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We describe methods for implementing separation algorithms for domino-parity inequalities

for the symmetric traveling salesman problem. These inequalities were introduced by Letch-

ford (2000), who showed that the separation problem can be solved in polynomial time when

the support graph of the LP solution is planar. In our study we deal with the problem of

how to use this algorithm in the general (non-planar) case, continuing work of Boyd et al.

(2001). Our implementation includes pruning methods to restrict the search for dominoes, a

parallelization of the main domino-building step, heuristics to obtain planar-support graphs,

a safe-shrinking routine, a random-walk heuristic to extract additional violated constraints,

and a tightening procedure to modify existing inequalities as the LP solution changes. We

report computational results showing the strength of the new routines, including the optimal

solution of a 33,810-city instance from the TSPLIB.
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1. Introduction

We consider the traveling salesman problem (TSP) with symmetric travel costs, that is, the

cost to travel from city a to city b is the same as traveling from b to a. The input to the

problem can be described as a complete graph G = (V,E) with nodes V , edges E, and edge

costs (ce : e ∈ E). Here V represents the cities and the problem is to find a tour of minimum

total edge cost, where a tour is a cycle that visits each node exactly once (also known as a

Hamiltonian cycle).
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The TSP has long been an active platform for testing new ideas in integer programming

and combinatorial optimization. Among the solution techniques proposed to date, the most

successful has been Dantzig et al.’s (1954) cutting-plane method. In their work, a tour is

represented as a 0/1 vector x = (xe : e ∈ E), where xe = 1 if edge e is used in the tour and

xe = 0 otherwise. Given any linear system Ax ≤ b that is satisfied by every tour vector, the

solution of the linear-programming (LP) problem

minimize
∑

e∈E

cexe subject to Ax ≤ b

provides a lower bound for the TSP. The cutting-plane method improves this bound by

iteratively adding further linear inequalities, or cutting planes, that are satisfied by all tour

vectors but not satisfied by the current LP solution vector x⋆; the task of finding such violated

inequalities among a specified class is known as the separation problem for the class. Surveys

of the wide body of work on the cutting-plane method for the TSP can be found in Jünger

et al. (1995) and Naddef (2002).

An interesting approach to TSP separation was proposed by Letchford (2000), building

on earlier work of Fleischer and Tardos (1999). Given a vector x∗, the support graph G∗

is the subgraph of G having edge set E∗ = {e ∈ E : x∗
e > 0}. Letchford introduced a

class of TSP inequalities called domino-parity constraints and described a polynomial-time

separation algorithm in the case where G∗ is a planar graph. In this work Letchford exploits

planarity by solving a key component of the separation problem in the planar dual graph. An

initial study of his algorithm by Boyd et al. (2001), combining a computer implementation

with by-hand computations, showed that the method can produce effective cutting planes

for instances with up to 1,000 nodes.

In this paper we present a further study of Letchford’s algorithm, using the Concorde

TSP code of Applegate et al. (2003) as the starting point for our work. We fully automate

Letchford’s method, handling the general (non-planar) case by creating a nearby planar

graph that can be used as a proxy for G∗. We demonstrate the strength of the new routines

on a range of test instances, including the optimal solution of a 33,810-city example, the

largest TSPLIB instance solved to date.

The paper is organized as follows. The domino-parity constraints are described in Sec-

tion 2, together with a review of results from Letchford (2000) and a description of the steps

adopted in our implementation to improve the practical efficiency of the separation algo-

rithm. In Section 3 we describe shrinking techniques that allow us to handle large instances,
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and in Section 4 we describe heuristic methods to handle the common case where G∗ is not

planar. A local-search procedure for improving domino-parity constraints is described in

Section 5 and computational results are presented in Section 6.

2. DP Inequalities and Letchford’s Algorithm

For any S ⊆ V let δ(S) denote the set of edges with exactly one end in S; a set of the form

δ(S) for a proper subset S ⊆ V is called a cut. For disjoint sets S, T ⊆ V let E(S : T )

denote the set of edges having one end in S and one end in T . For any set F ⊆ E define

x(F ) =
∑

(xe : e ∈ F ).

Every tour of G satisfies the subtour-elimination constraints x(δ(S)) ≥ 2,∀ ∅ 6= S ( V.

Using network-flow methods, the separation problem for these inequalities can be solved

efficiently. That is, given a non-negative vector x∗, a violated subtour-elimination constraint

can be found in polynomial time, provided one exists. The subtour-elimination constraints

were employed by Dantzig et al. (1954) and are a basic ingredient of modern implementations

of the cutting-plane method. The solution set of the TSP relaxation

x(δ({v})) = 2 ∀ v ∈ V

x(δ(S)) ≥ 2 ∀ ∅ 6= S ( V

0 ≤ xe ≤ 1 ∀ e ∈ E

is known as the subtour-elimination polytope and is denoted by SEP (n), where n = |V |.

After the subtour-elimination constraints, the second most important class of cutting

planes used in current TSP codes are the comb inequalities developed by Chvátal (1973) and

Grötschel and Padberg (1979a). A comb is defined by subsets H,T1, . . . , Tp of V such that

p is odd, T1, . . . , Tp are pairwise disjoint, and for each i = 1, . . . , p we have H ∩ Ti 6= ∅ and

Ti \H 6= ∅. The set H is called the handle of the comb and the sets T1, . . . , Tp are the teeth.

