A Study of Domino Parity and *k*-Parity Constraints for the TSP

William Cook Daniel Espinoza Marcos Goycoolea

School of Industrial and Systems Engineering Georgia Institute of Technology

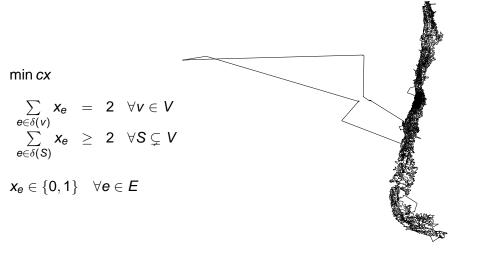
IPCO 2005

IPCO 2005

1/28

Cook, Espinoza, Goycoolea (Georgia Tech)

The Traveling Salesman Problem



A D F A B F A B F A B

" Separating a Superclass of Comb Inequalities in Planar Graphs "

- Adam E. Letchford [Math of OR, 2000]

- Introduces a class of inequalities called "Domino Parity Constraints" which generalize comb inequalities.
- Proves that these constraints can be separated in polynomial time in planar graphs

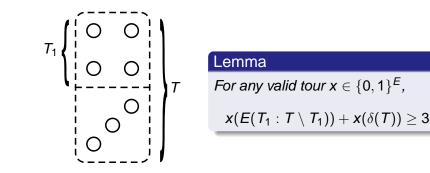
- Introduction
- Separation
- Computational Results

The *k*-Parity Constraints

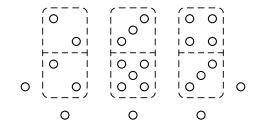
- Validity
- Separation
- Computational Results

Definition (Domino)

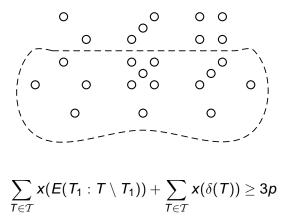
A *domino* is a pair of sets $(T_1; T)$ such that $\emptyset \subsetneq T_1 \subsetneq T \subsetneq V$.

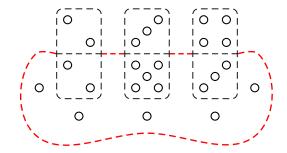


< A > < A > >

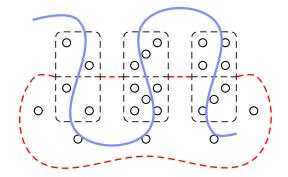


$$\sum_{T \in \mathcal{T}} x(E(T_1 : T \setminus T_1)) + \sum_{T \in \mathcal{T}} x(\delta(T)) \ge 3p$$

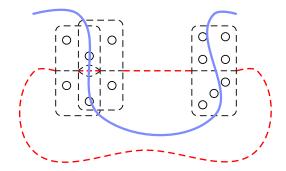




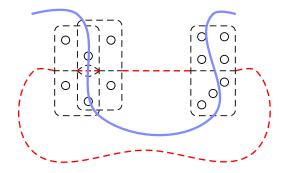
$$x(F_H) + \sum_{T \in \mathcal{T}} x(E(T_1 : T \setminus T_1)) + \sum_{T \in \mathcal{T}} x(\delta(T)) \ge 3p + 1$$



$$x(F_H) + \sum_{T \in \mathcal{T}} x(E(T_1 : T \setminus T_1)) + \sum_{T \in \mathcal{T}} x(\delta(T)) \ge 3p + 1$$



 $x(F_{H}) + \sum_{T \in \mathcal{T}} x(E(T_{1}: T \setminus T_{1})) + \sum_{T \in \mathcal{T}} x(\delta(T)) \ge 3p + 1$ $T \in \mathcal{T}$ $T \in \mathcal{T}$



$$\mu^{H} \mathbf{x} + \sum_{T \in \mathcal{T}} \mathbf{x}(\delta(T)) \ge 3\mathbf{p} + 1$$

Cook, Espinoza, Goycoolea (Georgia Tech)

< A

Definition (Support Graph)

Let,

$$E^* = \{e \in E : x_e^* > 0\}$$

The support graph of G is the sub-graph $G^* = (V, E^*)$.

Henceforth assume:

- *x*^{*} ∈ Q^E₊ satisfi es all subtour elimination constraints.
- G^* is planar, and $\overline{G^*}$ is its dual.
- For $F \subseteq E^*$ let \overline{F} be corresponding edges in $\overline{G^*}$.

Definition (Super-Connectivity)

A domino $(T_1; T)$ is super-connected if:

- T and $V \setminus T$ are connected in G^* .
- T_1 and $T \setminus T_1$ are connected in G^* .
- $x^*(E(T_1 : V \setminus T)) > 0$ and $x^*(E(T \setminus T_1 : V \setminus T)) > 0$.

Lemma

Every tooth $(T_1; T)$ in a violated domino-parity is super-connected.

