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Abstract. Letchford (2000) introduced the domino-parity inequalities for the symmetric traveling
salesman problem as a superclass of the comb inequalities proposed by Chvatal (1973) and Grötschel and
Padberg (1979). A key result of Letchford is that if the support graph of an LP solution is planar, then
the separation problem for domino-parity inequalities can be solved in polynomial time. We generalize
domino-parity inequalities to multi-handled configurations, introducing a superclass of bipartition and
star inequalities. Also, we generalize Letchford’s algorithm, proving that for a fixed integer k, one can
separate a superclass of k-handled clique-tree inequalities satisfying certain connectivity characteristics
with respect to the planar support graph. We describe an implementation of this algorithm which is
exact for a single handle (that is, Letchford’s Algorithm) and a heuristic for the case of two handles.
This implementation includes pruning methods to restrict the search for dominoes, a parallelization of
the main domino-building step, heuristics to obtain planar-support graphs, a safe-shrinking routine, a
random-walk heuristic to extract additional violated constraints, and a tightening procedure to allow
us to modify existing inequalities as the LP solution changes. We report computational results showing
the strength of the new routines, including the optimal solution of the TSPLIB instance pla33810.

1 Introduction

Let G = (V,E) be a complete graph with edge costs (ce : e ∈ E). The symmetric traveling salesman problem,
or TSP, is to find a minimum-cost tour in G, that is, a Hamiltonian cycle of minimum total edge cost. A
tour can be represented as a 0-1 vector x = (xe : e ∈ E), where xe = 1 if edge e is used in the tour and
xe = 0 otherwise. In the Dantzig, Fulkerson, and Johnson [7] cutting-plane method for the TSP, a linear
programming (LP) relaxation is created by iteratively finding linear inequalities that are satisfied by all tour
vectors. This approach has been the most successful exact solution procedure proposed to date for the TSP;
surveys of the large body of literature on the approach can be found in Jünger, Reinelt, and Rinaldi [12] and
Naddef [14].

For any S ⊆ V , let δ(S) denote the set of edges with exactly one end in S and let E(S) denote the set
of edges having both ends in S. For disjoint sets S, T ⊆ V , let E(S : T ) denote the set of edges having one
end in S and one end in T . For any set F ⊆ E, define x(F ) :=

∑

(xe : e ∈ F ).
Every tour of G satisfies the subtour constraints

x(δ(S)) ≥ 2 ∀ ∅ 6= S ( V. (1)

An important property of these constraints is that the corresponding separation problem can be solved
efficiently, that is, given a non-negative vector x∗ a violated constraint can be found in polynomial time,
provided one exists.

Much of the TSP literature is devoted to the study of classes of inequalities that are valid for the TSP,
extending the subtour constraints in different ways. Many properties of these classes of inequalities are known,
but for the most part polynomial-time separation algorithms have proven to be elusive. A notable exception
is the separation algorithm for blossom-inequalities by Padberg and Rao [17]; variations of the Padberg-
Rao algorithm are included in most current codes for the TSP. The absence of other efficient separation
algorithms has lead to the use of various heuristic methods for handling TSP inequalities within cutting-
plane algorithms. The heuristics are effective in many cases (see Padberg and Rinaldi [18], Applegate et
al. [1], and Naddef and Thienel [16]), but additional exact methods could be critical in pushing TSP codes
on to larger test instances.



An interesting new approach to TSP separation problems was adopted by Letchford [13], building on
earlier work of Fleischer and Tardos [8]. Given an LP solution vector x∗, the support graph G∗ is the
subgraph of G induced by the edge-set E∗ = {e ∈ E : x∗

e > 0}. Letchford [13] introduced a new class of TSP
inequalities, called domino-parity constraints, and provided a separation algorithm in the case where G∗ is
a planar graph. An initial computational study of this algorithm by Boyd et al. [4], combining a computer
implementation with by-hand computations, showed that the method can produce strong cutting planes for
instances with up to 1,000 nodes.

In this paper we present a further study of Letchford’s algorithm. We begin by describing a generalization
of domino-parity inequalities and Letchford’s algorithm to include certain multi-handled configurations. We
also include a range of procedures for improving the practical performance of the separation routines, together
with computational testing of large TSPLIB instances.

2 The k-Parity Inequalities

Definition 1. Consider a family of sets (T1, T2, . . . , Tk;T ) satisfying ∅ 6= Ti ( T ( V, ∀i ∈ Ik ≡ {1, . . . , k}.
We call this family a regular k-domino if for any set ∅ 6= K ⊆ Ik, the edges

⋃

{E(Ti : T \ Ti) : i ∈ K} define
a |K| + 1 (or greater) cut in the subgraph of G induced by T . The family is called a degenerate k-domino if
(T1, . . . , Tk) defines a partition of T . We refer to the k−domino (T1, . . . , Tk;T ) as T and define βT as 1 if
T is regular and as k

k−1 if T is degenerate. In general, we say that the sets T1, . . . , Tk are the halves of T .
Finally, if T is a k-domino, we say that κ(T ) = k.

Lemma 1. Let T = (T1, T2, . . . , Tk;T ) be a k−domino. If x satisfies all subtour constraints, then

βT

2
(x(δ(T )) − 2) +

k
∑

i=1

x(E(Ti : T \ Ti)) ≥ k.

Proof. Assume x satisfies all subtour constraints. Let B1, B2, . . . , Br correspond to the partition of T obtained
by removing the edge sets E(T1 : T \ T1), E(T2 : T \ T2), . . . , E(Tk : T \ Tk). Then

r
∑

i=1

x(δ(Bi)) = x(δ(T )) +

r
∑

i=1

x(E(Bi : T \ Bi)).

It follows that
βT

2
(x(δ(T )) − 2) =

βT

2

(

r
∑

i=1

(x(δ(Bi)) − x(E(Bi : T \ Bi))) − 2

)

. (2)

However, note that if T is regular, then βT = 1 and

r
∑

i=1

x(E(Bi : T \ Bi)) ≤ 2

k
∑

i=1

x(E(Ti : T \ Ti)).

On the other hand, if T is degenerate, then βT ≤ 2 and each Ti can be assumed equal to Bi. Thus, in either
case we have

βT

2

r
∑

i=1

x(E(Bi : T \ Bi)) ≤
k
∑

i=1

x(E(Ti : T \ Ti)). (3)

Finally, note that if T is regular, then r > k and βT = 1. Likewise, if T is degenerate then r = k and
βT = k/(k − 1). Thus, in either case, βT (2r − 2)/2 ≥ k, and

βT

2

(

r
∑

i=1

x(δ(Bi)) − 2

)

≥
βT

2
(2r − 2) ≥ k (4)

Putting together (2), (3), and (4) we get the desired result. ut
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Definition 2. Consider a family of teeth T and a family of handles H, where each T ∈ T is a κ(T )-domino
(with κ(T ) ≤ |H|)and each H ∈ H is a proper subset of V . We say that Λ defines a proper tooth-handle
relationship on T and H if we have the following (symmetric) associations. Each tooth T ∈ T is associated
with exactly κ(T ) handles H ∈ H, call this set Λ(T ), and each handle H ∈ H is associated with an odd
number of dominoes T ∈ T , call this set Λ(H). For ease of notation, we index the halves of T according to
the handle to which they are associated, that is, the halves of T are labeled {TH}H∈Λ(T ).

