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Abstract 
 
 This article focuses on return spillovers in stock markets at different time scales 
using wavelet analysis. We look at eight stock indices that comprise the G7 countries, 
Emerging Asia, Europe, Eastern Europe and the Middle East, the Emerging Far East, Latin 
America, North America, and the Pacific region for the period 1990-2002.  
 
 Our estimation results show evidence of price spillovers from the G7 countries to 
Europe, Eastern Europe and the Middle East, Emerging Asia, Europe, Latin America, and 
North America. However, price spillovers of these regions to the G7 countries are weaker 
at different time scales. Similarly, we find price spillovers from North America to Latin 
America, Emerging Asia, the Emerging Far East, and the Pacific region, and from both 
Europe and Latin America to North America. Our results are robust to the existence of 
asymmetric GARCH-effects and serial correlation in returns.  
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I Introduction 
 
 In the past few years, international transmission of stock market returns and 
volatility in international financial markets has become an active research area in finance. 
For instance, Karolyi (1995) focuses on the short-run dynamics of returns and volatility for 
stocks traded on the New York and Toronto stock exchanges. He concludes that both the 
magnitude and persistence of return innovations from one market to the other depend to 
great extent on how the cross-market dynamics in volatility are modeled. In turn, Ng (2000) 
looks at spillovers from Japan and the United States to six countries of the Pacific Basin. 
She finds that, after controlling for the impact of the United States, there are significant 
spillovers from Japan to many of the Pacific-Basin countries. Moreover, liberalization of 
capital markets, exchange rate changes, sizes of trade, among other factors, affect the 
relative importance of the U.S. and Japan over time. More recently, Worthington and Higgs 
(2004) examined the transmission of equity returns and volatility among three developed 
Asian stock markets (Hong Kong, Japan, and Singapore) and six emerging Asian stock 
markets (Indonesia, Korea, Malaysia, the Philippines, Taiwan, and Thailand). Their results 
generally indicate the presence of large and predominantly positive mean and volatility 
spillovers.  
 

Another strand of the literature has focused on testing the existence of contagion in 
international financial markets. Although, there is not a unique definition of contagion, this 
is usually thought of as correlation between markets in excess of what economic 
fundamentals would predict. In a recent article, Forbes and Rigobon (2002) distinguish 
between contagion and interdependence. They define contagion as a significant increase in 
cross-market linkages after one country or a group of countries experience a shock. 
Otherwise, if co-movement does not increase significantly, but a high level of correlation 
persists in all periods, Forbes and Rigobbon call it interdependence. By using a correlation 
coefficient adjusted by market volatility, they conclude that there was not contagion during 
the Asian crisis, the 1994 Mexican devaluation, and the 1987 U.S. market. Instead, they 
find only high levels of market co-movements through time or interdependence. More 
recently, Karolyi (2003) has surveyed the various definitions of financial contagion. He 
distinguishes between two categories of contagion. The first one refers to co-movements in 
asset prices that result from normal interdependence, while the second one involves 
financial crises that are not necessarily linked to macroeconomic factors or other 
fundamentals.  

 
 A drawback of correlation coefficients is that they give the same weight to extreme 
observations. Therefore, they are not an accurate measure of dependence if extreme 
observations present different patterns of dependence from the rest of the sample. Based on 
this fact, the most recent literature on interdependence has resorted to extreme value theory. 
For instance, Poon, Rockinger, and Tawn (2003) control for asset returns heteroscedasticity 
before testing for extremal dependence. Their estimation results show that tail dependence 
decreases to great extent when conditional heteroscedasticity is filtered out by univariate 
and bivariate GARCH-models. In addition, Poon et al. find that extremal dependence is 
usually stronger in bear markets (left tails) than in bull markets (right tails).  
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 To date, the statistical techniques commonly used to quantify price transmission are 
vector autorregresive regression (VAR) systems (e.g., Eun and Shim, 1989), multivariate 
generalized autorregresive conditional heteroscedasticity (GARCH) models (e.g., Lin, 
Engle, and Ito, 1994; Karolyi and Stulz, 1996), multivariate generalized autoregressive 
conditional heteroscedasticity (M-GARCH) models (e.g., Worthington and Higgs, op. cit), 
correlation coefficients corrected for heteroscedasticity to account for varying volatility 
(e.g., Forbes and Rigobon, op. cit), and extreme value theory (e.g., Poon et al., op cit). An 
alternative, but promising, approach that has received less attention in both finance and 
economics is wavelet analysis. This is a refinement of Fourier analysis that was developed 
in the late 1980’s, and which offers a powerful methodology for processing signals, images, 
and other types of data. In particular, the discrete wavelet transform allows for the 
decomposition of time series data into orthogonal components with different frequencies. 
This makes it possible to quantify correlations between markets at different time horizons. 
 
