
Implementing Domino-Parity Inequalities for the Traveling

Salesman Problem

William Cook∗

bico@isye.gatech.edu

Daniel Espinoza

despinoz@isye.gatech.edu

Marcos Goycoolea

mgoycool@isye.gatech.edu

Industrial and Systems Engineering

Georgia Institute of Technology

765 Ferst Drive NW

Atlanta, GA. 30332. USA.

May 30, 2005

Abstract

We describe an implementation of Letchford’s domino-parity inequalities for the
(symmetric) traveling salesman problem. The implementation includes pruning meth-
ods to restrict the search for dominoes, a parallelization of the main domino-building
step, heuristics to obtain planar-support graphs, a set of safe-shrinking routines, a
random-walk heuristic to extract additional violated constraints, and a tightening rou-
tine to allows us to modify existing domino-parity inequalities as the LP solution
changes. We report computational results showing that combining the new separa-
tion algorithms with the Concorde TSP code allow us to substantially raise the linear
programming bounds that are obtained.

1 Introduction

Let G = (V, E) be a complete graph with edge costs (ce : e ∈ E). The symmetric traveling
salesman problem, or TSP, is to find a minimum-cost tour in G, that is, a Hamiltonian cycle
of minimum total edge cost. A tour can be represented as a 0-1 vector x = (xe : e ∈ E),
where xe = 1 if edge e is used in the tour and xe = 0 otherwise. In the Dantzig, Fulkerson,
and Johnson [6] cutting-plane method for the TSP, a linear programming (LP) relaxation is
created by iteratively finding linear inequalities that are satisfied by all tour vectors. This

∗Supported by ONR Grant N00014-03-1-0040

approach has been the most successful exact solution procedure proposed to date for the
TSP.

For any S ⊆ V let δ(S) denote the set of edges with exactly one end in S and let E(S)
denote the set of edges having both ends in S. For disjoint sets S, T ⊆ V let E(S : T)
denote the set of edges having one end in S and one end in T . For any set F ⊆ E define
x(F) =

∑
(xe : e ∈ F).

Every tour of G satisfies the subtour-elimination constraints

x(δ(S)) ≥ 2 ∀ ∅ 6= S (V. (1)

An important property of these constraints is that the corresponding separation problem
can be solved efficiently, that is, given a non-negative vector x∗ a violated constraint can
be found in polynomial time, provided one exists.

There is a large research literature devoted to the study of classes of inequalities that
are valid for the TSP, generalizing and extending the subtour-elimination constraints in
many different ways. (For a survey see Naddef [10].) Many properties of these classes
of inequalities are known, but for the most part polynomial-time separation algorithms
have proven to be elusive. A notable exception is the separation algorithm for blossom-
inequalities by Padberg and Rao [12]; variations of the Padberg-Rao algorithm are included
in most current codes for the TSP. The absence of other efficient separation algorithms has
lead to the use of various heuristic methods for handling TSP inequalities within cutting-
plane algorithms. The heuristics have proven to be effective in many cases (see Padberg
and Rinaldi [13], Applegate et al. [1], and Naddef and Thienel [11]), but additional exact
methods could be critical in pushing TSP codes on to larger test instances.

An interesting new approach to TSP separation problems was adopted by Letchford [9],
building on earlier work of Fleischer and Tardos [7]. Given an LP solution vector x∗,
the support graph G∗ is the sub-graph of G induced by the edge-set E∗ = {e ∈ E :
x∗

e > 0}. Letchford [9] introduces a new class of TSP inequalities, called domino-parity
constraints, and provides a separation algorithm in the case where G∗ is a planar graph.
An initial computational study of this algorithm by Boyd et al. [3], combining a computer
implementation with by-hand computations, showed that the method can produce strong
cutting planes for instances with up to 1,000 nodes.

In this paper we present a further study of Letchford’s algorithm, reporting compu-
tational results on a range of TSPLIB test instances. The domino parity constraints are
described in Section 2, together with a review of results from Letchford [9] and a short
description of the steps adopted in our implementation to improve the practical efficiency
of the separation algorithm. In Section 3 we describe shrinking techniques that allow us
to handle large instances and also to handle the common case where G∗ is not planar. A
local-search procedure for improving domino-parity constraints is described in Section 4
and computational results are presented in Section 5.

2 Letchford’s Algorithm

We begin by introducing the domino-parity constraints and giving an overview of Letchford’s
separation algorithm. We highlight some important algorithmic steps, placing emphasis on

our implementation. All lemmas and theorems not proved in this section can be found in
Letchford [9].