Definition 3. Let F= {E1, E2, . . . , Ek}, where Ei ⊆ E for all i ∈ Ik, and define µe := |{F ∈ F : e ∈ F}|
for each e ∈ E. Following Letchford [13], the family F is said to support the cut δ(H) if δ(H) = {e ∈ E :
µe is odd}.

Theorem 1. Suppose that Λ defines a proper tooth-handle relationship on T and H. For each H ∈ H let
FH ⊆ E be such that {FH , {E(TH : T \ TH)}T∈Λ(H)} supports the cut δ(H) in G and define µH accordingly.
Then the inequality

∑

H∈H

µHx +
∑

T∈T

βT x(δ(T )) ≥
∑

H∈H

|Λ(H)| + 2
∑

T∈T

βT + |H| (5)

is satisfied by all tours.

Proof. We use induction on |H|, the case |H| = 0 following from the validity of the subtour constraints. Let
xc be the incidence vector of a tour. If there exists Ho ∈ H such that µHoxc > |Λ(Ho)|−1, then, since µHoxc

is even valued (see Letchford [13]), we have µHoxc ≥ |Λ(Ho)| + 1. Note also that for each T ∈ Λ(Ho) the
family {TH : H ∈ Λ(T ) \ Ho;T} defines a regular (|Λ(T )| − 1)−domino. Thus, by induction, the inequality
obtained by removing Ho and redefining β′

T = βT for T ∈ T \ Λ(Ho) and β′
T = 1 for T ∈ Λ(Ho)

∑

H∈H\Ho

µHx +
∑

T∈T

β′
T x(δ(T )) ≥

∑

H∈H\Ho

|Λ(H)| + (|H| − 1) + 2
∑

T∈T

β′
T

is valid. Then (5) follows since (βT − β′
T )xc(δ(T )) ≥ (βT − β′

T )2, and µHoxc ≥ |Λ(Ho)| + 1.
So we can now assume that µHxc ≤ |Λ(H)| − 1 for each H ∈ H. From Lemma 1 we have for each T ∈ T

βT (xc(δ(T )) − 2) ≥ 2|Λ(T )| − 2
∑

H∈Λ(T )

xc(E(TH : T \ TH)).

Hence,

∑

T∈T

βT (xc(δ(T )) − 2) ≥ 2
∑

T∈T

|Λ(T )| − 2
∑

T∈T

∑

H∈Λ(T )

xc(E(TH : T \ TH))

≥ 2
∑

H∈H

|Λ(H)| − 2
∑

H∈H

µHxc

=
∑

H∈H

|Λ(H)| +
∑

H∈H

(

|Λ(H)| − µHxc
)

−
∑

H∈H

µHxc

≥
∑

H∈H

|Λ(H)| + |H| −
∑

H∈H

µHxc.

ut

We refer to the constraints (5) as k-parity inequalities, when |H| = k. When k = 1 this class is precisely
the domino-parity inequalities of Letchford [13]. It is easy to see that not all k-parity inequalities define facets
of the TSP polytope, but the class does provide a common framework for possibly extending Letchford’s
algorithm to superclasses of other inequalities that have proven to be effective in TSP codes. In particular,
k-parity inequalities generalize clique-tree inequalities (Grötschel and Pulleyblank [10]) in the same way as
domino-parity inequalities generalize combs.
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Definition 4. Families H and T are said to define a clique-tree if:
(i) H is a family of pairwise disjoint proper subsets of V .
(ii) T is a family of pairwise disjoint proper subsets of V .
(iii) No T ∈ T is contained in

⋃

(H : H ∈ H).
(iv) For each H ∈ H let Λ(H) = {T : T ∩ H 6= ∅}. |Λ(H)| must be odd.
(v) The intersection graph defined by the families H and T is a tree.

In this context, the sets H ∈ H are called handles and the sets T ∈ T are called teeth. If the intersection
graph defined by the families H and T is a forest, we say that H and T define a clique-forest. Note that if H
and T define a clique-forest, then it is possible to define a |H|-parity constraint as follows. For each T ∈ T
define Λ(T ) = {H ∈ H : T ∈ Λ(H)}, and TH = T ∩ H, ∀H ∈ Λ(T ). Clearly (TH : H ∈ Λ(T );T ) defines a
|Λ(T )|-domino and (H, T , Λ) defines a proper tooth-handle relationship. Thus, Theorem 1 implies that the
well-known clique-tree (forest) constraint is valid,

∑

H∈H

x(δ(H)) +
∑

T∈T

x(δ(T )) ≥ 2|T | + |H| +
∑

H∈H

|Λ(H)|

where in the case of clique-trees,
∑

(|Λ(H)| : H ∈ H) is commonly written as |T | + |H| − 1. Clique-tree
inequalities generalize combs inequalities, which are clique trees having a single handle.

We will focus on special cases of clique trees in the next section, but we would like to point out that
k-parity inequalities also generalize several other well-known classes of TSP constraints.

Proposition 1. The family of k−parity inequalities generalizes the family of bipartition inequalities and the
family of star inequalities.

3 Planar separation with multiple handles

Throughout this section we assume that the LP solution x∗ satisfies all subtour constraints. Also, for any
set F ⊆ E, we define F ∗ = {e ∈ F : x∗

e > 0}.

Definition 5. For a given x∗ ∈ SEP (n), We say that a k-domino (T1, . . . , Tk;T ) is super-connected if:
(i) T and V \ T are connected in G∗.
(ii) Ti and T \ Ti are connected in G∗ for all i ∈ Ik.
(iii) x∗(E(Ti : V \ T )) > 0 and x∗(E(T \ Ti : V \ T )) > 0 for all i ∈ Ik.
We say that a k-parity constraint having teeth T is super-connected, if every tooth T ∈ T is super-connected.

While as of yet it is an open problem whether or not the class of k-parity inequalities can be separated
in polynomial time, we extend the ideas of Letchford [13] so as to separate, for fixed k, a subclass of k-parity
inequalities which contains all super-connected clique-trees with k handles or less, under the assumption that
the support graph G∗ is planar.

For this we proceed in three steps. First, we characterize violated k-parity inequalities. Second, we char-
acterize violated k-parity inequalities under the additional assumptions that the support graph G∗ is planar,
and that teeth are super-connected. Finally, we outline an algorithm for separating a subclass of k-parity
inequalities when G∗ is planar; this subclass (defined with respect to an LP solution x∗) contains all super-
connected clique-tree inequalities which have k handles or less.

The following two Propositions (the proofs of which are to be included in a future paper) are not used
throughout the following sections. However, they serve as a motivation for separating classes of super-
connected constraints.

Proposition 2. Let x∗ be an LP solution and consider a violated clique-tree constraint on k handles, having
teeth T . Let (T1, T2, . . . , Tq;T ) ∈ T . If all clique-tree constraints having less than k handles are satisfied by
x∗, then (a) T is connected, (b) Ti is connected for all i ∈ Iq, (c) x∗(E(Ti : V \ T )) > 0 and x∗(E(T \ Ti :
V \ T )) > 0 for all i ∈ Iq.
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Proposition 3. If all subtour inequalities are satisfied, then there exists a maximally violated (if any) comb
inequality which is super-connected. If all subtour and comb inequalities are satisfied, then there exists a
maximally violated (if any) clique-tree inequality on two handles which is super-connected.

