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The Traveling Salesman Problem

min cx

∑
e∈δ(v)

xe = 2 ∀v ∈ V
∑

e∈δ(S)

xe ≥ 2 ∀S ( V

xe ∈ {0, 1} ∀e ∈ E
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Background

“ Separating a Superclass of Comb Inequalities in Planar Graphs ”

- Adam E. Letchford [ Math of OR, 2000 ]

Introduces a class of inequalities called “Domino Parity
Constraints” which generalize comb inequalities.

Proves that these constraints can be separated in polynomial time
in planar graphs
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Dominoes

Definition (Domino)
A domino is a pair of sets (T1; T ) such that ∅ ( T1 ( T ( V .

{ }T1

T

Lemma

For any valid tour x ∈ {0, 1}E ,

x(E(T1 : T \ T1)) + x(δ(T )) ≥ 3
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The Domino Parity Constraint

∑

T∈T

x(E(T1 : T \ T1)) +
∑

T∈T

x(δ(T )) ≥ 3p
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The Domino Parity Constraint

x(FH) +
∑

T∈T

x(E(T1 : T \ T1)) +
∑

T∈T

x(δ(T )) ≥ 3p + 1
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The Domino Parity Constraint II

x(FH) +
∑

T∈T

x(E(T1 : T \ T1)) +
∑

T∈T

x(δ(T )) ≥ 3p + 1
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The Domino Parity Constraint II

µHx +
∑

T∈T

x(δ(T )) ≥ 3p + 1
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Preliminaries

Definition (Support Graph)
Let,

E∗ = {e ∈ E : x∗
e > 0}

The support graph of G is the sub-graph G∗ = (V , E∗).

Henceforth assume:

x∗ ∈ QE
+ satisfies all subtour elimination constraints.

G∗ is planar, and Ḡ∗ is its dual.

For F ⊆ E∗ let F̄ be corresponding edges in Ḡ∗.
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Super Connectivity

Definition (Super-Connectivity)
A domino (T1; T ) is super-connected if:

T and V \ T are connected in G∗.

T1 and T \ T1 are connected in G∗.

x∗(E(T1 : V \ T )) > 0 and x∗(E(T \ T1 : V \ T )) > 0.

Lemma
Every tooth (T1; T ) in a violated domino-parity is super-connected.

Cook, Espinoza, Goycoolea (Georgia Tech) IPCO 2005 9 / 28



Super Connectivity and Duality

Lemma
If a tooth (T1; T ) is super-connected, then

C = δ(T ) is a simple cycle in Ḡ∗.

P = E(T1 : T \ T1) is a simple path with end-points in C.

Observation:
There exist two nodes s, t ∈ V (Ḡ∗) such that C ∪ P define three
disjoint paths in Ḡ∗.
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Super Connectivity : An Example
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Super Connectivity : An Example

s t
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Min Weight Odd Circuit Problem
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Figure: An Odd Ciruit
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Characterization of Domino Parity Constraints

Domino Parity Constraint: Primal Form.

Idea: Reduce cut-generation to min-weight odd circuit problem.
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Characterization of Domino Parity Constraints

Domino Parity Constraint: Dual Form.

��

� � �

��� � � �
F

δ(T )

E(T1 : T \ T1)

Idea: Reduce cut-generation to min-weight odd circuit problem.
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Characterization of Domino Parity Constraints

Domino Parity Constraint: Extended Dual Form.

��

� � �

��� � � �
F

Odd edges.

Black edges + odd edges define an odd circuit.
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Implementation: Planarization

If graph is not planar, identify a forbidden minor. Then:

Contract edges.
Contracting nodes which are not connected in the minor
eliminates it from the shrunk graph.

Delete edges.
Careful! Deleting edges means loosing validity of Subtour
elimination constraints.
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Implementation: Speed-Ups

Pruning to restrict search space.
Allows us to build cuts in BB tree, even in largest instances.

Safe shrinking to reduce problem size.
70% - 90% smaller graphs obtained.

Random walk to generate more cuts.
Thousands of cuts generated per run.