Let Λ = {E1, E2, . . . , Ek}, where Ei ⊆ E, ∀i = 1, . . . k. Define µe = |{F ∈ Λ : e ∈ F}|
The family Λ is said to support the cut δ(H) if δ(H) = {e ∈ E : µe is odd}. Define a
domino as a pair {A, B} satisfying ∅ 6= A, B ⊆ V , A ∩ B = ∅, and A ∪ B 6= V .

Theorem 1 Let p be a positive odd integer, let {Aj , Bj} be dominoes for j = 1, . . . , p, and
let H ⊆ V . Suppose that F ⊆ E is such that {E(A1 : B1), . . . , E(Ap : Bp), F} supports the
cut δ(H) and define µe accordingly. Then, the domino-parity (DP) constraint,

∑

e∈E

µexe +

p∑

j=1

x(δ(Aj ∪ Bj)) ≥ 3p + 1 (2)

is valid for all tours.

The set H is called the handle of the constraint.
Letchford [9] proposes a two-stage algorithm which exactly separates this class of con-

straints, provided that the support graph G∗ is planar and all subtour-elimination con-
straints are satisfied. In the first stage, a set of candidate dominoes is constructed. In the
second stage, a handle and an odd number of dominoes are selected in such a way as to
define a maximally violated constraint, provided one exists.

For the remainder of this section, assume that all of the subtour-elimination constraints
are satisfied. Also, assume that G∗ is a planar graph and let G∗ be the planar dual of G∗.
For any subset F ⊆ E(G∗), denote by F the corresponding edges in G∗.

Lemma 2.1 Consider s, t ∈ V (G∗) and three node-disjoint s-t paths P1, P2, P3 in G∗. There
exists a domino {A, B} such that δ(A ∪ B)∩E(G∗)∪E(A : B)∩E(G∗) = E(P1)∪E(P2)∪
E(P3).

Given three paths in G∗ as described above it is easy to construct a domino in G∗.
Surprisingly, it suffices to use only these dominoes as candidates. The following algorithm
describes the procedure by which to obtain them.

Algorithm 2.1 Generating Candidate Dominoes

Set L = ∅.
Compute G∗, the dual of graph G∗.
To each edge e ∈ E(G∗) assign weight x∗

e
.

for s, t ∈ V (G∗):
Find three edge disjoint paths P1, P2, P3 of minimum weight joining s and t.
if x∗(P1 ∪ P2 ∪ P3) ≤ 4.

Construct a domino Dst and add it to L.
Define ŵst = x∗(P1 ∪ P2 ∪ P3) − 3.

return L

To solve the second stage of the problem, define an auxiliary multigraph M ∗ with node
set V (M∗) = V (G∗). For each edge e = {u, v} ∈ E(G∗) define an even edge e = {u, v} ∈
E(M∗) with weight we = x∗

e, and for each Duv ∈ L define an odd edge e = {u, v} ∈ E(M ∗)
with weight we = ŵuv. An odd cycle in M∗ is a cycle with an odd number of odd edges.

Lemma 2.2 Given an odd cycle C ⊆ E(M ∗) with weight w(C) < 1 it is possible to con-
struct a DP-inequality with violation 1 − w(C).

In fact, to construct the DP-inequality from the cycle it suffices to define the set F as the
even edges in C, and choose as dominoes those corresponding to odd edges in C.

Theorem 2 There exists a violated DP-inequality in G∗ if and only if there exists an odd
cycle in M∗ with weight less than one. Furthermore, if such a cycle exists, a minimum
weight odd cycle in M ∗ corresponds to a maximally violated DP-inequality.

From these results the following algorithm directly follows.

Algorithm 2.2 Separation of DP-Inequalities

Build M∗ as defined above.
Solve the minimum weight odd cycle problem in M ∗.

Let C∗ be an optimal solution.
if w(C∗) < 1

return corresponding DP-inequality.
else

return no violated DP-inequality exists.

We briefly describe the techniques that had the greatest impact in speeding-up our
implementation of the algorithm.

Parallelization Dominoes may be computed in parallel. In fact, one may divide the
nodes s ∈ V (G∗) among different machines so that each one computes all of the (s, t)
three-disjoint paths. We found the domino-computation stage to be (by far) the most time
consuming part of the algorithm, making this parallelization crucial for obtaining acceptable
running times on large instances. Our parallel implementation is a master–worker system
based on message passing.