・ロン ・四 と ・ 回 と ・ 回 と

- 3

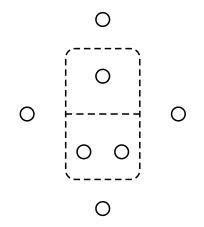
9/28

IPCO 2005

Lemma If a tooth $(T_1; T)$ is super-connected, then • $C = \overline{\delta(T)}$ is a simple cycle in \overline{G}^* . • $P = \overline{E(T_1 : T \setminus T_1)}$ is a simple path with end-points in C.

Observation:

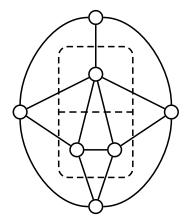
There exist two nodes $s, t \in V(\overline{G^*})$ such that $C \cup P$ define three disjoint paths in $\overline{G^*}$.



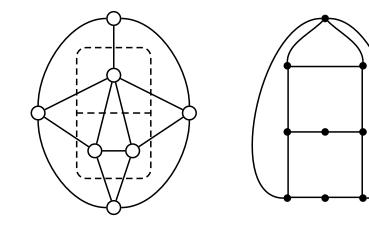
æ

11/28

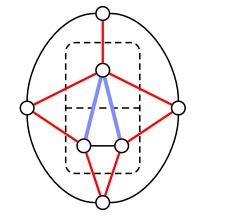
IPCO 2005

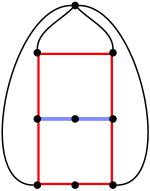


イロト イポト イヨト イヨ

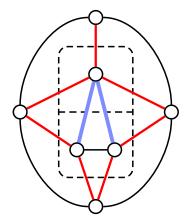


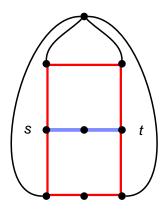
イロト イポト イヨト イヨ



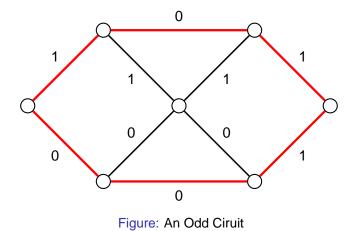


イロト イポト イヨト イヨ





Min Weight Odd Circuit Problem

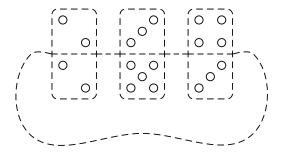


Cook, Espinoza, Goycoolea (Georgia Tech)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Characterization of Domino Parity Constraints

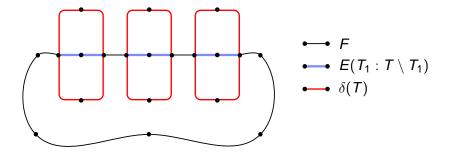
Domino Parity Constraint: Primal Form.



Idea: Reduce cut-generation to min-weight odd circuit problem.

Characterization of Domino Parity Constraints

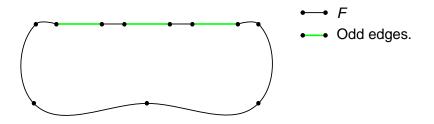
Domino Parity Constraint: Dual Form.



Idea: Reduce cut-generation to min-weight odd circuit problem.

Characterization of Domino Parity Constraints

Domino Parity Constraint: Extended Dual Form.



IPCO 2005

13/28

Black edges + odd edges defi ne an odd circuit.

Cook, Espinoza, Goycoolea (Georgia Tech)

If graph is not planar, identify a forbidden minor. Then:

Contract edges.

Contracting nodes which are not connected in the minor eliminates it from the shrunk graph.

• Delete edges.

Careful! Deleting edges means loosing validity of Subtour elimination constraints.

Pruning to restrict search space.
Allows us to build cuts in BB tree, even in largest instances.

IPCO 2005

15/28

- Safe shrinking to reduce problem size. 70% - 90% smaller graphs obtained.
- Random walk to generate more cuts. Thousands of cuts generated per run.
- Tighten to re-utilize old cuts. Thousands of cuts generated per round. Generates cuts not visible after planarization.

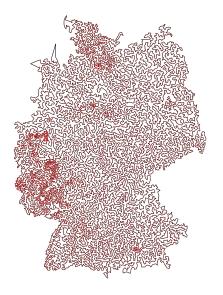
Improvements to Root LP on 8 largest TSPLIB problems:

Name	GAP Closed	
pla7397	67%	
rl11849	66%	
usa13509	55%	
brd14051	52%	
d15112	47%	
d18512	40%	
pla33810	38%	
pla85900*	27%	

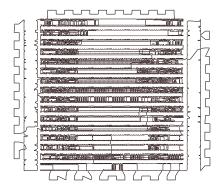
(*) Problem is not optimally solved as of yet.

Previously Unsolved Problems: d18512.

Number of Cities: 18,512. Origin: Cities of Germany. Optimal Solution: 645,238. BB Nodes: 424,241. Approx. Sol. Time: 57.5 years.



Previously Unsolved Problems: pla33810.



Number of Cities: 33,810. Origin: Circuit Board Design. Optimal Solution: 66,048,945. BB Nodes: 577. Approx. Sol. Time: 15.7 years. Largest TSP instance solved!