Proposition 2 indicates that when clique-tree inequalities on k handles are satisfied, then all violated
clique-trees on k + 1 handles are almost super-connected. Proposition 3 shows that once comb inequalities
are effectively separated, we may assume for exact separation purposes that two handled clique-trees are
super-connected.

3.1 Characterizations of Violated k-Parity Constraints

Definition 6. Define the weight of k-domino (T1, T2, . . . , Tk;T ) to be

w(T ) := βT (x(δ(T )) − 2) +
k
∑

i=1

x(E(Ti : T \ Ti)) − k. (6)

Lemma 2. The slack of a k-parity inequality is
∑

T∈T

w(T ) +
∑

H∈H

x(FH) − |H|.

Proof. Consider a k-parity inequality defined by H, T , and Λ. The slack is,

∑

H∈H

µHx +
∑

T∈T

βT x(δ(T )) −
∑

H∈H

|Λ(H)| − 2
∑

T∈T

βT − |H|

=
∑

H∈H



x(FH) +
∑

T∈Λ(H)

x(E(TH : T \ TH))



+
∑

T∈T

(βT (x(δ(T )) − 2) − |Λ(T )|) − |H|

=
∑

H∈H

x(FH) +
∑

T∈T



βT (x(δ(T )) − 2) +
∑

H∈Λ(T )

x(E(TH : T \ TH)) − |Λ(T )|



− |H|

=
∑

H∈H

x(FH) +
∑

T∈T

w(T ) − |H|

ut

Note that Lemma 1 and Lemma 2 together imply that a violated k-parity constraint must satisfy

0 ≤
βT

2
(x(δ(T )) − 2) ≤ w(T ) ≤ |H| ∀T ∈ T . (7)

Definition 7. Consider a family of teeth T , where each T ∈ T satisfy κ(T ) ≤ k. We say that Φ defines an
abstract tooth-handle relationship over T and Ik if (i) Φ(T ) ⊆ Ik and |Φ(T )| = κ(T ) for all T ∈ T , (ii)
Φ(i) ⊆ T and |Φ(i)| is odd, for all i ∈ Ik, and (iii) T ∈ Φ(i) iff i ∈ Φ(T ) for all i ∈ Ik, T ∈ T .

Lemma 3. There exists a violated k-parity inequality iff there exist (T , Φ) defining an abstract tooth-handle
relationship, and sets Ri ⊆ E∗ for all i ∈ Ik such that:
(i) {E∗(Ti : T \ Ti)}T∈Φ(i) and {Ri} support a cut in G∗ for all i ∈ Ik.
(ii)

∑

i∈Ik

x∗(Ri) +
∑

T∈T

w(T ) − k < 0.

Proof. From Theorem 1 and Lemma 2, a k-parity inequality is violated iff there exist (H, T , Λ) defining a
proper tooth-handle relationship, and sets FH ⊆ E for H ∈ H such that:
(a) {E(TH : T \ TH)}T∈Λ(H) and {FH} support the cut δ(H) in G for all H ∈ H
(b)

∑

H∈H

x∗(FH) +
∑

T∈T

w(T ) − |H| < 0
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We first prove necessity. Assume that (H, T , Λ) defines a violated k-parity inequality. We know that there
exists FH ⊆ E for H ∈ H satisfying (a)-(b). Assume H = {Hi : i ∈ Ik}. For each i ∈ Ik define Φ(i) = Λ(Hi),
Φ(T ) = {i : Hi ∈ Λ(T )} and Ri = FHi

∩E∗. Note that Φ and T define an abstract tooth-handle relationship,
and |H| = k. Hence, conditions (a)-(b) imply (i)-(ii).

We next prove sufficiency. Assume that T , Φ define an abstract tooth-handle relationship, and sets Ri ⊆
E∗, i ∈ Ik are such that (i) and (ii) hold. For each i ∈ Ik let Hi ⊆ V be one shore of the cut supported by
{E∗(Ti : T \ Ti)}T∈Φ(i) and Ri, and let Λ(Hi) = Φ(i). Likewise, for T ∈ T define Λ(T ) = {Hi : i ∈ Φ(T )}.
Note that Λ define a proper tooth-handle relationship on T ,H. Define FHi

⊆ Ri ∪ {e ∈ δ(Hi) : xe = 0} such
that (a) holds. Thus (b) must also hold. ut

For the remainder of this section, assume that G∗ is a planar graph and let Ḡ∗ denote the planar dual of
G∗. For any subset F ⊆ E(G∗), denote by F̄ the corresponding edges in Ḡ∗ . For each ē ∈ Ḡ∗ let x∗

ē = x∗
e.

Definition 8. A graph H is called Eulerian if every node has even degree. (As in Letchford [13], we do not
require that H be connected.)

Definition 9. Let r be a positive integer and suppose that E1, . . . , Er are edge-sets satisfying Ei ⊆ E∗, i ∈
Ir. The collection {Ēi : i ∈ Ir} is said to support an Eulerian subgraph in Ḡ∗ if the edges ē for which µe is
odd form an Eulerian subgraph in Ḡ∗ .

This definition implies that {Ēi : i ∈ Ir} supports an Eulerian subgraph in Ḡ∗ iff {Ei : i ∈ Ir} supports
a cut in G∗. Hence we have the the following dual version of Lemma 3.

Lemma 4. A k-parity inequality is violated iff there exist T , Φ defining an abstract tooth-handle relationship,
and sets R̄i ⊆ Ē∗ for i ∈ Ik such that:
(i) {E∗(Ti : T \ Ti)}T∈Φ(i) and {R̄i} support an Eulerian subgraph in Ḡ∗ for all i ∈ Ik.

(ii)
k
∑

i=1

x∗(R̄i) +
∑

T∈T

w(T ) − k < 0

Proof. Follows from the definitions. ut

Lemma 5. A k-domino (Ti : i ∈ Ik;T ) is super-connected iff (a) C(T ) = δ∗(T ) is a simple cycle in Ḡ∗ ,
(b) for each i ∈ Ik the edges Pi(T ) = E∗(Ti : T \ Ti) define a simple path in Ḡ∗ with end-points {sT

i , tTi } in
C(T ) (where sT

i 6= tTi ) and all other nodes not in C(T ), and (c) all of the paths Pi(T ) are in the same side
of the cycle C with respect to the planar embedding.

Proof. First note that for any set A ( V both A and V \ A are connected if and only if δ∗(A) is a simple
cycle in Ḡ∗ . Thus condition (i) in Definition 5 is equivalent to condition (a) in the Lemma.

Now we prove that conditions (i)-(iii) of Definition 5 imply conditions (b)-(c) of the Lemma.
Assume that for p, q ∈ Ik we have that some edge ēp ∈ Pp(T ) and some edge ēq ∈ Pq(T ) are such

that ēp, ēq are on different sides of C with regard to the embedding. Then, the end-points of ep and eq are
separated by δ∗(T ). Since this can’t happen, because T is connected, it follows that the sets Pi(T ) for i ∈ Ik

are all on the same side of C. Thus we obtain condition (c) on Lemma 5.
From condition (ii) on Definition 5 it follows that Ti is connected. From (i), (ii), and (iii) on Definition 5

it follows that T \ Ti and V \ T are connected, and E∗(T \ Ti : V \ T ) 6= ∅, hence V \ Ti is connected. Thus
δ∗(Ti) is a simple cycle. Since x∗(E(Ti : V \ T )) > 0 it follows that δ∗(Ti) intersects δ∗(T ) in at least one
edge. Since Pi(T ) is δ∗(Ti) \ δ∗(T ), it must be a node-disjoint union of simple paths with end-points in C.
If it is the union of two or more such paths then note that these paths must be on the same side of C, and
must divide this side into at least three parts - meaning that either Ti or T \ Ti is disconnected in G∗. Thus
Pi must be a single path, and (b) follows.