 Recent applications of wavelet methods in economics and finance are Ramsey and 
Lampart (1998), Norsworthy, Li and Gorener (2000), Lee (2001a, 2001b), and Gençay, 
Whitcher, and Selcuk (2002). Ramsey and Lampart (1998) study the permanent income 
hypothesis, and conclude that time-scale decomposition is very important to analyzing 
economic relationships. In particular, they find that an appropriate way to model the 
consumption-income relationship during the post-war period is at the time scale dominated 
by a trend. At lower scales (i.e., higher frequencies), the degree of fit and the slope of the 
consumption-income relationship declines monotonically, except for the lowest scale.  
 

Norsworthy, Li and Gorener (2000) and Gençay, Whitcher, and Selcuk (2002) apply 
wavelet analysis to estimate the systematic risk of an asset (beta). The main conclusion of 
Norsworthy et al. is that the major part of the market’s influence on an individual asset 
return is at higher frequencies. In other words, the beta coefficient will generally decrease 
when regressing an individual asset return on the smoother components of the market 
portfolio. Moreover, the R2 of the CAPM regression will generally decline as the frequency 
decreases. This implies that non-systematic risk will be captured primarily in lower 
frequency movements. Unlike Norsworthy et al., who regress an individual asset return on 
different time-scales of the market return, Gençay et al. focus on a portfolio and calculate 
the wavelet variance of the market return and the wavelet covariance between the market 
return and the portfolio return at each scale to obtain the portfolio beta. Their finding is that 
the relationship between the return on a portfolio and its beta becomes stronger as the scale 
increases. That is to say, the predictions of the CAPM model are more relevant at the 
medium-term than at short-time horizons. 
 
 Lee (2001a) studies the interaction between the U.S. and the South Korean stock 
markets. Using the KOSPI and the DJIA, and the KOSDAQ and the NASDAQ, he finds 
evidence of price and volatility spillover effects from the U.S. to South Korea, but not vice 
versa. Lee concludes that his findings confirm the importance of innovations in developed 
stock markets to the determination of stock returns and volatility in emerging economies. In 
turn Lee (2001b) illustrates the use of wavelet analysis for seasonality filtering of time-
series data. 
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 This article focuses on normal interdependence among stock markets by quantifying 
return spillovers at different time scales. We look at eight stock indices that include the G7 
countries, Emerging Asia, Europe, Eastern Europe and the Middle East, the Emerging Far 
East, Latin America, North America, and the Pacific region for the period 1990-2002. The 
contribution of our work is twofold. First, we extend previous research on the area of price 
transmission by considering a sample of various developed and emerging regions. Second, 
we test the robustness of our results for both conditional volatility and serial correlation in 
returns (inertia). To our knowledge, no one has pursued similar research so far.  
 

The article is organized as follows. Section II gives a brief background on wavelet 
analysis. Section III focuses on return spillovers for a sample of eight stock indices 
worldwide using wavelet methods. We test the robustness of our results for the presence of 
asymmetric GARCH-effects and serial correlation in returns. Finally, Section IV presents 
our main conclusions.  
 