Given any comb, the corresponding comb inequality x(δ(H)) +
∑

(x(δ(Ti)) : i = 1, . . . , p) ≥

3p + 1 is satisfied by every tour vector. A nice theoretical property of comb inequalities

is that, like subtour-elimination constraints, they induce facets of the convex hull of all

tours (Grötschel and Padberg 1979b). Padberg and Rao (1982) provided a polynomial-time

separation algorithm for the class of combs having |Ti| = 2 for all i; Fleischer et al. (2006)

extended this result to the case when each tooth Ti satisfies either |Ti∩H| = 1 or |Ti\H| = 1.
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It is not known, however, if the separation problem for the full class of comb inequalities is

polynomial-time solvable or whether it is NP -hard.

A direct generalization of combs was described by Letchford (2000). He defines a domino

as a pair {A,B} of nonempty subsets of V satisfying A ∩ B = ∅ and A ∪ B 6= V , extend-

ing the concept used in Applegate et al. (1995). Consider an odd number p of dominoes

{A1, B1}, . . . , {Ap, Bp} together with an additional set F ⊂ E such that for some H ⊆ V

the cut δ(H) is precisely the set of edges that appear an odd number of times among the

sets F,E(A1 : B1), . . . , E(Ap : Bp). The domino-parity (DP) inequality

x(F ) +
∑

(x(E(Ai : Bi)) + x(δ(Ai ∪Bi)) : i = 1, . . . , p) ≥ 3p + 1 (1)

is satisfied by all tour vectors, as shown by Letchford (2000). A comb is cast in this form

using dominoes {Ti ∩ H,Ti \ H}, i = 1, . . . , p and F = δ(H) \ ∪i=1,...,pE(Ti ∩ H : Ti \ H).

Note however that the ground sets of general dominoes in a DP inequality can intersect in

arbitrary ways, leading to a much richer class than the comb inequalities. Despite this extra

freedom, Naddef and Wild (2003) have shown that a broad subclass of DP inequalities also

induce facets of the convex hull of tour vectors.

In working with DP inequalities we adopt notation introduced by Letchford (2000). Let

E1, . . . , Ek be a family of subsets of E and for each e ∈ E define µe as the number of subsets

Ei that contain e. The family of subsets is said to support the cut δ(K) if δ(K) = {e ∈ E :

µe is odd}. Now defining (µe : e ∈ E) for the family of subsets F,E(A1 : B1), . . . , E(Ap : Bp),

the DP inequality (1) can be written as

∑

(µexe : e ∈ E) +
∑

(x(δ(Ai ∪Bi)) : i = 1, . . . , p) ≥ 3p + 1.

Considering µ = (µe : e ∈ E) as a vector, the sum
∑

(µexe : e ∈ E) can be written as an

inner product µx, allowing us to write the DP inequality as

µx +
∑

(x(δ(Ai ∪Bi)) : i = 1, . . . , p) ≥ 3p + 1.

The set H, called the handle of the DP inequality, is defined implicitly by µ, and it is unique

(up to taking its complement in V ). Note that a DP inequality may be characterized by its

set of dominoes and either by its handle H, or by the set of extra edges F , or by the vector

of multipliers µ. We will use these three descriptions interchangeably. Note also that H may

be the empty set, and thus it may not define a cut in the usual sense.
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Letchford (2000) proposed a two-stage algorithm that separates the class of DP con-

straints in polynomial time, provided the support graph G∗ is planar and x⋆ ∈ SEP (n). In

the first stage, a set of candidate dominoes is constructed. In the second stage, a handle

and an odd number of dominoes are selected so as to define a maximally violated constraint,

provided one exists.

For the remainder of this section, assume that x⋆ ∈ SEP (n). Also, assume that G∗ is a

planar graph and let G
∗

denote the planar dual of G∗. For any subset F ⊆ E(G∗), denote

by F the corresponding edges in G
∗
. The nodes and edges of G

∗
are denoted by V (G

∗
) and

E(G
∗
) respectively.

2.1. Building Dominoes

The starting point of Letchford’s algorithm is the observation that a domino can be con-

structed from a set of three s− t paths in the dual graph G
∗
. In the statement of this result

we treat a path p as a set of edges in G
∗
.

Lemma 1 (Letchford 2000) Consider s, t ∈ V (G
∗
) and three edge-disjoint s-t paths p1, p2,

p3 in G
∗
. There exists a domino {A,B} such that

(

δ(A ∪B) ∩ E(G∗)
)

∪
(

E(A : B) ∩ E(G∗)
)

= p1 ∪ p2 ∪ p3.

Algorithm 1 describes the procedure to build a domino from the three paths. In Step 3 of

the algorithm we have a choice among the sets S1, S2, and S3 in forming the components of

the domino; for storage purposes we choose A and B having minimum cardinality.

Algorithm 1 Primalizing Dual Dominoes (prim dom(p1, p2, p3))

Require: p1, p2, and p3 are three edge-disjoint simple s− t paths in G
∗
.

1: Compute p̂1, p̂2, and p̂3, three non-crossing s-t paths in G
∗

such that
⋃

1≤i≤3

pi =
⋃

1≤i≤3

p̂i.

2: Compute S1, S2, and S3, a partition of V with δ(S1) ∩ E(G∗) = p̂1∪ p̂2, δ(S2) ∩ E(G∗) =
p̂2 ∪ p̂3, δ(S3) ∩ E(G∗) = p̂3 ∪ p̂1.

