Implementing an Air Taxi System

Daniel Espinoza

Departamento de Ingeniería Industrial, FCFM, Universidad de Chile, Chile

August 11, 2006

The Routing Problems

Outline

0	4	lin	
U	uι		e

The Routing Problems

Final Comments

Work Team Work Team

- Mo Bazaraa (Georgia Institute of Technology)
- Emilie Dana (ILOG Inc.)
- Faram Engineer (Georgia Institute of Technology)
- Daniel Espinoza (Universidad de Chile)
- Renan Garcia (Georgia Institute of Technology)
- Marcos Goycoolea (Universidad Adolfo Ibañes)
- Zonghau Gu (ILOG Inc.)
- Alex Khmelnitsky (DayJet)
- George Nemhauser (Georgia Institute of Technology)
- Martin Savelsbergh (Georgia Institute of Technology)
- Eugene Traits (DayJet)

The Routing Problems

Final Comments

Air transport today

Per-Seat, On-Demand Jet Services

History and Current Situation

- Security delays and flight delays.
- Fixed schedules of established air lines.
- "Hub-and-spoke" network configurations.
- New engine technologies, highly fuel efficient.
- New cheap small jet planes for 3-5 passengers.
- Spare capacity on regional airports.

Outline

Introduction

The Routing Problems

Final Comments

Air transport today

The Eclipse 500

The Routing Problems

Air transport today

The Eclipse 500

- Crew: 2 pilots
- Cruise speed: 694Km/hr
- Range: 2370Km
- Maximum altitude: 12496m
- Passenger
 Capacity: 3
 passengers

Outline

Introduction

The Routing Problems

Final Comments

Company and Business Model

DayJet... It's about time

"Per-Seat, On-Demand" Jet Services How to Keep Air Transportation Moving at the Speed of Business

The Routing Problems

Final Comments

Company and Business Model

Business Model

- External factors:
 - On-line demand.
 - Flexible schedules.
 - Last minute coach fares.
 - High service quality.
 - Wide range coverage.
- Internal factors:
 - Dynamic route creation.
 - Fully integrated logistic management.
 - Passenger aggregation.

The Routing Problems

Optimization Problems

Optimization Problems

- On-line accept/reject problem.
- Optimal routing of accepted clients.
- Location of home bases for planes.
- Revenue Management.
- Disruption Recovery.
- Maintenance.
- Demand Estimation.

The Routing Problems

Final Comments

Optimization Problems

Optimization Problems

Accept/reject Problem

Given a list of accepted requests, and a new request, find a feasible itinerary that cover all requests.

Optimal Routing

Given a list of accepted requests, find a minimum cost feasible itinerary covering all accepted requests.

The Routing Problems

Final Comments

Modeling the Problem

Flight Requests

- Origin.
- Destination.
- Earliest departure time.
- Latest arrival time.
- Number of passengers.
- Total weight.

Modeling the Problem

Feasible Itineraries

- Two working crews (morning and evening shift).
- Each crew starts and finish in its home base.
- No passenger makes more than one intermediary stop.
- No more than 3 passengers on-board.
- No crew flight for more than 8 hours.
- No crew works for more than 11 hours.
- Total weight of the plane within security limits.

Modeling the Problem

A Multicommodity flow model with side constraints

- Nodes Define events that characterize a plane itinerary.
 - Take in a passenger.
 - Drop of a passenger.
 - Flight from airport A to airport B.
 - Wait at some airport A.
- Edges Connect nodes that might be part of a feasible/optimal itinerary.

Modeling the Problem

A Multicommodity flow model with side constraints

Outline

Introduction

 Final Comments

Modeling the Problem

An Example

Daniel Espinoza

Implementing an Air Taxi System

Outline

Introduction

The Routing Problems

Final Comments

Modeling the Problem

Two sample itineraries

Obtaining Manageable Problems

Obtaining Manageable Problems

- How do we reduce the network size?
- Can we discard (some) optimal solutions?
- Can we identify edges that do not belong to any optimal solution?
- Can we use side constraints to discard edges?
- Can we approximate the full network?

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Many "equivalent" solutions:

B₂

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

40

30

(Always takes off as soon as possible)

20

10

0

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Even small problems can be very complex:

Intermediate connections => many solutions.

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

There aren't very many ED solutions

Ideal situation where we can take out all non-necessary edges

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

 Mark all Airport/Time nodes that allow to pick-up a request for the first time, and the starting/ending node for the plane in the network.

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Rolling Forward Algorithm

Building a network containing all Earliest Departure (ED) Solutions:

The Routing Problems

Final Comments

Obtaining Manageable Problems

The Aggregation Algorithm

- Use a low degree node and replace it by all combination edges.
- Use side constraints to eliminate some.
- Strengthen LP relaxation bound.

The Routing Problems

Final Comments

Obtaining Manageable Problems

Flexible Time Discretizations

- Use regular discretization.
- Allow for different discretization per airport.
- Allow for non-homogeneous time discretization.
- Can reduce the size of the problem by a factor of 7-8.
- The price of larger discretizations (with special points) is only about 2-3%.

The Routing Problems

Final Comments

Obtaining Manageable Problems

Reducing the network size

Instance	Initial Graph		Reduced Graph	
	Nodes	Edges	Nodes %	Edges %
R1Y1Q4B	166336	469149	10.93%	66.94%
	171613	485399	10.97%	67.01%
	175245	495579	10.89%	66.92%
R1Y1Q3A	59649	166213	12.16%	68.69%
	58933	160653	11.84%	67.64%
	59437	164120	11.87%	67.34%
R1Y1Q2C	15990	43421	12.01%	67.57%
	15780	43356	12.18%	66.77%
	16408	44927	12.01%	67.52%

Solving Large Scale Problems

Solving Large Scale Problems

- The model can efficiently solve small problems (3-14 airplanes).
- Expected number of planes: 300-1000 planes.
- Can write down the model for 200 planes.
- Local Search approach.
- Trivially parallelizable.
- Asynchronous parallel model (master-worker approach).

The Routing Problems

Final Comments

A INDUSTRU

Computational Results

Computational Results

10 CPU, 4 hours (wall time)

flights	deadhead	clients	flight time	Imp.
2667	696	2572	208720	8.4%
2523	637	2597	188289	5.3%
2495	602	2575	187087	5.0%

10 CPU, 6 hours (wall time)

flights	deadhead	clients	flight time	Imp.
2637	667	2572	191091	9.6%
2500	614	2597	178277	6.0%
2468	583	2575	177667	5.8%

Final Comments

- Optimization can help solve large instances.
- Necessary to simplify the problem.
- Identify inactive constraints.
- Integrate scheduling and maintenance.
- Many related problems remain open.