II Wavelet Analysis 
 
 Wavelets or short waves are similar to sine and cosine functions in that they also 
oscillate about zero. However, as its name indicates, oscillations of a wavelet fade away 
around zero, and the function is localized in time or space.2 In wavelet analysis, a signal 
(i.e., a sequence of numerical measurements) is represented as a linear combination of 
wavelet functions.  
 
 Unlike Fourier series, wavelets are suitable building-block functions for signals 
whose features change over time, and for non-smooth signals. A wavelet allows for 
decomposing a signal into multi-resolution components: fine and coarse resolution 
components.  
 
 There are father wavelets φ and mother wavelets ψ such that 
 
 ∫ =φ 1dt)t(   ∫ =ψ 0dt)t( .       (1) 
 
 Father wavelets are good at representing the smooth and low-frequency parts of a 
signal, whereas mother wavelets are good at representing the detailed and high-frequency 
parts of a signal. The most commonly used wavelets are the orthogonal ones: haar, 
daublets, symmelets, and coiflets. The haar wavelet is a square wave with compact support 
(i.e., it is zero outside a finite interval), and it is the only orthogonal wavelet that is 
symmetric. However, it is not continuous. By contrast, daublets are continuous with 
compact support, but they are quite asymmetric. Symmlets have also compact support, and 
were constructed to be as symmetric as possible. Finally, coiflets were also constructed to 
be least asymmetric, and have vanishing moments for both father and mother wavelets. 
Figure 1 illustrates these different orthogonal wavelets. 
 

[Figure 1] 

                                                 
2 Mathematically, a function ϖ(.) defined over the entire real axis is called a wavelet if ϖ(t)→0 as t→±∞.  
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 The orthogonal wavelet series approximation to a continuous signal f(t) is given by 
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where J is the number of multi-resolution components or scales, and k ranges from 1 to the 
number of coefficients in the corresponding component. The coefficients sJ,k, dJ,k,..., d1,k are 
the wavelet transform coefficients, whereas the functions φj,k(t) and ψj,k(t) are the 
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 The wavelet coefficients can be approximated by the following integrals 
 
 ∫ φ≈ dt)t(f)t(s k,Jk,J   ∫ ψ≈ dt)t(f)t(d k,jk,j , j=1, 2,..., J.   (5) 
 
 These coefficients are a measure of the contribution of the corresponding wavelet 
function to the total signal. On the other hand, the approximating wavelet functions φj,k(t) 
and ψj,k(t) are scaled and translated versions of φ and ψ. As equation (3) indicates, the scale 
or dilation factor is 2j, whereas the translation or location parameter is 2jk. As j gets larger, 
so does the scale factor 2j, and the functions φj,k(t) and ψj,k(t) get shorter and more spread 
out. In other words, 2j is a measure of the width of the functions φj,k(t) and ψj,k(t). Likewise, 
as j increases, the translation step gets correspondingly larger in order to match the scale 
parameter 2j.  
 
 In general, there is no close-form solution for wavelets functions. Therefore, they 
have to be computed by the so-called dilation equations. For a father wavelet φ(x), the 
dilation equation is defined by  
 
 )kx2(l2)x(

k
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 The mother wavelet can be obtained from the father wavelet by the relationship 
 
 )kx2(h2)x(

k
k −φ=ψ ∑ .        (7) 

 
 The lk and hk coefficients are called the scaling (low-pass) and wavelet (high-pass) 
filter coefficients, respectively, which are defined by 
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and, they are related through lk=(–1)k+1hL–1–k, k=0,.., L–1, where L is the width of the 
wavelet filter.3 
 
 Applications of wavelet analysis commonly make use of a discrete wavelet 
transform (DWT). The DWT calculates the coefficients of the approximation in (2) for a 
discrete signal of final extent, f1, f2,.., fn. That is, it maps the vector f=(f1, f2,…,fn)′ to a 
vector ωωωω of n wavelet coefficients that contains sJ,k and dj,k, j=1,2,…, J. The sJ,k are called 
the smooth coefficients and the dj,k are called the detail coefficients. Intuitively, the smooth 
coefficients represent the underlying smooth behavior of the data at the coarse scale 2J, 
whereas the detail coefficients provide the coarse scale deviations from it.  
 