Flow Computations To find the min-weight node-disjoint paths between pairs s, t ∈
V (G∗) we used the augmenting-shortest-path network-flow algorithm. For this, we build
a network N for the graph G∗ defining two arcs for each edge (one in each direction),
assigning a capacity of one to each. This algorithm computes the s− t flow by solving three
successive s − t shortest path problems on reduced capacity networks successively derived
from N . Using this algorithm several speed-ups were possible. Firstly, for fixed s ∈ V (G∗)
the first s−t flow for all nodes t can be obtained by solving a single Dijkstra algorithm in N
rooted at s. The additional shortest-path computations need only be computed for nodes
t at distance not greater than 4/3 from s. Finally, when computing the s − t three-flow in
N , one only need consider intermediary nodes at distance not greater than 2 from s and t.
This follows from the fact that every cycle in G∗corresponds to a cut in G∗, and hence, has
weight at least 2 (due to subtour-elimination constraints). Thus, if a node is used which
has distance at least 2, since the other two paths will define a cycle, the bound of 4 would
be exceeded.

Random Walk The algorithm as formally defined in Letchford [9] computes exactly
one constraint. In practice, one would like the algorithm to compute as many violated con-
straints as possible. To achieve this, instead of just solving the shortest odd-cycle problem

in M∗ we additionally run a random walk algorithm that attempts to find small-weight odd
cycles. This algorithm is fast, easy to implement, and in our tests generally produced a
large number of additional cuts, only the best of which were kept.

3 Shrinking and Non-Planar Graphs

Given a support graph G∗ it may happen that we are unable to separate a solution x∗ by
use of DP-inequalities because either G∗ is too large or G∗ is not planar. In either case it
may still be possible to do separation by contracting edges in G∗, redefining the vector x∗,
and solving the separation problem in the new, smaller, graph. This procedure is called
shrinking ; details for general TSP inequalities can be found in Padberg and Rinaldi [13].

A natural concern is, if we know there is a violated DP-inequality in G∗, can we assure
that there will also be a violated DP-inequality in the graph obtained after a contraction?
If so, the contraction is called safe. Although it is not always the case that shrinking is safe,
it is possible to give conditions under which it will be.

Theorem 3 Consider x∗ satisfying all subtour-elimination constraints, a DP-inequality
ax ≤ b satisfying ax∗ > b, and nodes u, v, t ∈ V (G∗) such that x∗

uv = 1, and x∗

ut + x∗

vt = 1.
If ae 6= 0 there exists another DP-inequality, a′x ≤ b′ such that a′e = 0 and (a′x∗ − b′) ≥
(ax∗ − b). Thus, we can contract edge {u, v} and ensure the existence of a violated DP
inequality.

This suggests the following algorithm. While there exist nodes u, v, t satisfying the
conditions of Theorem 3, contract edge {u, v}. This procedure can greatly reduce the size
of the graph over which we work, but the resulting graph may still be non-planar. If this is
the case, our implementation does non-safe shrinks until a planar graph is obtained, as in
Boyd et al. [3].

A graph is planar if and only if it contains no K3,3 or K5 minor. This suggests the
following natural heuristic. If G∗ is not planar, identify a forbidden minor M ⊆ E(G∗).
Choose an edge e ∈ M , and contract it, iterating until a planar graph is obtained. There
are several ways in which M and e ∈ M may be selected, and we found that the way in
which the selection is made can make an important difference in the performance of the
algorithm.

4 Tightening

After adding a cutting plane to an LP and re-solving, it is possible that we may obtain
another fractional solution that differs very little from the one just separated. In this case,
rather than generating new cuts all over again, it may be desirable to attempt to “fix up”
some tight constraints currently in the LP or in the cut-pool by slightly modifying them
in such a way as to make the new fractional point infeasible (or make an already violated
constraint more violated). This is certainly much faster than separating from scratch, and
also does not require G∗ to be planar. This type of approach has been very successful on
other handle-tooth type inequalities (see Applegate et al. [2]) and it had a great impact in
our computational results.

To formalize this notion of simple modifications for DP-inequalities, recall that every
DP-inequality is completely defined by a family of dominoes {Ai, Bi}

k
i=1

and a handle H.
Thus, adding and/or deleting a node from any of those sets will result in slight changes of
the constraint which potentially could result in a new, violated cut.