3: Let A be the smallest {Si}1≤i≤3 and let B be the second smallest {Si}1≤i≤3.
4: return {A,B}

A key result of Letchford (2000) is that it suffices to use as candidate dominoes in DP

inequalities only those that can be generated from Lemma 1. These dominoes can be obtained

by computing for each pair of nodes (s, t), three edge-disjoint s− t paths of minimum total

weight, where the weight of an edge in G
∗

is its LP value x∗
e. To carry this out efficiently,
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several practical steps need to be adopted. The first observation is that by defining the

weight of a domino {A,B} as w({A,B}) = x(δ(A ∪B)) + x(E(A : B))− 3 a DP inequality

with domino-set {Aj, Bj}1≤j≤p can be written as

x(F ) +
∑

(w({Aj, Bj}) : 1 ≤ j ≤ p) ≥ 1.

Our assumption that x∗ ∈ SEP (n) implies that for any domino {A,B} we have w({A,B}) ≥

0. Thus, if we are interested in violated inequalities we should consider only dominoes of

weight less than one. We can therefore restrict our attention to paths satisfying x∗(p1 ∪ p2 ∪

p3) < 4.

More can be done with the bounds on the weights of the paths p1, p2, and p3 if we assume

x∗ ∈ SEP (n). First, note that no node at distance two or more from either s or t can be

present in any of the three paths. Indeed, suppose such a node is contained in path p3. We

know that p1, p2 form a cycle in G
∗

and thus correspond to a cut in G∗. It follows that

x∗(p1∪p2) ≥ 2. Combining this with x∗(p3) ≥ 2 we violate the bound of 4. This allows us to

run the domino-finding algorithm on a graph that is typically much smaller than the original.

Moreover, using a successive shortest-path algorithm described in Ahuja et al. (1993) to

compute p1, p2, and p3, we obtain paths such that x∗(p1) ≤ x∗(p2) ≤ x∗(p3). Thus, sufficient

conditions for the bound to be violated are 3x∗(p1) ≥ 4 or x∗(p1) + 2x∗(p2) ≥ 4, allowing us

to prune further the search for dominoes.

To take advantage of these bounds we have implemented Dijkstra’s algorithm with heaps

so that whenever the latest labeled node has a value greater than a given bound, the algo-

rithm is stopped. We call this function dijkstra(G,s,w,bound), where G is a graph, s is a

node in V (G), w is a weight vector on the edges of G, and bound is the stopping bound.

This function returns a vector of distances from s to all nodes in G having distance less than

bound, and infinite otherwise.

A detailed version of our domino-finding implementation is given in Algorithm 2. Note

that the algorithm has a parameter α as input. To obtain all dominoes that might be used

in a violated constraint it suffices to set α = 1. In practice, however, we have seen that

choosing α = 0.55 greatly reduces the computation time for the routine, and it seems not

to hurt the quality of the inequalities that are produced; this is the value used in the tests

presented in Section 6.

The choice of α is based on computational tests showing a sharp divide in the performance

for values above and below α = 0.50. A summary of one set of experiments is given in
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Algorithm 2 Generating Candidate Dominoes (get all dominoes(G∗,α))

1: L ← ∅.
2: w(e)← x∗

e, ∀e ∈ E(G
∗
) {weight definition}

3: c(e)← 1, ∀e ∈ E(G
∗
) {capacity of edges}

4: for all s ∈ V (G
∗
) do

5: do ←dijkstra(G
∗
,s,w,2)

6: for all t ∈ V (G
∗
) and t > s and do(t) < (3 + α)/3 do

7: d← do

8: Send unit flow along the shortest s− t path according to d.
9: Update the residual graph G

∗

r , residual costs w, and capacity c.
10: val← d(t)
11: bound← min

(
3+α−val

2
, 2

)

12: d←dijkstra(G
∗

r ,s,w,bound)
13: if val + 2d(t) < 3 + α then

14: Send unit flow along the shortest s− t path according to d.
15: Update the residual graph G

∗

r , residual costs w, and capacity c.
16: val← val + d(t)
17: bound← min (bound, 3 + α− val)
18: d←dijkstra(G

∗

r ,s,w,bound).
19: if val + d(t) < 3 + α then

20: Send unit flow along the shortest s− t path according to d.
21: Compute the three unit-flow paths p1, p2, p3 from s to t.
22: Dst ← prim dom(p1, p2, p3), w(Dst)← val + d(t).
23: L ← L ∪ Dst

24: end if

25: end if

26: end for

27: end for

28: return L
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Table 1: DP Cuts on 2,500-City Random Euclidean Instances

α Subtour Gap Closed CPU Seconds DP Cuts Found
0.10 94.753% 673 0
0.20 94.753% 676 0
0.30 94.753% 689 0
0.40 94.760% 687 2
0.45 94.854% 747 29
0.50 97.571% 3161 2620
0.55 97.515% 3157 2608
0.60 97.585% 3259 2618
0.70 97.603% 3551 2677
0.80 97.602% 3579 2628
0.90 97.550% 3707 2612
1.00 97.588% 3839 2598

Table 1, with α ranging from 0.1 to 1.0. In this test, our DP-separation routines were added

to Concorde and the code was run with the option -mC20 to allow local cuts up to size 20

(see Applegate et al. 2003). The results in Table 1 are the average values over 20 randomly

generated Euclidean instances, each having 2,500 cities. The column “Subtour Gap Closed”

reports the percentage of the gap between the cost of the optimal tour and the optimal

value over SEP (n) that is closed by the run of Concorde with the DP separator; i.e., letting

ZSEP denote that optimum over SEP (n) and letting ZDP denote the bound returned by

Concorde+DP, the values are

100

(

1−
OPT − ZDP

OPT − ZSEP

)

.