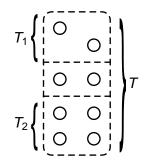
k-Dominoes

Definition (k-Domino)

A *k*-domino consists of k + 1 sets $(T_1, T_2, \ldots, T_k; T)$ such that:

•
$$\emptyset \subsetneq T_i \subsetneq T \subsetneq V$$
 for all $i = 1, \dots, k$

The edges ∪{E(T_i : T \ T_i) : i ∈ I} define a |I| + 1 cut in the subgraph of G induced by T, for all Ø ⊊ I ⊂ {1,...,k}.

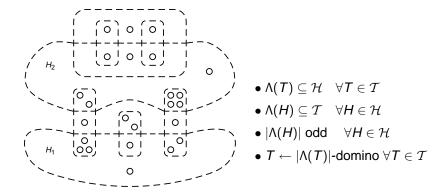


Lemma

For any valid tour $x \in \{0,1\}^E$, $\frac{x(\delta(T)) - 2}{2} + \sum_{i=1}^k x(E(T_i : T \setminus T_i)) \ge k$

イロト イ理ト イヨト イヨ

The *k*-Parity Constraint



$$\sum_{H \in \mathcal{H}} \mu^H \mathbf{x} + \sum_{T \in \mathcal{T}} \mathbf{x}(\delta(T)) \geq 2|\mathcal{T}| + |\mathcal{H}| + \sum_{H \in \mathcal{H}} |\Lambda(H)|$$

Definition (Super-Connectivity)

A k-domino $(T_1, T_2, \ldots, T_k; T)$ is super-connected if:

- T and $V \setminus T$ are connected in G^* .
- T_i and $T \setminus T_i$ are connected in G^* $\forall i = 1, ..., k$.
- $x^*(E(T_i: V \setminus T)) > 0$ and $x^*(E(T \setminus T_i: V \setminus T)) > 0$ $\forall 0 \le i \le k$.

イロト イポト イヨト 一足

IPCO 2005

21/28

Question

Is every k-domino in a violated constraint super-connected?

Lemma

If a k-domino $(T_1, T_2, \ldots, T_k; T)$ is super-connected, then

•
$$C = \overline{\delta(T)}$$
 is a simple cycle in \overline{G}^* .

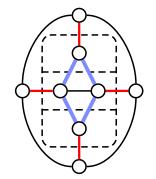
• $P_i = \overline{E(T_i : T \setminus T_i)}$ is a simple path with end-points in C.

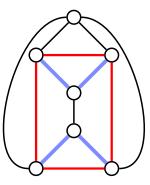
 All of the paths P_i are on the same side of C with regard to the planar embedding.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

22/28

IPCO 2005





Separation Algorithm: A key step.

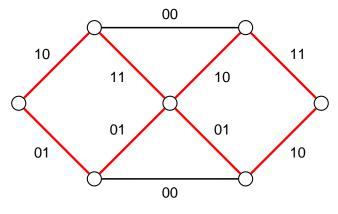
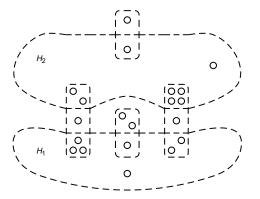


Figure: A 11-Parity Euler Subgraph

For Clique Trees: Problem Reduces to Min-Weight-1^k-Parity Euler Subgraph Problem

Characterization of k-Parity Constraints

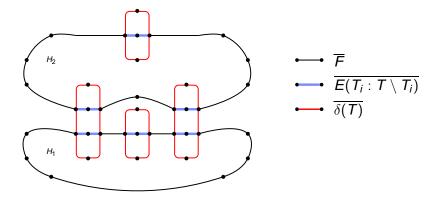


Idea: Each handle can be modelled as an odd circuit.

IPCO 2005

25 / 28

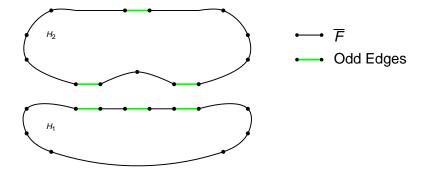
Characterization of k-Parity Constraints



Here we consider relevant edges in the dual of the support graph.

< A > < > >

Characterization of k-Parity Constraints



We observe two odd eulerian graphs: One for each handle.

Heuristic:

• Find a Domino-Parity constraint with slack as small as possible.

26/28

IPCO 2005

Grow a second handle by solving a constrained odd circuit problem.

Other Implementation Details:

- Planarization, Pruning.
- Shrinking, Tighten.

How much do these new cuts close the gap?

Instance	DP	2P
pcb3038	75.38%	14.06%
fnl4461	45.46%	19.05%
rl5914	61.76%	10.58%
rl5934	64.98%	26.32%

Each test instance was ran ten times. Results are computed from average solutions.

IPCO 2005

27 / 28

Thank you! Questions?

Cook, Espinoza, Goycoolea (Georgia Tech)

イロト イ理ト イヨト イヨ