In our implementation we consider the following set of simple modifications. Given
a node in G∗, we can (i) add it/remove it from a domino; (ii) have it switch sides in a
domino; (iii) add it/remove it from the handle; (iv) do some combinations of the previous
modifications. We implemented a greedy heuristic which computes the best move for every
relevant node1, and while the best move (among all nodes) reduces the slack of the con-
straint, perform the move, and update the best move for the relevant nodes in the graph. If
all remaining best moves are zero-valued (that is, they do not change the slack), we first do
moves that enlarge either the handle or a domino, then do moves that flip elements within
a domino and then do moves that shrink a domino or a handle. We repeat this until some
improving move is found or until we can’t make any more moves. If we have found a new,
violated constraint, we have succeeded.

5 Computational Results

In Tables 1 and 2 we report on a set of tests on medium-sized instances from the TSPLIB.
The computations were performed on a single processor of a dual 2.66 GHz Intel Xeon
workstation. The LP solver used was ILOG CPLEX 6.5. The algorithm used for planarity
testing was Boyer and Myrvold2 [4]. In these tests we used the Concorde command line
option -mC48 to allow Concorde to repeatedly call the local-cuts routine up to size 48 (see
Applegate et al. [2]); this setting requires additional CPU time over the default version of
Concorde, but it allows Concorde to obtain substantially better lower bounds. (Local-cuts
of size 48 are the largest value that can be effectively handled in Concorde.)

Table 1: DP-Cuts on Mid-Sized Instances

Name Optimal Concorde Concorde+DP Gap Closed by DP

pcb3038 137694 137660 137687 79%
fnl4461 182566 182555 182559 36%
rl5915 565530 565384 565482 67%
rl5934 556045 555929 556007 67%
pla7396 23260728 23255280 23259532 78%

In each case, the addition of the DP-separator routines made a significant in the LP
lowerbound, with a resonable amount of extra running time. We will carry out much more
extensive testing this Fall and Winter, on instances with up to 85,900 nodes.

1A node u is relevant in the heuristic if ∃e ∈ δ(u) such that it has a non-zero coefficient in the DP-
inequality.

2We give special thanks for J.M. Boyer for allowing us to use his implementation of the planarity testing
algorithm.

Table 2: Times for Mid-Sized Instances (CPU Hours)

Name Concorde Concorde+DP

pcb3038 24.9 8.6
fnl4461 7.9 3.4
rl5915 103.7 46.1
rl5935 17.5 48.3
pla7396 133.7 106.9

References

[1] Applegate, D., R. Bixby, V. Chvátal, W. Cook. 1998. On the solution of traveling
salesman problems. Documenta Mathematica Journal der Deutschen Mathematiker-
Vereinigung, International Congress of Mathematicians. 645–656.

[2] Applegate, D., R. Bixby, V. Chvátal, W. Cook. 2003. Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Mathematical Pro-
gramming 97, 91–153.

[3] Boyd, S., S. Cockburn, D. Vella. 2001. On the domino-parity inequalities for the STSP.
Computer Science Technical Report TR-2001-10. School of Information Technology, and
Engineering, University of Ottawa.

[4] Boyer, J. M., W. Myrvold. 2004. On the cutting edge: simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications. To appear.

[5] Chvátal, V. 1973. Edmonds polytopes and weakly hamiltonian graphs. Mathematical
Programming 5, 29–40.

[6] Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a large-scale traveling salesman
problem. Operations Research 2, 393–410.

[7] Fleischer, L., É. Tardos. 1999. Separating maximally violated comb inequalities in planar
graphs. Mathematics of Operations Research 24, 130–148.

[8] Grötschel, M., O. Holland. 1991. Solution of large-scale symmetric travelling salesman
problems. Mathematical Programming 51, 141–202.

[9] Letchford, A. N. 2000. Separating a superclass of comb inequalities in planar graphs.
Mathematics of Operations Research 25, 443–454.

[10] Naddef, D. 2002. Polyhedral theory and branch-and-cut algorithms for the symmet-
ric traveling salesman problem. In G. Gutin and A. Punnen, editors. The Traveling
Salesman Problem and Its Variations. Kluwer, Dordrecht, pp. 29–116.

[11] Naddef, D., S. Thienel. 2002. Efficient separation routines for the symmetric traveling
salesman problem II: separating multi handle inequalities. Mathematical Programming
92, 257–283.

[12] Padberg, M. W., M. R. Rao. 1982. Odd minimum cut-sets and b-matchings. Mathe-
matics of Operations Research 7, 67–80.

[13] Padberg, M. W., G. Rinaldi. 1991. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review 33, 60–100.