The “CPU Seconds” column gives the total CPU time on an 2.66 GHz Intel Xeon worksta-

tion; the “DP Cuts” column reports the total number of DP cuts that were added to the LP

relaxation.

In the tests reported in Table 1, the reduction in running time for α = 0.55 vs. α = 1.0 is

18%, without a significant difference in the bound produced by Concorde+DP. Moreover, this

running-time reduction grows with the size of the instance, resulting in substantial savings

for large test problems.

Another possibility to speed up the domino-generation step is to do Steps 4-27 of Algo-

rithm 2 in parallel. The computations to obtain all dominoes originating at a node s are

independent of the computations needed to obtain dominoes from any other node t. This
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easy parallelization allowed us to use a cluster of 50-100 machines to generate all dominoes,

greatly reducing the (actual) time needed for testing the code.

2.2. The Odd-Cycle Problem

The next stage in Letchford’s algorithm is to build an inequality from the collection of

dominoes and the edges in the dual graph. For this, define an auxiliary multigraph M∗

with node set V (M∗) = V (G
∗
). For each edge e = {u, v} ∈ E(G

∗
) define an even edge

e = {u, v} ∈ E(M∗) with weight we = x∗
e, and for each domino Duv ∈ L define an odd edge

e = {u, v} ∈ E(M∗) with weight we = w(Duv). An odd cycle in M∗ is a cycle with an odd

number of odd edges.

Theorem 2 (Letchford 2000) There exists a violated DP inequality in G∗ if and only if there

exists an odd cycle in M∗ with weight less than one. Furthermore, if such a cycle exists, a

minimum-weight odd cycle in M∗ corresponds to a maximally violated DP inequality, where

F is defined by the even edges in the cycle, and T by the odd edges in the cycle.

In fact, given any odd cycle C ⊆ E(M∗) with weight w(C) < 1, it is possible to construct

a DP inequality with violation 1− w(C), by defining the set F as the even edges in C and

choosing the set of dominoes T to be those corresponding to odd edges in C.

The process of building the inequality is summarized in Algorithm 3. Note that we can

Algorithm 3 DP-inequality separation

1: max violation← 0
2: L ←get all dominoes(G∗,1).
3: build graph M∗

4: for all v ∈ V (M∗) do

5: Compute a minimum odd cycle C passing through v
6: if 1− w(C) > max violation then

7: max violation← 1− w(C)
8: F ← even edges in C
9: T ← {Duv ∈ L : euv odd , euv ∈ C}

10: end if

11: end for

12: return F, T

omit from M∗ all edges e ∈ E(G
∗
) such that x∗

e ≥ 1− ε, where ε is the minimum violation

that we would like to obtain.
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Our statement of the algorithm uses the standard method for obtaining a minimum

odd cycle in a graph (Barahona and Mahjoub 1986, Grötschel et al. 1993): for each node

in M∗ we compute a minimum odd cycle containing that node. Adopting this approach,

Boyd et al. (2001) proposed to keep all violated inequalities that arise during the algorithm,

rather than just the single constraint of maximal violation. This addresses the practical

concern that a selection of cutting planes is usually superior to a single violated inequality.

In our implementation we found it useful to extend this idea by adopting a heuristic search

procedure to attempt to find additional inequalities. The technique we use is to sample the

odd cycles by performing random walks starting at each node. At each step of the walk we

select an edge to extend the current path, such that we create neither an even cycle nor an

odd cycle with a single odd edge. (Odd cycles with one odd edge generate DP inequalities

with one domino, which are not violated if x∗ ∈ SEP (n).) The edges are selected with

probability proportional to their x∗-weight. We restart the walk if the resulting path has

total weight greater than 1 − ε or if we find an odd cycle, in which case we record the

corresponding constraint. In our tests we spend 10-30 seconds in this sampling process,

evenly distributed among all nodes in M∗.

On large examples the random-walk procedure is able to find several hundreds of thou-

sands of different inequalities, leading us to the problem of selecting which inequalities to

report. Clearly we cannot return them all, and keeping the set of most violated ones leads

to storing multiple inequalities that are almost identical. Following the ideas studied by An-

dreello et al. (2005), we choose a strategy that balances keeping highly violated inequalities

and inequalities that cover different parts of the graph.

3. Safe Shrinking

In applying the DP-separation algorithm it is crucial to preprocess G∗ to reduce the size of

the graph that must be handled. Given a graph G and two nodes u, v ∈ V (G), let G/{u, v}

denote the graph obtained by contracting the nodes u, v into a single node y and eliminating

any resulting self-loop edges. This operation is called shrinking u, v in G. The following

result provides conditions that allow us to shrink pairs of nodes (u, v), guaranteeing that

violated DP constraints will be available in the shrunken graph G∗/{u, v} if violated DP

constraints were present in G∗.
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Theorem 3 Let x∗ ∈ SEP (n) and let u, v, t ∈ V (G∗) be such that x∗
uv = 1 and x∗

ut+x∗
tv = 1.

If there exists a violated DP inequality in G∗, then there exists a DP inequality in G∗/{u, v}

with violation no less than the violation of the original inequality.

Padberg and Rinaldi (1991) proved that, under these safe-shrinking conditions, if there exists

a violated inequality for the TSP (i.e., x∗ is not in the convex hull of tours), then the shrunken

graph will also have a violated inequality. Their result, however, does not imply that, if there

is a cutting plane from a particular class (like DP inequalities), then there remains a cutting

plane from that class.