 When the length of the data n is divisible by 2J, there are n/2 coefficients d1,k at the 
finest scale 21=2. At the next finest scale, there are n/22 coefficients d2,k. Similarly, at the 
coarsest scale, there are n/2J dJ,k coefficients and n/2J sJ,k coefficients. Altogether, there are 

n
2
1

2
1

n J

J

1i
i =





+∑

=

 coefficients. The number of coefficients at a given scale is related to the 

width of the wavelet function. For instance, at the finest scale, it takes n/2 terms for the 
functions ψ1,k(t) to cover the interval 1≤t≤n.  
 
 The wavelet coefficients are ordered from coarse scales to fine scales in the vector 
ωωωω. If n is divisible by 2J, ωωωω will be given by 
 

                                                 
3 In practical applications, we deal with sequences of values (i.e., time series) rather than functions defined 
over the entire real axis. Therefore, instead of using actual wavelets, we work with short sequences of values 
named wavelet filters, denoted by L
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 Each set of coefficients sJ, dJ,…, d1 is called a crystal.4 
 
 Expression (2) can be rewritten as  
 
 f(t) ≈ SJ(t)+DJ(t)+DJ–1(t)+...+D1(t),      (10) 
 
where  
 
 )t(s)t(S k,J

k
k,JJ φ=∑         (11a) 

 )t(d)t(D k,J
k

k,jJ ψ=∑        (11b) 

 
are denominated the smooth signal and the detail signal, respectively. 
 
 The terms in expression (10) represent a decomposition of the signal into orthogonal 
signal components SJ(t), DJ(t), DJ–1(t), ..., D1(t) at different scales. These terms are 
components of the signal at different resolutions. That is why the approximation in (10) is 
called a multi-resolution decomposition (MRD).  

                                                 
4 In practice, the DWT is calculated by using a filter cascade, where the wavelet filter {hk} and its associated 
scaling filter {lk} given by (8), are used in a pyramid algorithm to decompose a time series. To generate the 
first level of coefficients, the original data is filtered by convolving it separately with the wavelet and scaling 
filters. Next, every other point from each filter output is thrown out, and the remaining filter outputs are 
defined as the unit level (j=1) wavelet and scaling coefficients. For j=2, the same filtering/ decimation scheme 
is utilized, but the unit-level scaling coefficients are the input to the filters. At the jth level, the inputs to the 
wavelet and scaling filters are the scaling coefficients from the previous (j–1) level, and the outputs are the jth 
level wavelet and scaling coefficients.  
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III Data and Estimation Results 
 
3.1 Description of the Data 
 
 We work with eight regional equity indices of Morgan Stanley: Latin America 
(Argentina, Brazil, Chile, Colombia, Mexico, Peru, and Venezuela), North America 
(Canada and the United States), Emerging Asia (China, India, Indonesia, Korea, Malaysia, 
Pakistan, Philippines, Taiwan, and Thailand), Europe (Austria, Belgium, Denmark, 
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Norway, 
Portugal, Spain, Sweden, and the United Kingdom), Europe & the Middle East (Czech 
Republic, Hungary, Israel, Jordan, Poland, Russia, and Turkey), Pacific (Australia, Hong 
Kong, Japan, New Zealand, and Singapore), the Emerging Far East (China, Indonesia, 
Korea, Malaysia, Philippines, Taiwan, and Thailand) and G7 (Canada, France, Germany, 
Italy, Japan, the United Kingdom, and the United States). All indices are free-float adjusted 
by market capitalization, and are expressed in U.S. dollars. Index values are measured at 
closing time. The sample period is 1990-2002, and the data are measured on a daily 
frequency. Computations were carried out with S+Wavelets 2.0.  
 