Next we prove that conditions (a)-(c) imply conditions (ii)-(iii) of Definition 5.
Since δ∗(Ti) = E∗(Ti : T \ Ti) ∪ E∗(Ti : V \ T ) it follows that δ∗(Ti) ⊆ (δ∗(T ) ∪ E∗(Ti : T \ Ti)).

However, δ∗(Ti) must be an Eulerian subgraph in Ḡ∗ , and the only Eulerian subgraphs contained in δ∗(T )∪
E∗(Ti : T \ Ti) are simple cycles. Thus, δ∗(Ti) is a simple cycle and Ti is connected. To prove that T \ Ti is
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connected is analogous, and so (ii) follows. If x∗(E(Ti : V \ T )) = 0 then E∗(Ti : T \ Ti) = δ(Ti). Hence,
E∗(Ti : T \ Ti) would be an Eulerian subgraph and not a simple path. If x∗(E(T \ Ti : V \ T )) = 0 then
E∗(Ti : T \ Ti) = δ(T \ Ti). Hence, E∗(Ti : T \ Ti) would be an Eulerian subgraph and not a simple path.
Thus (iii) follows. ut

Definition 10. Consider two distinct super-connected k-dominoes T and L. If the end-points of Pi(T ) and
Pi(L) are the same for i ∈ Ik and w(T ) < w(L) we say that T dominates L.

Lemma 6. Consider two distinct super-connected k-dominoes T and L. If T dominates L, and if L is used in
some violated k-parity constraint, then L may be replaced by T to obtain another violated k-parity constraint
has less slack.

Proof. By removing each path Pi(L) and replacing it with Pi(T ) for i ∈ Ik, condition (i) of Lemma 4 is not
changed, and w(T ) < w(L) implies condition (ii) is not changed - in fact, the violation, given by (ii), will
improve from the substitution.

From Lemma 6 it follows that a maximally violated super-connected k-parity constraint will only have
non-dominated teeth.

3.2 Separating Super-Connected Clique Tree Constraints

Given a fixed k ∈ Z+ and a fractional LP solution x∗ satisfying all subtour constraints, the algorithm
proceeds in two steps. First, a minimal family of non-dominated teeth is generated. Next, a violated super-
connected k-handle constraint is generated (if such exists) by solving an odd Eulerian subgraph problem in
an appropriate graph.

In order to describe the tooth generation procedure, it is important to establish two results.

Lemma 7. Every tooth T in a violated k-handle clique-tree constraint must satisfy

2 ≤ x∗(δ(T )) < 2(k + 1) (8)

Proof. Follows from (7), the subtour constraints, and the fact that clique-trees have no degenerate teeth.

Lemma 8. Consider a violated super-connected k-handled clique-tree constraint with tooth set T . Let (Ti :
i ∈ Iκ(T );T ) be a κ(T )-domino in T , and define Pi to be the path E(Ti : T \ Ti) for all i ∈ Iκ(T ). Then,
(i) Paths Pi and Pj don’t cross with regards to the dual embedding, for i 6= j ∈ Iκ(T ).
(ii) Paths Pi and Pj can’t have the same end-points, unless κ(T ) = 2 for i 6= j ∈ Iκ(T ).
(iii) If paths Pi and Pj have the same end-points, then Pi 6= Pj, for i 6= j ∈ Iκ(T ).

Proof. For (i) If paths Pi and Pj cross, then halves Ti and Tj must intersect. For (ii) assume that Pi and
Pj have the same end-points. If there exists a path Pk with k 6= i, j, given that it can’t intersect paths Pi or
Pj , it must either run between Pi and Pj , or must run the side of either Pi or Pj . In either case, this implies
that Tk intersects Ti or Tj . For (iii) if Pi and Pj have the same end-points and the paths coincide, then the
tooth must be degenerate. However, this is contradictory with the definition of clique-trees. ut

Lemma 7 and Lemma 8 suggest a natural algorithm by which to enumerate a minimal set of teeth for a
violated super-connected k handle clique-tree constraint. First, enumerate all connected sets T ⊆ V which
satisfy condition (8) using an algorithm such as that of Nagamochi et. al [15]. Keep those sets T for which V \T
is connected. Let C = δ(T ). Choose a side of C with regard to the planar embedding, and let W represent
the nodes of that side minus the nodes in C. Next, for each pair of nodes u, v ∈ C compute the shortest
path and second-shortest path from u to v in W . Choose q ∈ Ik and a set of end-points {(si, ti) : i ∈ Iq} in
C. Check that that no two pairs of end-points are crossing (that is, such that it is impossible to take a path
from si to ti without crossing a path from sj to tj). If q = 2 and s1 = s2 = s, t1 = t2 = t, let P1 be the

shortest s to t path, and let P2 be the second-shortest s to t path. Otherwise, define P̂i as the shortest si to
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ti path for i ∈ Iq. If the paths P̂1, . . . , P̂q cross each other, un-cross them so as to define paths Pi, i ∈ Iq.
At this stage, C and the paths Pi, i ∈ Iq, define a q-domino. If the weight is larger than k, or, if there is
another q-domino which dominates it, discard the tooth. Keep iterating until all possible combinations of
end-points, sides of the cycle, and sets T have been exhausted. It is not difficult to see that this algorithm
is polynomial, and that it enumerates a minimal set of non-dominated teeth (which is polynomially sized).

For the specific case in which k = 1, a faster tooth generation procedure is presented in Letchford [13].
First, if k = 1, it is shown that a tooth T is super-connected iff δ(T ) and E(T1 : T \ T1) define three node-
disjoint paths in Ḡ∗ . In order to construct the teeth, a network N is constructed from the graph Ḡ∗ so that
the nodes of N and Ḡ∗ coincide. Then, for each edge in Ḡ∗ , two arcs (one in each direction) of capacity
one are added to N . By solving the min-cost three-unit flow problem between each pair of nodes in N , it is
possible to generate a minimal set of non-dominated teeth. The fact that paths in a solution may possibly
cross is not a problem, for it is shown that if an optimal solution is crossing, then for the given pair of nodes
there can be no tooth satisfying condition (7). In our implementation of Letchford’s algorithm we use this
idea, which will be further discussed in Section 4. This brings us to our main result.

Theorem 2. Suppose G∗ is planar and x∗ satisfies all subtour constraints. Consider a fixed integer k ≥ 1.
It is possible to separate in polynomial time a subclass of k-parity constraints which contains all violated
super-connected clique-tree inequalities on k handles.

The proof of this theorem consists of two parts. First we outline a two-stage algorithm which runs in
polynomial time, and then we prove that the algorithm separates a subclass of k-parity constraints which
contains all violated super-connected clique-tree inequalities.

The two steps of the algorithm are as follows:
(i) Construct a minimal non-dominated family of teeth L.
(ii) Construct a graph M [k] using L and Ḡ∗ . Solve the min-weight 1k-Eulerian Subgraph problem in M [k].