This section is devoted to a proof of Theorem 3. In our computational tests, repeated

use of this result was able to reduce the size of the support graphs we considered by 60% on

average.

3.1. Domino Transformations

We begin by describing transformations that take a DP inequality described by F, T and

return another DP inequality F ′, T ′ with violation greater than or equal to the violation of

the original inequality. We will sometimes interpret D ⊆ E(G∗) as a set of edges and at

other times as an |E(G∗)|-vector with 1 for each edge in D and 0 for all other edges. For a

domino T = {AT , BT} ∈ T we use the short-hand δ(T ) to mean δ(AT ∪BT ) and we denote

by CT the set V \ {AT ∪BT}.

Duplicate-Domino Elimination Let T1, T2 ∈ T be such that T1 = T2. Define T ′ =

T \ {T1, T2}, and F ′ = F . Note that since µ − µ′ = 2E(AT1
: BT1

), the vectors µ and µ′

support the same cut (since µe and µ′
e have the same parity for each edge e). Furthermore,

the violation of the new inequality is at least the violation of the original. Indeed

µx +
∑

T∈T

x(δ(T ))− 3|T | − 1 = µ′x +
∑

T∈T ′

x(δ(T ))− 3|T ′| − 1 + w(T1)
︸ ︷︷ ︸

≥0

+ w(T2)
︸ ︷︷ ︸

≥0

≥ µ′x +
∑

(x(δ(T )) : T ∈ T ′)− 3|T ′| − 1.

We can therefore delete from T any pair of duplicate dominoes without decreasing the

violation of the cutting plane.
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Domino Reduction Let To ∈ T and let ∅ 6= A′ ⊆ ATo
, ∅ 6= B′ ⊆ BTo

be subsets of the

components of the domino. Define T ′
o = {A′, B′}, and suppose that x(δ(T ′

o)) ≤ x(δ(To)). To

simplify notation, call S = E(ATo
: BTo

) and S ′ = E(A′ : B′). Define a new inequality with

T ′ = (T \ {To}) ∪ {T
′
o} and F ′ = F∆(S \ S ′), where, as usual, P∆Q denotes the symmetric

difference of sets P and Q. We have

µ− µ′ = F − F∆(S \ S ′) + S − S ′

= F − F∆(S \ S ′) + (S \ S ′) (note S ′ ⊆ S)

= 2F ∩ (S \ S ′).

Thus µ and µ′ support the same cut. Finally, note that the left-hand side of the new

inequality is less than or equal to that of the original constraint:

µx +
∑

T∈T

x(δ(T )) = µ′x + 2x(F ∩ (S \ S ′))
︸ ︷︷ ︸

≥0

+
∑

T∈T \{To}

x(δ(T )) + x(δ(To))
︸ ︷︷ ︸

≥x(δ(T ′

o))

≥ µ′x +
∑

(x(δ(T )) : T ∈ T ′) .

We thus obtain a new DP inequality (F ′, T ′) with violation at least that of the original and

with To replaced by T ′
o.

Domino Rotation Boyd et al. (2001) have shown that in a DP inequality a domino

{AT , BT} ∈ T can be rotated to {AT , CT} without altering the inequality. To see this let

To ∈ T and define A′
To

= ATo
, B′

To
= CTo

, T ′
o = {A′

To
, B′

To
}, T ′ = (T \ {To}) ∪ {T

′
o},

and F ′ = F . To simplify the notation, call S1 = E(ATo
: BTo

), S2 = E(CTo
: ATo

), and

S3 = E(CTo
: BTo

). Then µ′ − µ = −S1 + S2 and

Odd(µ′) = Odd(µ)∆δ(ATo
) = δ(H)∆δ(ATo

) = δ(H∆ATo
),

where Odd(µ) denotes the edges having odd value µe. Thus, H∆ATo
is the handle of the

new DP inequality. Note also that the left-hand side of the inequality does not change:

µx +
∑

T∈T

x(δ(T )) = (µ− S1) x + x(S1) +
∑

T∈T \{To}

x(δ(T )) + x(S2) + x(S3)
︸ ︷︷ ︸

x(δ(To))

= (µ− S1 + S2) x
︸ ︷︷ ︸

µ′x

+
∑

T∈T ′\{T ′

o}

x(δ(T )) + x(S1) + x(S3)
︸ ︷︷ ︸

x(δ(T ′

o))

= µ′x +
∑

(x(δ(T )) : T ∈ T ′) .

We thus obtain a new DP inequality (F ′, T ′) with violation equal to the violation of the

original constraint, with To replaced by T ′
o and H replaced by H∆ATo

.
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3.2. Proof of Safe-Shrinking Conditions

Let λ be the maximum violation for x∗ over all DP inequalities and let u, v, t satisfy the

conditions in Theorem 3, namely x∗
uv = 1 and x∗

ut + x∗
vt = 1. Now let (F, T ) be a DP

inequality of violation λ that minimizes the coefficient of the edge uv. We prove Theorem 3

by showing that the coefficient of uv is zero, and thus we can shrink (u, v) into a single node

and keep the same violation.

To begin, note that the coefficient of uv in the DP inequality can be written as

coeff(uv) = |{T ∈ T : uv ∈ δ(T )}|+ |{T : uv ∈ E(AT : BT )}|+ |{uv} ∩ F |.

Suppose coeff(uv) > 0.

Claim 1: We may assume that for all T ∈ T we have uv /∈ δ(T ).

Proof: Suppose To ∈ T is such that uv ∈ δ(To). We may assume that u ∈ ATo
and v ∈ CTo

.