 Table 1 presents some descriptive statistics of daily returns on each index. Over the 
sample period, the most volatile returns were those on the Latin America and the Europe & 
the Middle indices. Moreover, Latin America had the greatest returns range among all 
indices with a minimum of –14.5 percent and a maximum of 13.5 percent. By contrast, the 
returns on the G7 index exhibited both the lowest volatility and the lowest range. All 
returns. All return series departure significantly from normality, due to their high excess 
kurtosis.  
 

[Table 1] 
 
 The energy concentration function for a vector x=(x1, x2, …, xn)′ is defined by 
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where x(i) is the ith-largest absolute value in x. That is, the energy in a given crystal is 
calculated as the sum of squares of all of its elements over the sum of squares of all 
observations in the original time series. One appealing characteristic of the DWT is that it is 
an energy preserving transform. This means that the energy in all the DWT coefficients 
equals the energy in the original time series.  
 
 For our data, the coefficients at the two finest scales 21 and 22 concentrate in all 
cases over 60 percent of the energy. For instance, the economic region with the highest 
concentration of energy in crystals D1 and D2 is North America with 74.7 percent, while 
the one with the lowest concentration is Emerging Asian with 64.2 percent. This implies 
that fluctuations in returns take place primarily in the short run. This is depicted in Figure 2, 
where we present a multi-resolution decomposition for each return series. At each scale, the 
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corresponding component is reconstituted according to equations (11a) and (11b). Most 
short-run fluctuations are observed in the two finest components D1 and D2, and some in 
the third (i.e., 8-day horizon). Meanwhile, medium-term fluctuations are captured at the 
coarser levels (i.e., within 16 and 64 days). 
 

[Figure 2] 
3.2 Returns Spillovers 
 

As stated in the previous section, most variation in returns is observed in the short 
run. Therefore, if we consider the paired returns (X1, X2), X1 will exhibit higher correlation 
with the finest components of X2 than with its coarser levels. Figure 3 illustrates this point 
for the return on the Latin America index and the return on the G7 index. The left-hand side 
plot shows the Latin America daily return on the first crystal (D1) of the G7 daily return, 
while the right-hand side plot shows the Latin America daily return on the fifth crystal (D5) 
of the G7 daily return. 

 
[Figure 3 about here] 

 
Based on this evidence, we study the relationship between paired returns by 

focusing on the first two crystals of each series. Specifically, as in Lee (2001a), if we have 
the (X1, X2) pair, we run a regression of X1 on the finest component of X2 (D1), and a 
second regression of X1 on the sum of the two finest components of X2 (D1+D2), and vice 
versa. We look at different combinations of return pairs for the sample of eight indices. 
Specifically, we consider five different groups of regressions: G7, Pacific, Latin America, 
North America and Europe.5 

 
Due to non-synchronous trading in some cases, we look at the relationship between 

the lagged return of one region and the contemporaneous return on the other region. For 
instance, when analyzing spillovers from Latin America to the Pacific region, we regress 
the contemporaneous return on the Pacific region on the lagged return on Latin America, 
and its D1 and (D1+D2) components. Conversely, when analyzing spillovers from the 
Pacific region to Latin America, we regress the contemporaneous return on Latin America 
on the contemporaneous return on the Pacific region, and its D1 and (D1+D2) components. 

 
Table 3 presents our estimation results. Panel (a) presents regressions for the G7 

countries vis-à-vis Europe, Europe and the Middle East, Emerging Asia, the Emerging Far 
East, Latin America, North America, and the Pacific region. In general, price spillovers 
from the G7 stock markets to these other regions are stronger than in the opposite direction. 
Specifically, Europe, Latin America, and North America in particular, appear as the most 
sensitive to the performance of the G7 countries. Not surprisingly, such price transmission 
is largest for North America, given that both Canada and the United States are part of the 
G7 countries.  