For a definition of the min-weight 1k-Eulerian Subgraph problem, see Appendix A. If we obtain a solution
in step (ii) having weight less than k, then we have found a violated k-parity constraint. The intuition of the
algorithm is as follows: From Lemma 4 we know that a violated k-parity inequality can be characterized by
a set of Eulerian-subgraphs of G∗, one for each handle, and each utilizing an odd number of teeth. For every
path Pi(T ) = E∗(Ti : T \ Ti) define an odd edge whose end-points coincide with the end-points of Pi(T ), and
whose weight coincides with the weight of the tooth. Thus, the problem can be modeled as that of searching
for a set of odd Eulerian subgraphs (those that use an odd number of odd edges), one for each handle, whose
combined weight is minimized, subject to side constraints (defined by the teeth) which link these subgraphs
to each other. The side constraints would impose that either all of the paths associated to a tooth are used
(in different handles), or none at all. The proposed algorithm works by defining a graph M [k] which contains
the Cartesian product of k copies of Ḡ∗ ; the idea being that any path in M [k] corresponds to k individual
paths in Ḡ∗ , one in each of the components (or layers) which make up the Cartesian product. By defining
special edges in M [k] associated to teeth in L, it is possible to associate certain Eulerian subgraphs in M [k]
to k-parity inequalities defined in Ḡ∗ . Note that M [1] coincides with the graph M ∗ as defined in Letchford
[13]; in this case Letchford proved that the condition of being Eulerian can be replaced by the condition of
being a simple cycle.

As we have already discussed, Step 1 can be performed in polynomial time. thus, we concentrate on the
second step of the algorithm.

Definition 11. Let x∗ ∈ SEP (n), and let L be a family of super-connected teeth, each with at most k
halves. We define M [k] in terms of G∗ and L, as an undirected graph, and functions p : E(M [k]) → {0, 1}k,
w : E(M [k]) → R+, where:
(i) V (M [k]) = (V̄ ∗)k.
(ii) For each ê ∈ Ē∗, i ∈ ik, and a ∈ (V̄ ∗)k, define e = e[ê, i, a] = (u, v) ∈ E(M [k]) such that ej := (uj , vj) =

(aj , aj) if j 6= i, and ei := (ui, vi) = ê. Define w(e[ê, i, a]) = x∗
ê and p(e[ê, i, a]) = 0k.

(iii) For each T ∈ L, a ∈ (V̄ ∗)k, and J = {ji : i ∈ iκ(T )} an ordered subset of Ik, define e = e[T, J, a] =
(u, v) ∈ e(M [k]) such that ej := (uj , vj) = (aj , aj) if j /∈ J , and eji

:= (uji
, vji

) = (sT
i , tTi ) if ji ∈ J .

Define w(e[T, J, a]) = w(T ) and p(e[T, J, a])j = 1 if j ∈ J and p(e[T, J, a])j = 0 if j /∈ J .
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Lemma 9. The size of M [k] is polynomially bounded in the size of G∗ and L.

Proof. (i) |V (M [k])| = |V̄ ∗|k.

(ii) |E(M [k])| = k |Ē∗| |V̄ ∗|k +
∑

(

(

k
i

)

i!|V̄ ∗|k2i−1|{T ∈ L : κ(T ) = i}| : i ∈ ik

)

.

(iii) |{T ∈ L : κ(T ) = i}| ≤
(

|V̄ ∗|
2

)i
.

ut

Note that the problem of finding a minimum weight Eulerian subgraph of M [k] having parity p ∈ {0, 1}k

when w ≥ 0 can be solved in polynomial time on the size of M [k] (see appendix A). Now we will prove that
an optimal solution to the 1k-parity problem in M [k] represents a k-parity constraint with the appropriate
violation.

Lemma 10. Let M∗ be an optimal solution to the minimum weight 1k−parity Eulerian subgraph problem in
M [k]. If w(M∗) < k then there exists a violated k−parity inequality for x∗ with violation at least w(M∗)−k.

Proof. We proceed by constructing a set T ⊆ L of teeth and an abstract tooth-handle relationship Φ on T
which satisfy the conditions of Lemma 3.

Let T := {T ∈ L : e[T, s, a] ∈ M∗}. Observe that T is a collection, and as such may have repeated
teeth. Despite this, note then that for all T ∈ T there exist associated ST ⊆ Ik and aT ∈ (V̄ ∗)k such that
e[T, ST , aT ] ∈ M∗ and |ST | = κ(T ). For each T ∈ T define Φ(T ) = ST . Likewise, define Φ(i) = {T ∈ T :
i ∈ ST }. Since p(M∗)i = 1 we have that |Φ(i)| is odd for all i ∈ Ik. Thus Φ defines an abstract-tooth handle
relationship on T .

Let R̄i := {ê ∈ Ē∗ : such that there are an odd number of edges e[ê, i, a] ∈ M ∗}. For T ∈ Φ(i) let ı̂ be
such that i = jı̂ ∈ ST . Then, by definition of M [k] and M∗, we have that {Pı̂(T )}T∈φ(i) and R̄i support an
Eulerian subgraph in Ḡ∗ .

Finally, note that
∑

(x∗(R̄i) : i ∈ ik)+
∑

(w(T ) : T ∈ T ) ≤ w(M∗) < k, Thus, the conditions of Lemma 3
hold and we conclude the proof. ut

To finish the proof of Theorem 2 the only missing step is to prove that each maximally violated clique-tree
inequality (H, T ) on k handles can be represented in M [k] as an Eulerian subgraph M ∗ of parity 1k and
weight w(M∗) =

∑

(x(RH) : H ∈ H) +
∑

(w(T ) : T ∈ T ). The proof given will be inductive, and makes use
of the following Lemma.

Lemma 11. Given a clique-tree constraint on k handles (H, T , Λ), there exists Ho ∈ H such that it shares
at most one tooth with the other handles, i.e. |Λ(Ho) ∩ (

⋃

(Λ(H) : H ∈ H \ Ho)) | <= 1.

Proof. Follows directly from the tree-structure of the intersection graph. ut

If k = 1, then consider the subgraph of M [1] with edges
⋃

(E(TH : T \ TH) : T ∈ Λ(H)) and FH . Note
that by Lemma 3 this graph is Eulerian. Replace each path E(TH : T \ TH) with e[T, {H}, a], where a ∈ V̄ ∗ is
arbitrary, and fixed. Call this subgraph M ∗. Clearly M∗ is also Eulerian. Moreover p(M∗) = |T | mod 2 = 1
and w(M∗) = x(FH) +

∑

(w(T ) : T ∈ T ). This concludes the proof for the case k = 1.
Now, assume that the theorem holds on super-connected clique-trees with up to k handles, and let

(H, T , Λ) be a super-connected clique-tree with k + 1 handles. By Lemma 11 there exists Ho ∈ H such
that |Λ(Ho) ∩ (

⋃

(Λ(H) : H ∈ H \ Ho))| <= 1. Consider now (Ĥ, T̂ , Λ̂) to be the super-connected clique-
tree inequality we obtain after removing handle Ho from (H, T , Λ). That is, remove Ho, all the 1-dominoes
in Λ(Ho), and eliminate the half THo

from the shared tooth, if any. Let Mk be the Eulerian subgraph
representing (Ĥ, T̂ , Λ̂) in M [k] and let M1 be the Eulerian subgraph representing (Ho, Λ(Ho), ΛHo

