53 1194.49 1197.01 2.52%/2.41%

rout
985.46 985.53 985.53 985.46 985.46 985.56 1077.56
219.81 292.25 195.17 126.08 122.64 81.27 0.11%/0.09%

seymour1
405.86 405.9 405.92 405.93 405.97 405.93 410.76

2186.19 2455.05 2762.13 2433.69 1200.26 1203.71 2.22%/1.33%

seymour
407.17 407.2 407.63 407.63 408.2 408.17 423

3582.73 3590.80 3590.46 3590.24 1195.45 1191.93 6.50%/2.95%

siena1
1.0163e+07 1.0163e+07 1.0163e+07 1.0163e+07 1.0163e+07 1.0163e+07 1.58e+08

3592.54 3593.03 3592.21 3593.56 1197.19 1199.08 0.00%/0.00%

sp97ar
6.5388e+08 6.5391e+08 6.5391e+08 6.5391e+08 6.5391e+08 6.5391e+08 6.64e+08

3591.66 3568.81 3588.03 3568.96 1170.85 1267.79 0.36%/0.32%

sp97ic
4.2211e+08 4.2217e+08 4.2217e+08 4.2218e+08 4.2223e+08 4.2219e+08 4.3e+08

3553.65 3554.51 3551.67 3542.83 1136.89 1190.07 1.48%/0.79%

sp98ar
5.2499e+08 5.2504e+08 5.2508e+08 5.2509e+08 5.2511e+08 5.2509e+08 5.3e+08

3549.89 3556.06 3562.27 3558.49 1184.27 1175.80 2.57%/2.16%

sp98ic
4.4430e+08 4.4445e+08 4.4443e+08 4.4445e+08 4.4448e+08 4.4444e+08 4.5141e+08

3550.63 3552.86 3563.69 3580.06 1190.08 1174.74 2.53%/2.16%

stein45
22 22 22 22 22 22 30

24.73 26.15 26.43 30.23 35.56 36.11 0.00%/0.00%

swath1
338.68 339.99 339.36 340.32 340.54 340.64 379.07
41.33 37.34 86.34 124.20 309.76 1195.45 4.85%/4.07%

swath2
343.09 343.89 344.07 344.13 344.27 344.91 385.2
195.24 104.00 527.60 40.76 195.96 458.98 4.32%/2.47%

swath3
343.09 344.09 344.16 344.13 344.29 345.07 397.76
783.86 535.92 789.25 186.25 393.72 866.58 3.62%/1.96%

swath
373.88 374.41 375.53 375.21 379.4 376.08 467.41

3494.23 3533.15 3513.14 3535.65 1141.32 1199.99 5.90%/1.77%

timtab1
443780 438838 485907 446072 446072 462240 764772
3567.05 3587.46 3589.34 3570.40 1196.11 1193.77 13.12%/13.12%

timtab2
563628 560505 566589 558124 558124 575232 1.1111e+06
3583.77 3593.85 3592.81 3583.98 1194.40 1194.57 2.12%/0.54%

tr12-30
129675 129675 129728 129762 129762 129894 130596
3593.70 3596.10 3586.60 3544.45 1198.44 1197.57 23.72%/9.38%

trento1
5.1830e+06 5.1830e+06 5.1830e+06 5.1830e+06 5.1830e+06 5.1830e+06 5.2874e+06

3582.16 3590.92 3590.58 3581.38 1194.41 1195.11 0.02%/0.00%

UMTS
2.9137e+07 2.9137e+07 2.9140e+07 2.9142e+07 2.9142e+07 2.9141e+07 3.01e+07

3554.64 3581.09 3588.94 3576.85 1194.68 1193.78 0.47%/0.47%

Table 5. Results over reduced test set, part III


