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Background

“ Separating a Superclass of Comb Inequalities in Planar Graphs ”

- Adam E. Letchford [ Math of OR, 2000 ]

@ Introduces a class of inequalities called “Domino Parity
Constraints” which generalize comb inequalities.

@ Proves that these constraints can be separated in polynomial time
in planar graphs
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Dominoes

Definition (Domino)

A domino is a pair of sets (Ty;T) suchthat) CT; C T C V.
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The Domino Parity Constraint
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The Domino Parity Constraint

o o oo
o
o o oo

2 it N
/ ) O O @) \
! o o \
e o olNe o o)
\ !
\ o} o o !
\ /

N == - 7

Cook, Espinoza, Goycoolea (Georgia Tech) IPCO 2005 6/28



The Domino Parity Constraint
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The Domino Parity Constraint
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Preliminaries

Definition (Support Graph)

Let,
E*={ecE:x; >0}

The support graph of G is the sub-graph G* = (V,E™*).

Henceforth assume:
@ x* € QF satisfies all subtour elimination constraints.
@ G* is planar, and G* is its dual.
@ For F C E* let F be corresponding edges in G*.
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Super Connectivity

Definition (Super-Connectivity)

A domino (Tq; T) is super-connected if:
@ T and V \ T are connected in G*.
@ Ty and T \ T, are connected in G*.
@ x*(E(Ty:V\T))>0and x*(E(T\T;:V\T))>0.

Every tooth (T1; T) in a violated domino-parity is super-connected.
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Super Connectivity and Duality

If a tooth (T1; T) is super-connected, then
@ C = §(T) is a simple cycle in G*.
@ P =E(T,:T\T,)is asimple path with end-points in C.

Observation: B
There exist two nodes s, t € V(G*) such that C U P define three
disjoint paths in G*.
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Super Connectivity : An Example
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Min Weight Odd Circuit Problem

Figure: An Odd Ciruit
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Characterization of Domino Parity Constraints

Domino Parity Constraint: Primal Form.
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Idea: Reduce cut-generation to min-weight odd circuit problem.
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Characterization of Domino Parity Constraints

Domino Parity Constraint: Dual Form.

L =
ULy =

Idea: Reduce cut-generation to min-weight odd circuit problem.
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Characterization of Domino Parity Constraints

Domino Parity Constraint: Extended Dual Form.

—e [

+—e (Odd edges.

Black edges + odd edges define an odd circuit.
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Implementation: Planarization

If graph is not planar, identify a forbidden minor. Then:

@ Contract edges.
Contracting nodes which are not connected in the minor
eliminates it from the shrunk graph.

@ Delete edges.
Carefull Deleting edges means loosing validity of Subtour
elimination constraints.
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Implementation: Speed-Ups

@ Pruning to restrict search space.
Allows us to build cuts in BB tree, even in largest instances.

@ Safe shrinking to reduce problem size.
70% - 90% smaller graphs obtained.

@ Random walk to generate more cuts.
Thousands of cuts generated per run.

@ Tighten to re-utilize old cuts.
Thousands of cuts generated per round.
Generates cuts not visible after planarization.
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Tests on TSPLIB

Improvements to Root LP on 8 largest TSPLIB problems:

Name GAP Closed
pla7397 67%
rl11849 66%

usal3509 55%
brd14051 52%
di5112 47%
d18512 40%
pla33810 38%
pla85900* 27%

(*) Problem is not optimally solved as of yet.
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Previously Unsolved Problems: d18512.

Number of Cities: 18,512.
Origin: Cities of Germany.
Optimal Solution: 645,238.

BB Nodes: 424,241.

Approx. Sol. Time: 57.5 years.
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Previously Unsolved Problems: pla33810.

i EATIN
=374 Number of Cities: 33,810.

- Origin: Circuit Board Design.
Optimal Solution: 66,048,945.
BB Nodes: 577.

Approx. Sol. Time: 15.7 years.
Largest TSP instance solved!
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k-Dominoes

Definition (k-Domino)

A k-domino consists of k + 1 sets (T1, To, ..

., Tk; T) such that:

@0CTicTCVforali=1,...,k
@ The edges U{E(T; : T\ T;):i €1} define a |I| + 1 cut in the
subgraph of G induced by T, forall® C 1 c {1,...,k}.
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The k-Parity Constraint
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Super Connectivity and k-Dominoes

Definition (Super-Connectivity)

A k-domino (Tq, T, ..., Tk; T) is super-connected if:
@ T and V \ T are connected in G*.
@ T;and T \ T; are connected in G* Vi=1,...,k.
@ X*(E(T;:V\T))>0and x*(E(T\T;:V\T))>0 VO<i<Kk.

Is every k-domino in a violated constraint super-connected?
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Super Connectivity and Duality

Lemma

If a k-domino (Tq, Ty, ..., Tk; T) is super-connected, then
@ C = §(T) is a simple cycle in G*.
@ P, =E(T; : T \ T;) is a simple path with end-points in C.
@ All of the paths P; are on the same side of C with regard to the
planar embedding.
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Super Connectivity : An Example
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Separation Algorithm: A key step.
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00

Figure: A 11-Parity Euler Subgraph

For Clique Trees:
Problem Reduces to Min-Weight-1K-Parity Euler Subgraph Problem
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Characterization of k-Parity Constraints
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Idea: Each handle can be modelled as an odd circuit.
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Characterization of k-Parity Constraints
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Here we consider relevant edges in the dual of the support graph.
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Characterization of k-Parity Constraints

Hy o—oE

» Odd Edges

We observe two odd eulerian graphs: One for each handle.

Cook, Espinoza, Goycoolea (Georgia Tech) IPCO 2005 25/28



A Separation Heuristic for k = 2.

Heuristic:
@ Find a Domino-Parity constraint with slack as small as possible.

@ Grow a second handle by solving a constrained odd circuit
problem.

Other Implementation Details:
@ Planarization, Pruning.
@ Shrinking, Tighten.

Cook, Espinoza, Goycoolea (Georgia Tech) IPCO 2005 26 /28



Tests on TSPLIB

How much do these new cuts close the gap?

Instance DP 2P

pcb3038 75.38% 14.06%
fnl4461 45.46% 19.05%
rl5914 61.76% 10.58%
rl5934  64.98% 26.32%

Each test instance was ran ten times.
Results are computed from average solutions.
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