) in M [1].
If Ho doesn’t share any dominoes with the rest of the original inequality, it is enough to take any a ∈ V̄ ∗

and define M∗ in M [k + 1] as M∗ = M̂1 ∪ M̂k where M̂1 and M̂k are obtained from M1 and Mk by
extending their dimension so that they fit in M [k + 1]. To do this, define (M̂k)j = Mk

j for j ∈ Ik and

(M̂k)k+1 = {a, . . . , a}; also define (M̂1)k+1 = M1 and (M̂1)j = {a, . . . , a} for j ∈ Ik. It follows that
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w(M∗) = w(M1) + w(Mk) =
∑

(x(FH) : H ∈ H) +
∑

(w(T ) : T ∈ T ) and p(M∗)j = p(M1)j + p(Mk)j

mod 2 = 1 for all j ∈ Ik+1. Thus we conclude this case.
Assume now that Ho does share a domino T̂ with the rest of the inequality. Assume also that both

M1 and Mk are connected. Let e1 = (u1, v1) = e[T̂ , S1, a1] be the edge representing T̂ in Mk and let
e2 = (u2, v2) = e[T̂ ,Ho, a2] be the edge representing T̂ in M1. Since both graphs are connected and Eulerian
we may assume that both Mk and M1 are closed walks and can be written as Mk = {v1 → u1 → e1 → v1}
and M1 = {v2 → u2 → e2 → v2}. Thus we can define e = ((u1, u2), (v1, v2)) = e[T̂ , S1 ∪ {k + 1}, (a1, a2)] ∈
E(M [k + 1]) and define the Eulerian subgraph

M∗ =

{

v1
Mk

→ u1 → e1 → v1 → v1

u2 → u2 → e2 → v2
M1

→ u2

}

.

Note that by the same arguments given above, this subgraph has the correct weight and parity. If any of
the Eulerian graphs M1,Mk are not connected, then for each of these graphs, select the connected component
which has the shared tooth. For those components, repeat the procedure used in the previous case. For the
components not sharing a tooth, repeat the first procedure of appending a constant node for the missing
components in M∗. The parity for M∗ is just the sum of the parities of M 1 and Mk, and the weight is the
desired value. This completes the proof of Theorem 2.

4 Implementation and Computational Results

In this section we briefly describe our computational tests. First we discuss the implementation of Letchford’s
algorithm for separating domino-parity constraints, emphasizing the techniques we adopted to improve its
practical performance, and presenting some computational results. Next, we discuss the implementation of
a simple heuristic for separating 2-parity constraints.

4.1 Domino-Parity Constraints

Domino Searching Teeth were generated by using the network flow approach described in Section 3.2
and Letchford [13]. To find the min-weight node-disjoint paths between pairs s, t ∈ V (Ḡ∗ ) we used the
augmenting-shortest-path network-flow algorithm (See Ahuja et al [3] for details). For this, we build a net-
work N for the graph Ḡ∗ defining two arcs for each edge (one in each direction), assigning a capacity of one
to each. This algorithm computes the s − t flow by solving three successive s − t shortest path problems on
reduced capacity networks successively derived from N . Using this algorithm several speed-ups were possible.
Firstly, for fixed s ∈ V (Ḡ∗ ) the first s − t flow for all nodes t can be obtained by solving a single Dijkstra
algorithm in N rooted at s. The additional shortest-path computations need only be computed for nodes t
at distance not greater than 4/3 from s. Finally, when computing the s − t three-flow in N , one only need
consider intermediary nodes at distance not greater than 2 from s and t. This follows from the fact that
every cycle in Ḡ∗ corresponds to a cut in G∗, and hence, has weight at least 2 (due to subtour constraints).
Thus, if a node is used which has distance at least 2, since the other two paths will define a cycle, the bound
of 4 would be exceeded. A useful heuristic idea is to further restrict the set of intermediary nodes to those
of distance no greater than 2α for some α < 1; this restriction can cause the algorithm to miss violated
DP-cuts, but it greatly improves the speed and appears to work well in practice (we have set α = .55 in our
tests).

Parallelization Dominoes may be computed in parallel. In fact, one may divide the nodes s ∈ V (Ḡ∗ )
among different machines so that each one computes all of the (s, t) three-disjoint paths. We found the
domino-computation stage to be (by far) the most time consuming part of the algorithm, making this
parallelization crucial for obtaining acceptable running times on large instances when using α = 1. Our
parallel implementation is a master–worker system based on message passing.
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Random Walk The algorithm as formally defined in Letchford [13] computes exactly one constraint. In
practice, one would like the algorithm to compute as many violated constraints as possible. To achieve this,
instead of just solving the shortest odd-cycle problem in M ∗ we additionally run a random walk algorithm
that attempts to find small-weight odd cycles. This algorithm is fast, easy to implement, and in our tests
generally produced a large number of additional cuts, only the best of which were kept.

Safe Shrinking The size of the graph G∗ has a dramatic impact on the running time of our implementation.
Following the work of Padberg and Rinaldi [18], we attempt to reduce the size of G∗ by contracting edges in
G∗, redefining the vector x∗, and solving the separation problem in the new, smaller, graph. In this shrinking
process, a contraction is called safe if we know that the existence of a violated DP-inequality implies the
existence of one in the graph we obtain after the contraction. Although it is not always the case that shrinking
is safe, it is possible to give conditions under which it will be.

Theorem 3. Consider x∗ satisfying all subtour constraints, a DP-inequality ax ≤ b satisfying ax∗ > b, and
nodes u, v, t ∈ V (G∗) such that x∗

uv = 1, and x∗
ut + x∗

vt = 1. If au,v 6= 0 there exists another DP-inequality
a′x ≤ b′ such that a′

u,v = 0 and (a′x∗ − b′) ≥ (ax∗ − b). Thus, we can contract edge {u, v} and ensure the
existence of a maximally violated DP inequality with zero {u, v} coefficient.

As a pre-processor to our implementation, we repeatedly contract edges {u, v} while there exist nodes u, v, t
satisfying the conditions of Theorem 3.

Planarity The safe-shrinking procedure can greatly reduce the size of the graph over which we work, but
if the original graph G∗ is non-planar then the shrunk may too be non-planar. If this is the case, our
implementation does non-safe shrinks until a planar graph is obtained, as in Boyd et al. [4]. If G∗ is not
planar, we identify a forbidden K3,3 or K5 minor M ⊆ E(G∗). We then take two nodes in the minor with
degree at least 3 and contract them (and thus eliminating the minor), iterating until a planar graph is
obtained. An alternative is to eliminate an edge e ∈ M from G∗, iterating until a planar graph is obtained.
There are several ways in which M and e ∈ M may be selected, and we found that the way in which the
selection is made can make an important difference in the performance of the algorithm.

Tightening After adding a cutting plane to an LP and re-solving, it is possible that we may obtain another
fractional solution that differs very little from the one just separated. In this case, rather than generating
new cuts all over again, it may be desirable to attempt to “fix up” some tight constraints currently in the LP
or in the cut-pool by slightly modifying them in such a way as to make the new fractional point infeasible
(or make an already violated constraint more violated). This is certainly much faster than separating from
scratch, and also does not require G∗ to be planar. This type of approach has been very successful on other
classes of inequalities (see Applegate et al. [2]) and it had a great impact in our computational results.

To formalize this notion of simple modifications for DP-inequalities, recall that every DP-inequality is
completely defined by a family of dominoes {Ai, Bi}

k
i=1 and a handle H. Thus, adding and/or deleting a

node from any of those sets will result in slight changes of the constraint which potentially could result in a
new, violated cut.