By rotating To we obtain an equivalent constraint (F ′, T ′) with |{T ∈ T : uv ∈ δ(T )}| >

|{T ∈ T ′ : uv ∈ δ(T )}|.

Claim 2: If uv ∈ E(AT : BT ) for T ∈ T , then we may assume AT = {u} and BT = {v}.

Proof: Suppose To ∈ T has uv ∈ E(ATo
: BTo

). We may assume u ∈ ATo
and v ∈

BTo
. Note that x∗

uv = 1 implies that x∗(δ({u, v})) = 2, and x∗ ∈ SEP (n) implies that

x∗(δ(ATo
∪BTo

)) ≥ 2. We can apply Domino Reduction with A′
To

= {u} and B′
To

= {v}.

Combining Claim 2 with Duplicate-Domino Elimination, we may assume that there is at

most one domino in T having the form TI = {{u}, {v}}.

Claim 3: We have coeff(uv) ≤ 1.

Proof: If coeff(uv) = 2 then TI ∈ T and uv ∈ F . In this case we define T ′ = {TII}∪T \{TI},

where TII = {{u, v}, {t}}, and F ′ = F∆{uv, ut, vt}. We show that (F ′, T ′) defines a DP

inequality with coeff(uv) = 0, and with violation at least that of (F, T ). To simplify notation,

call S1 = {uv, vt, ut}, S2 = E(ATI
: BTI

) = {uv}, and S3 = E(ATII
: BTII

) = {vt, ut}. First

note that µ′ supports the same cut as µ: µ−µ′ = F−F∆S1+S2−S3 = F−F∆S1+S1−2S3 =

2(F ∩ S1 − S3). Now using the fact that x∗
ut + x∗

tv = 1, we have x(δ(TI)) = x(δ(TII)) = 2.

It follows that the left-hand side of the new inequality is less than or equal to the left-hand

13



side of the original constraint:

µx +
∑

T∈T

x(δ(T )) = µ′x + 2x(S1 ∩ F )
︸ ︷︷ ︸

≥2

− 2x(S3)
︸ ︷︷ ︸

=2

+
∑

T∈T \{TI}

x(δ(T )) + x(δ(TI))
︸ ︷︷ ︸

=x(δ(TII))

≥ µ′x +
∑

(x(δ(T )) : T ∈ T ′) .

Thus we have obtained a DP inequality with coeff(uv) = 0 and with violation at least as

great as that of (F, T ), a contradiction.

Claim 4: Edge uv is not in F .

Proof: If uv ∈ F , then TI /∈ T and we may assume that u ∈ H and v ∈ V \H. We will

define a new inequality (F ′, T ′) so that coeff(uv) = 0. In the new inequality we let T ′ = T

and F ′ = F∆δ({v}).

Note that µ′ supports the cut H ∪ {v}: Odd(µ′) = Odd(µ)∆(δ({v})) = δ(H)∆δ({v}) =

δ(H∆{v}) = δ(H ∪ {v}). Also note that the left-hand side of the new inequality is less than

or equal to the left-hand side of the original inequality:

µx +
∑

T∈T

x(δ(T ))− µ′x−
∑

T∈T ′

x(δ(T )) = x(F )− x(F∆δ({v}))

= x(F ∩ δ(v))
︸ ︷︷ ︸

≥x(uv)

−x((F∆δ(v)) ∩ δ(v))
︸ ︷︷ ︸

≤2−x(uv)

≥ 2x(uv)− 2 = 0.

Thus the new inequality (F ′, T ′) has violation at least as great as that of the original con-

straint and coeff(uv) = 0, a contradiction.

It follows that TI /∈ T , since otherwise coeff(uv) = 0. We assume that u, t ∈ H and v ∈ V \H

(the alternative case, when v and t are on the same side of the handle, is analogous to this

one). It follows that that µvt is odd.

Claim 5: We may assume vt /∈ F .

Proof: If vt ∈ F , then we can replace TI by a new domino TII and add v to the handle

as follows. Let y represent the set V \ {u, v, t} and consider the aggregated graph given

in Figure 1. In the new inequality we let F ′ = F∆{vt, uy}, TII = {{y}, {u, v}}, and

T ′ = (T \ {TI}) ∪ {TII}.
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Figure 1: Aggregated Graph With x∗-Values on Edges

Clearly w(TI) = w(TII). Moreover, the left-hand side of the new DP inequality (F ′, T ′)

is less than or equal to the left-hand side of the original DP inequality (F, T ):

LHS − LHS ′ = x(F )− x(F∆{vt, uy}) + w(TI)− w(TII)

= x(F ∩ {vt, uy})
︸ ︷︷ ︸

≥x(vt)

−x({vt, uy} \ F )
︸ ︷︷ ︸

≤x(uy)

≥ (1− α)− (1− α) = 0.

We finally show that the cut supported by µ′ is δ(H ∪ {v}). First observe that µ − µ′ =

F−F∆{vt, uy}+E(ATI
: BTI

)−E(ATII
: BTII

)) = {vt, uy}∩F−{vt, uy}\F+{uv}−{uy, vy}.

Now if uy ∈ F , we have µ − µ′ = {vt, uv} − {vy}, and if uy /∈ F we have µ − µ′ =

{vt, uv} − {vy} − 2{uy}. In either case, Odd(µ − µ′) = δ({v}), which in turn implies that

Odd(µ′) = δ(H ∪ {v}). Thus we have a new DP inequality with vt /∈ F ′.