Tighten to re-utilize old cuts.
Thousands of cuts generated per round.
Generates cuts not visible after planarization.
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Tests on TSPLIB

Improvements to Root LP on 8 largest TSPLIB problems:

Name GAP Closed
pla7397 67%
rl11849 66%

usa13509 55%
brd14051 52%
d15112 47%
d18512 40%

pla33810 38%
pla85900* 27%

(*) Problem is not optimally solved as of yet.
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Previously Unsolved Problems: d18512.

Number of Cities: 18,512.
Origin: Cities of Germany.
Optimal Solution: 645,238.
BB Nodes: 424,241.
Approx. Sol. Time: 57.5 years.
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Previously Unsolved Problems: pla33810.

Number of Cities: 33,810.
Origin: Circuit Board Design.
Optimal Solution: 66,048,945.
BB Nodes: 577.
Approx. Sol. Time: 15.7 years.
Largest TSP instance solved!
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k -Dominoes

Definition (k -Domino)
A k-domino consists of k + 1 sets (T1, T2, . . . , Tk ; T ) such that:

∅ ( Ti ( T ( V for all i = 1, . . . , k

The edges
⋃
{E(Ti : T \ Ti) : i ∈ I} define a |I|+ 1 cut in the

subgraph of G induced by T , for all ∅ ( I ⊂ {1, . . . , k}.

{

{ }T1

T2

T

Lemma

For any valid tour x ∈ {0, 1}E ,

x(δ(T ))− 2
2

+

k∑

i=1

x(E(Ti : T \ Ti)) ≥ k
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The k -Parity Constraint

H1

H2

• Λ(T ) ⊆ H ∀T ∈ T

• Λ(H) ⊆ T ∀H ∈ H

• |Λ(H)| odd ∀H ∈ H

• T ← |Λ(T )|-domino ∀T ∈ T

∑

H∈H

µHx +
∑

T∈T

x(δ(T )) ≥ 2|T |+ |H|+
∑

H∈H

|Λ(H)|
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Super Connectivity and k -Dominoes

Definition (Super-Connectivity)
A k -domino (T1, T2, . . . , Tk ; T ) is super-connected if:

T and V \ T are connected in G∗.

Ti and T \ Ti are connected in G∗ ∀i = 1, . . . , k .

x∗(E(Ti : V \ T )) > 0 and x∗(E(T \ Ti : V \ T )) > 0 ∀0 ≤ i ≤ k .

Question
Is every k-domino in a violated constraint super-connected?
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Super Connectivity and Duality

Lemma
If a k-domino (T1, T2, . . . , Tk ; T ) is super-connected, then

C = δ(T ) is a simple cycle in Ḡ∗.

Pi = E(Ti : T \ Ti) is a simple path with end-points in C.

All of the paths Pi are on the same side of C with regard to the
planar embedding.
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Super Connectivity : An Example
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Separation Algorithm: A key step.
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Figure: A 11-Parity Euler Subgraph

For Clique Trees:
Problem Reduces to Min-Weight-1k -Parity Euler Subgraph Problem
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Characterization of k -Parity Constraints

H1

H2

Idea: Each handle can be modelled as an odd circuit.
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Characterization of k -Parity Constraints

H1

H2 F

δ(T )

E(Ti : T \ Ti)

Here we consider relevant edges in the dual of the support graph.
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Characterization of k -Parity Constraints

H1

H2 F

Odd Edges

We observe two odd eulerian graphs: One for each handle.
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A Separation Heuristic for k = 2.

Heuristic:

Find a Domino-Parity constraint with slack as small as possible.

Grow a second handle by solving a constrained odd circuit
problem.

Other Implementation Details:

Planarization, Pruning.

Shrinking, Tighten.
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Tests on TSPLIB

How much do these new cuts close the gap?

Instance DP 2P
pcb3038 75.38% 14.06%
fnl4461 45.46% 19.05%
rl5914 61.76% 10.58%
rl5934 64.98% 26.32%

Each test instance was ran ten times.
Results are computed from average solutions.
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Thank you! Questions?
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