In our implementation we consider the following set of simple modifications. Given a node in G∗, we can
(i) add it/remove it from a domino; (ii) have it switch sides in a domino; (iii) add it/remove it from the
handle; (iv) do some combinations of the previous modifications. We implemented a greedy heuristic which
computes the best move for every relevant node1, and while the best move (among all nodes) reduces the
slack of the constraint, perform the move, and update the best move for the relevant nodes in the graph.
If all remaining best moves are zero-valued (that is, they do not change the slack), we first do moves that
enlarge either the handle or a domino, then do moves that flip elements within a domino and then do moves
that shrink a domino or a handle. We repeat this until some improving move is found or until we cannot
make any more moves.

1 A node u is relevant in the heuristic if ∃e ∈ δ(u) such that it has a non-zero coefficient in the DP-inequality.
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TSPLIB Tests In Tables 1, 2, and 3 we report on a set of tests on all instances from the TSPLIB having
at least 3,000 cities. The computations were performed on a single processor of a dual 2.66 GHz Intel Xeon
Linux workstation. The LP solver used was ILOG CPLEX 6.5. The algorithm used for planarity testing was
Boyer and Myrvold2 [5].

In the tests in Tables 1 and 2, we used the Concorde command line option -mC48 to allow Concorde to
repeatedly call the local-cuts routine up to size 48 (see Applegate et al. [2]); this setting requires additional
CPU time over the default version of Concorde, but it allows Concorde to obtain substantially better lower
bounds. For each instance in Table 2 we also ran Concorde together with the DP-cut code starting from
Concorde’s final LP (cutting off the runs after 72 hours), while for each instance in Table 1 we ran Concorde
with the DP-cut code starting from scratch.

Table 1. DP-Cuts on TSPLIB Instances

Name Optimal Concorde DP Gap ∆ Concorde Hours DP Hours

pcb3038 137694 137660 137687 79% 24.9 8.6
fl3795 28772 28697 28772 100% 21.2 8.2
fnl4461 182566 182555 182559 36% 7.9 3.4
rl5915 565530 565384 565482 67% 103.7 46.1
rl5934 556045 555929 556007 67% 17.5 48.3
pla7396 23260728 23255280 23259532 78% 133.7 106.9

Table 2. DP-Cuts on Larger TSPLIB Instances

Name Optimal Concorde Concorde+DP Gap ∆ Concorde Hours DP Hours

usa13509 19982859 19979209 19981173 54% 81.2 72.0
brd14051 469385 469321 469352 48% 53.2 72.0
d15112 1573084 1572853 1572956 45% 114.0 72.0
d18512 (645238) 645166 645193 38% 74.0 72.0

In Table 3 we consider the two largest examples in the TSPLIB. Rather than working from scratch on
these instances, we study the effectiveness of DP-cuts in improving the best available LP relaxations. In each
instance, we begin with an LP found by Applegate et al. by gathering cuts into a pool during a sequence
of 3 branch-and-cut runs (stopping each run after it reached 1,000 active subproblems). The LP was then
improved by applying DP-cuts, with new cut pools gathered using 2 branch-and-cut runs for pla33810 and
a single short run (to 75 active subproblems) for pla85900.

Table 3. DP-Cuts on Largest TSPLIB Instances

Name Optimal Concorde (with pool) Concorde+DP (with pool) Gap ∆

pla33810 66048945 66018619 66037858 63%
pla85900 (142382671) 142336550 142354693 39%

As a case-study, starting from the 66,037,858 LP, we have established the optimal value for pla33810. The
optimal tour is a slight improvement on the best reported tour, found by by Helsgaun [11] with a variant of

2 We give special thanks for J.M. Boyer for allowing us to use his implementation of the planarity testing algorithm.
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his LKH heuristic. The previously best lower bound for this instance was established by Applegate et al. [1]
using Concorde and a branch-and-cut run having a total of 2,821 subproblems.

Concorde Bound LKH Tour Optimal
66,032,419 66,050,499 66,048,945

The branch-and-cut that solved the instance used 577 search nodes (given the upper bound of 1 larger than
Helsgaun’s LKH tour). We also solved the instance a second time starting with a 66,037,858 LP (obtained
using the cuts from the earlier run) and an upper bound of 1 greater than the optimal value; the branch-
and-cut run in this case used 135 search nodes.

Our solution of pla33810 should be viewed only as evidence of the potential strength of the new procedures;
the computational study was made as we were developing our code and the runs were subject to arbitrary
decisions to terminate tests as the code improved. The total CPU time used in the solution of pla33810 was
approximately 15.7 CPU years (the additional branch-and-cut run of 135 nodes took 86.6 days).

The two remaining open problems in the TSPLIB are d18512 and pla85900; the tour values reported in
our tables for these instances were obtained by Tamaki [19] and Helsgaun [11], respectively.

4.2 2-Parity Constraints

To test the efficacy of 2-parity constraints, we developed a heuristic that works by taking tight (or almost
tight) domino-parity constraints, and attempts to grow a second handle. For this, consider a super-connected
domino-parity constraint with teeth T . The heuristic works in two stages. First, for every tooth T ∈ T
shortest paths are computed between pairs of nodes in δ(T ). Then, in a second stage, the algorithm attempts
to connect an odd number of these paths into a simple cycle with edges in Ḡ∗ , by using a random-walk
which gives preference to edges having small weight (with regard to the values given by the fractional vector
x) and which forbids taking two different paths associated to a same tooth T ∈ T . It is not difficult to see
from Lemma 3 that such a structure in Ḡ∗ corresponds to a 2-parity cut.

For this heuristic we also employed many of the techniques described for domino-parity constraints, such
as tightening and contraction of edges to ensure planarity.

In Table 4 we report results using an implementation of a 2-parity separation heuristic on a selection of
small TSPLIB instances that are not easily solvable at the root node.

Table 4. 2-Parity Cuts on TSPLIB Instances

Name Optimal DP DP+2P Gap ∆

pcb442 50778 50765 50765 0%
att532 27686 27685 27686 100%
dsj1000 18660188 18659299 18660093 89%
u1060 224094 224044 224054 20%

vm1084 239297 239294 239297 100%

The “DP” column gives the LP value using Concorde with DP-cuts and with local cuts of size 32; the
“DP+2P” column reports the LP value obtained by starting with the “DP” LP and running Concorde with
the 2P-cut separator. The improvement in the LP gap varied widely, but it is promising that 2P-cuts can
often strengthen these already very good LP bounds.

A Appendix: The k-Parity Eulerian Subgraph Problem

We say that a vector p ∈ {0, 1}k is a k-parity vector, since it may be interpreted as the product of k even-odd
values. In particular we say that po = {0}k is the null parity.
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Consider a graph G = (V,E), possibly having parallel edges. Assume that each edge e ∈ E has associated
a non-negative weight we and a k-parity vector pe. Also consider a collection (ie with possible repetitions) of
edges F in G. Define the weight of F to be w(F ) =

∑

(we : e ∈ F ), and the parity of F to be p(F ) =
∑

(pe :
e ∈ F ) mod 2. For every node v ∈ V define the collection F (v) = {e ∈ F : e is incident to v}. We say that
F defines an Eulerian walk in G if |F (v)| is even for all v ∈ V . If F defines an Euler walk and in addition
has no repeated edges, we say that F defines an Euler subgraph of G. If in addition F is connected, we say
that F is a cycle. Finally, if F also satisfies |F (v)| = 2, for all v ∈ V we say that F is a simple cycle.