With vt /∈ F and with µvt odd, there must exist a domino TII such that v ∈ ATII
, t ∈ BTII

.

Moreover, since coeff(uv) = 1 and TI ∈ T , we have u ∈ ATII
. Now, by Domino Reduction we

may assume that ATII
= {u, v} and BTII

= {t}. Note that this (plus parity, since ut /∈ δ(H))

implies that µut ≥ 2.

Claim 6: We may assume ut /∈ F .

Proof: If ut ∈ F then we can eliminate TI , TII from T and redefine H as H∪{v} as follows.

Define T ′ = T \ {TI , TII} and F ′ = F∆{ut, yv}. Using arguments similar to those above,

it can be checked that the cut supported by µ′ is H ∪ {v} and that the new violation is at

least as great as that of the original inequality.

It follows that there exists a domino TIII such that u ∈ ATIII
and t ∈ BTIII

. Using the same

arguments as before, we can transform TIII into TII and then we have µut = |{TII ∈ T }| =
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µtv. But this contradicts the fact that µvt is odd and µut is even, thus completing the proof

of Theorem 3.

4. Finding a Planar Graph

Large TSP instances rarely produce LP solutions with planar support. To succeed in practice

it is therefore necessary to modify G∗ and x∗ to obtain a planar graph that can be used as

a substitute in the DP-separation algorithm. Such a process may lose violated inequalities,

but if the new planar graph is close (under some measure) to G∗ then we can still produce

a good selection of cutting planes.

Non-planar graphs were encountered in test instances studied by Boyd et al. (2001). Their

approach was to perform general (possibly unsafe) shrinking steps by hand, using a visual

inspection of a drawing of G∗ to guide the process to produce a planar graph. We adopt

such an approach, using planarity-testing algorithms to automate the process as suggested

in Vella (2001).

Efficient algorithms are available that return either a planar embedding of a graph or a

K3,3 or K5 minor. To use such an algorithm to obtain a planar graph, whenever a minor K

is returned we select nodes u, v having degree at least three in K, replace G∗ by G∗/{u, v},

and repeat. With this approach, if x∗ ∈ SEP (n) then the new shrunken fractional solution

also satisfies the subtour-elimination constraints. A drawback is that the resulting fractional

solution does not necessarily satisfy the degree constraints x(δ({v})) = 2 for all v ∈ V. This

detail is not crucial, however, since the DP inequalities and the separation algorithm are

valid also for the graphical traveling salesman problem, where nodes and edges can be used

more than once in the tour. A discussion of this point is given in Letchford (2000).

4.1. Edge-Elimination Planarization

An alternative way to obtain planar graphs is repeatedly to delete edges found in a K3,3 or

K5 minor. An effective way to choose an edge to delete is to use binary search to identify

the minimum-weight edge such that the subgraph containing all edges of greater weight is

planar. Thus the minimum weight to eliminate from the graph to make it planar is at least

the x∗
e-value of the selected edge. Since the complexity of planarity testing is O(|V (G∗)|),

the total complexity to select the edge is O(log(|E(G∗)|)|E(G∗)|).
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We have found that the total weight of eliminated edges is usually quite small. A prob-

lem with the method, however, is that it produces a vector x∗ that does not satisfy the

degree constraints or the subtour-elimination constraints. This implies that the weight of

the dominoes found during the domino-generation step may be negative, which may create

negative cycles in M∗. To avoid this issue we simply set the weight of all negative dominoes

to zero. Now, before returning the cuts found during the second phase of the algorithm, we

re-compute exactly the actual violation for the inequality in the original graph.

Note that many more schemes are possible to generate planar graphs from a graph, e.g.,

mixing the shrinking and edge-deletion steps. Neither of the heuristic methods we presented

dominates the other and in our computational tests we separate the DP inequalities in

the graphs obtained from both methods. The problem of obtaining a planar graph that

represents well an LP solution deserves further study. For a general discussion of graph

planarity and the TSP we refer the reader to Letchford and Pearson (2005).

5. Tightening DP Inequalities

Applegate et al. (2003) proposed a cutting-plane tightening procedure for the TSP that

modifies existing inequalities in response to changes in the LP solution vector. This is an

effective way of dealing with successive vectors x∗ that differ only slightly. In our case, where

we run the DP-separation algorithm on an approximation to G∗, a tightening process can

help correct for any flaws we introduce in our planarization procedure.

The Applegate et al. process works by making a series of greedy steps to adjust the

sets that define a TSP cutting plane. To adopt their approach in our case, note that a DP

inequality is completely defined by a family of dominoes and a handle. The modification

steps we consider are to add or remove nodes from dominoes and the handle, to move a node

from one side of a domino to the other, and simultaneously to change sides in a domino and

move in or out of the handle. The basic steps are organized into an algorithm following the

general strategy of Applegate et al. (2003).

A node u is relevant in the tightening heuristic if there exists e ∈ δ(u) such that it has

a non-zero coefficient in the DP inequality. We begin by computing the best move, that is,

among all feasible moves in all relevant nodes we find the one giving the greatest improvement

in the violation of the constraint. While this violation improvement is sufficiently positive,

we perform the move and update the new best move. If the best move gives improvement less
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than ε, we attempt to perform a sequence of moves to enlarge either the handle or a domino,

followed by moves that flip elements within a domino, and finally moves that shrink a domino

or a handle. We continue this process until some ε-improving move is found (and then go

back to our greedy approach), or until we cannot make any further moves. The algorithm

will never cycle, since each move can be performed only once within each ε-improvement

phase. In our tests ε was chosen as 10−6.