If F is an Eulerian walk of parity p we say that F is a p-Eulerian walk. Likewise, we will use the terms
p-Eulerian subgraph, p-cycle, and p-simple cycle.

Theorem 4. Consider p ∈ {0, 1}k. The problem of finding a minimum weight p-Eulerian subgraph is poly-
nomially solvable.

The proof of Theorem 4 consists of three main strands. First we establish some basic results concern-
ing Eulerian subgraphs. Next we show how to build in polynomial time a family of Eulerian subgraphs
{Eq}q∈{0,1}k all having relatively low weight. Finally, we present an algorithm which takes symmetric differ-
ences of these Eulerian subgraphs so as to obtain a minimum weight p-Eulerian subgraph.

Lemma 12. Basic results concerning p-Eulerian subgraphs.
1. Every Eulerian subgraph can be decomposed into an edge-disjoint union of simple cycles.
2. Let F1 be a p1-Eulerian subgraph, and let F2 be a p2-Eulerian subgraph. Then, F1∆F2 is an Eulerian

subgraph of parity (p1 + p2) mod 2. Furthermore, w(F1∆F2) ≤ w(F1) + w(F2).
3. Consider p ∈ {0, 1}k and let F be a minimum weight p-Eulerian subgraph. If F strictly contains two edge

disjoint Eulerian subgraphs F1, F2 such that p(F1) = p(F2) then w(F1) = w(F2) = 0.

Proof. (1) is a well known result, and (2) is straight-forward. To prove (3), assume 0 < w(F1) + w(F2).
Note that F1 ∪ F2 is a po-Eulerian subgraph. Hence, F = F \ (F1 ∪ F2) is a p-Eulerian subgraph satisfying
w(F ) < w(F ) - thus contradicting the minimality. ut

Lemma 13. For every p ∈ {0, 1}k there exists a minimum-weight p-Eulerian subgraph which can be decom-
posed into an edge-disjoint union of simple cycles, each having a different parity.

Proof. Consider p ∈ {0, 1}k, and let F be a minimum-weight p-Eulerian subgraph. From Lemma 12 we know
that F can be decomposed into the edge disjoint union of simple cycles. From Lemma 12 it also follows that
if F strictly contains two such simple cycles of the same parity, they can be removed from F so as to obtain
another minimum-weight p-Eulerian subgraph. By repeating this procedure we will be left with a set of edge
disjoint simple cycles of different parities, or the empty set, which is an optimal solution for p = po. ut

Lemma 14. Let C∗
p correspond to a minimum-weight simple cycle of parity p. It is possible to find in

polynomial time a p-Eulerian subgraph Ep of weight less than or equal to that of C∗
p .

Proof. For this purpose construct an auxiliary graph G′.
For each node v in V (G) define 2k copies in V (G′) and label them vq, q ∈ {0, 1}k.
For each edge e in E(G) define 2k copies in E(G′) and label them eq, q ∈ {0, 1}k. Assume that the end

nodes of e in G are u,w ∈ V (G). Define the end nodes of the edges eq in the following way: If q1, q2 ∈ {0, 1}k

are such that q1+q = q2 mod 2, let eq connect uq1
and wq2

. For every edge eq define its parity to be peq
= pe

, its weight to be weq
= we, and define π(eq) = e.

Consider a path P = {e′1, e
′
2, . . . , e

′
l} in G′ with end nodes uo and uq. From the construction of G′ it

follows that:
– P has parity q.
– The collection of edges W = {π(e′1), π(e′2), . . . , π(e′l)} defines a q-Eulerian walk in G.

On the other hand, note that for every simple cycle C ⊆ E(G) of parity q which passes through node
u ∈ V there exists a path P ⊆ E(G′) with end nodes uo and uq such that π(P ) = C. This implies that the

14



value of the min-weight uo-uq path in G′ is not greater than the value of the min-weight simple cycle in G
of parity q passing through u.

Finally, note that every q-Eulerian walk W in E(G) contains a q-Eulerian subgraph F in E(G) such that
w(F ) ≤ w(W ). Furthermore, such a set F can be obtained from W by iteratively removing pairs of repeated
edges until no more exist.

In fact, after removing any pair of repeated edges the number of incident edges to each node will remain
even. When we can no longer remove such pairs of edges, every node will be incident to an even number of
edges, and there will be no edge repetitions - thus, we will have obtained an Eulerian subgraph. Additionally,
note that the parity of the set never changes as we remove such pairs of edges, since for each e ∈ E, pe +pe =
po mod 2. Finally, note that since for each e ∈ E, we ≥ 0 after removing edges the weight can only decrease.

To conclude, let C∗
p denote a minimum-weight simple cycle of parity p in graph G, and for each v ∈ V

let Pv denote a shortest vo-vp path in G′. Let P be the minimizer of w(Pv), v ∈ V . From what we have
said, the parity of P is p, and w(P ) ≤ w(C∗

p ). Additionally, from W (P ) we obtain an p-Eulerian-walk in G
whose weight is also not greater than w(C∗

p ). Finally, by edge-elimination we find a p-Eulerian subgraph Ep

contained in W (P ) such that w(Ep) ≤ w(P ) ≤ w(C∗
p ) And so we conclude the lemma. ut

Proof (Theorem 4). We assume p 6= po, since otherwise the solution is trivially the empty set.
For each q ∈ {0, 1}k, let C∗

q be a minimum-weight simple cycle of parity q, and let Eq be a q-Eulerian
subgraph such that w(Eq) ≤ w(C∗

q ).

For each q ∈ {0, 1}k define a 0-1 variable xq and consider the following problem:

min
∑

q∈{0,1}k

xqw(Eq)

∑

q∈{0,1}k

q · xq = p mod 2

xq ∈ {0, 1} ∀q ∈ {0, 1}k

(9)

Note that x is a feasible solution to (9) if and only if {Eq : xq = 1} is a family of Eulerian subgraphs
whose symmetric difference is a p-Eulerian subgraph (See Lemma 12).

Note that the optimal solution to problem (9) gives us, after taking symmetric differences, a minimum-
weight p-Eulerian subgraph.

In fact, from Lemma 13 we know that there exists an edge disjoint family of simple cycles {Ci}
r
i=1 whose

union is a minimum-weight p-Eulerian subgraph. Assume that for each i ∈ 1, . . . , r the parity of cycle Ci

is pi. Consider the family of Eulerian subgraphs {Epi
}r

i=1. Recall that w(Epi
) ≤ w(Ci). Furthermore, by

Lemma 12 we know that the symmetric difference of these Eulerian subgraphs is a p-Eulerian subgraph
whose total weight is not greater than the sum of the weights of the individual Eulerian subgraphs. Hence,
by taking the symmetric difference of Eulerian subgraphs {Epi

}r
i=1 we obtain a minimum-weight p-Eulerian

subgraph. Since the vector x′ ∈ {0, 1}k defined by:

x′
q =

{

1 if q = pi, for i = 1, . . . , r
0 otherwise

is a feasible solution to the problem (9) we conclude.
Finally, note that for k fixed, problem (9) does not depend in the size of the multi-graph G, but only on

k. Hence, it can be solved in polynomial time. ut
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