6. Computational Results

We have implemented the DP-separator routines in the C-programming language. The

routines are incorporated into the Concorde TSP code of Applegate et al. (2003), searching

for DP inequalities in each full pass through Concorde’s native cutting-plane routines. The

computations were performed on a 2.66 GHz Intel Xeon workstation using ILOG CPLEX

6.5 as an LP solver. The planarity-testing algorithm is due to Boyer and Myrvold (2004) as

implemented by J. Boyer.

Table 2: DP Cuts on TSPLIB Instances (% of Subtour Gap Closed)

Name Concorde DP Gap ∆ Concorde Hours DP Hours
pcb3038 96.834% 99.185% 73.1% 41.3 9.2
fl3795 74.149% 98.299% 92.8% 79.6 121.0
fnl4461 98.594% 99.297% 50.0% 7.5 9.8
rl5915 98.237% 99.424% 66.7% 98.8 28.1
rl5934 98.389% 99.339% 59.1% 21.8 21.5

Our tests use the option -mC48 to allow Concorde to call local cuts repeatedly up to size

48; this setting requires additional CPU time, but it allows Concorde to obtain substantially

better lower bounds. Local cuts of size 48 are the largest value that can be effectively handled

in Concorde. Our test bed consists of all instances in the TSPLIB collection of Reinelt (1991)

having at least 3,000 cities.

In Table 2 we report mean values for a set of ten trials for each mid-sized TSPLIB

instance. The column “Concorde” gives the percentage of the subtour gap closed when

running Concorde without DP inequalities. The column “DP” gives the same result when

we include the DP-separator routines. The “Gap ∆” column gives the percentage of the

average remaining gap (between the Concorde bound and the optimal tour value) that is

closed when DP inequalities are added. The final two columns report the running times
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in hours. The improvements in the gaps are considerable, given the already strong bounds

obtained by the -mC48 runs of Concorde.

Table 3: DP Cuts on Largest TSPLIB Instances

Name Optimal Concorde Conc+DP Gap ∆ Conc Hours DP Hours
pla7397 23260728 23255280 23258947 67.3% 70.5 268.2
rl11849 923288 923053 923209 66.4% 118.0 104.4

usa13509 19982859 19979209 19981200 54.5% 81.2 109.9
brd14051 469385 469321 469354 51.6% 53.2 159.5
d15112 1573084 1572863 1572967 47.1% 124.0 152.7
d18512 645238 645166 645195 40.3% 73.9 186.5

pla33810 66048945 65972887 66001234 37.3% 19.0 231.0
pla85900 (142382641) 142265646 142296660 26.5% 224.2 174.1

Results for all TSPLIB problems having at least 6,000 cities are reported in Table 3.

Each of these results is for a single trial. In these tests we first ran Concorde without the

DP-separator routines, and then used the final LP as the starting point for running Concorde

together with the new routines. The “Optimal” column reports the value of the optimal tour;

in the case of pla85900 this is the value of the best known tour, found by Helsgaun (2000).

The “Concorde” and “Conc+DP” columns report the LP bounds obtained by the two runs

of Concorde. The “Gap ∆” column gives the percentage gap closed in the second run.

Again, the additional gap closed is substantial, although the improvement is decreasing as

the problem size increases.

6.1. Solution of d18512 and pla33810

The large improvements in the LP bounds indicates that the DP-separator routines could

aid in the solution of difficult instances of the TSP. As case studies, we focused our attention

on d18512 and pla33810, two of the remaining three unsolved problems in the TSPLIB.

The first of these problems is a collection of cities in Germany and the second arose in a

VLSI application at AT&T. For each problem we began with the best available LP relaxation,

found with Concorde by gathering cuts into a pool during a sequence of three branch-and-cut

runs (stopping each run after it reached 1,000 active subproblems). Using the DP-separator

routines these were improved to the values reported in Table 4, using two additional branch-

and-cut runs in the case of pla33810.

A branch-and-cut run on d18512, starting with the 645,209 LP and an upper bound of

645,239, required 424,241 subproblems to establish the optimality of the 645,238-value tour
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found by Tamaki (2003). The total running time was approximately 57.5 CPU years, carried

out on a network of Xeon compute nodes.

For pla33810 we established the optimal value of 66,048,945, a slight improvement on the

best reported heuristic tour of value 66,050,499, found by Helsgaun (2000) with a variant

of his LKH code. The branch-and-cut run that solved the instance used 577 subproblems

(given the upper bound of one greater than Helsgaun’s tour). We also solved the instance

a second time starting with a 66,037,858 LP (obtained using the cuts from the earlier run)

and an upper bound of one greater than the optimal value; the branch-and-cut run in this

case used 135 subproblems. The total CPU time was approximately 15.7 CPU years (the

additional branch-and-cut run of 135 nodes took 86.6 days).

Our solutions of d18512 and pla33810 should be viewed only as evidence of the potential

strength of the new procedures; the computational studies were made as we were developing

our code and the runs were subject to arbitrary decisions to terminate tests as the code

improved. The 33,810-city TSP is currently the largest test instance that has been solved,

improving on the 24,978-city instance solved with Concorde. The relatively small search tree

for pla33810 may be due in part to the natural structure in the VLSI-derived data set that

is not present in d18512.

Table 4: LP Bounds for d18512 and pla33810

Name Optimal Concorde (with pool) Concorde+DP (with pool) Gap ∆
d18512 645238 645202 645209 19.4%

pla33810 66048945 66018619 66037858 63.4%
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