 
The regressions for the Pacific region, in Panel (b), show that price spillovers 

between Emerging Asia and the Pacific region are strong in both directions. There are also 

                                                 
5 We report twenty four regressions out of the twenty eight possible combinations.  
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spillovers from North America to the Pacific region, while spillovers from Europe, Europe 
and the Middle East, and Latin America do not appear to be as large. As to Latin America, 
spillovers from North America are clearly the most sizeable, followed by those from 
Europe (Panel (c)). Price transmission in the opposite direction seems to exist only for 
North America. The regressions also show that there are some spillovers between Emerging 
Asia and Latin America of similar magnitude from one region to the other. Panel (d) in turn 
gives account of spillovers from North America to Emerging Asia, Europe, Europe and the 
Middle East, the Emerging Far East, and the Pacific region. Except for Europe, there is no 
significant price transmission from these regions to North America. Finally, Panel (e) 
shows some evidence of spillovers between Europe and Emerging Asia, and between 
Europe and the Emerging Far East, but not fairly large.  
 

[Table 3] 
 

In sum, we find that stock markets in Latin America, Eastern Europe and the Middle 
East, Emerging Asia, and North America are particularly sensitive to the performance of 
the G7 stock markets. However, price transmission in the opposite direction is weaker at 
different time scales. Only stock markets of developed European countries and North 
America seem to affect those of the G7 countries. Meanwhile, the evolution of North 
America stock markets is particularly relevant to Europe, Latin America, Emerging Asia, 
the Emerging Far East, and the Pacific region. On the other hand, price spillovers to North 
America come primarily from Europe and Latin America. 
 
 At this point, a relevant question arises. To what extent are price spillovers an 
artifact of not modeling volatility explicitly? We investigate this point in the next section. 
As extensively documented in the finance literature, asset returns are characterized by 
conditional heteroscedasticity, and some lingering correlation––at least in the short run. 
Therefore, we postulate a new model where we control for GARCH and leverage effects, 
and include lagged returns in the mean equation.  
 
3.3 Controlling for Conditional Heteroscedasticity and Serial Correlation 
 
 Ding, Granger and Engle (1993) analyzed the S&P500 daily closing index from 
January 1928 to August 1991, and found two distinguishing features. The first is that when 
absolute values of stock returns are raised to a power, η, the autocorrelations appear to be 
highest for values of η around 0.75. The second is that positive autocorrelations are 
persistent for very high lags. This suggests that conditional variance may have a longer 
memory than is usually captured by a GARCH model. Therefore, Ding et al. proposed a 
generalization of the GARCH model called Asymmetric Power GARCH model (A-
PGARCH):  
 
 rt=δδδδ′xt+εt ,  εt=σtzt, zt~IID (0,1), t=1, 2..., T   (13) 
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and α0>0, δ>0, αi≥0, i=1,..., p, βj≥0, j=1,..., q and |γi|<1, i=1,..., p.  
 
 They show that many other GARCH variants can be nested in the A-PGARCH 
model. For instance, if d=2 and γi=0 ∀ i, we have a GARCH model; if d=1, we have the 
threshold GARCH model, etc.6 Mckenzie and Mitchell (2002) present an application of A-
PGARCH model to seventeen bilateral exchange rates over January 1986 to December 
1997. They conclude that in the presence of symmetric responses to innovations, the 
GARCH(1,1) model is preferred. When asymmetry is present, the inclusion of a leverage 
term is worthwhile as long as the power term is simultaneously estimated within the model. 
 
 In this section, we test whether the estimation results of Section 3.2 are robust to the 
presence of conditional heteroscedasticity and serial correlation in returns. For simplicity, 
we use an A-PGARCH(1,1,2) specification for the conditional variance: 
 
 2
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1t11t10
2
t )|(| σβ+εγ+εα+α=σ −− .     (14) 

 
As shown below, this parsimonious functional form fits the data well.  
 
 For this specification, the unconditional volatility is given by 
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 And, the k-step ahead forecast of volatility is given by 
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 For the sake of brevity, we concentrate on spillovers from North America to 
Emerging Asia, Europe, and Latin America, and on spillovers from these regions to North 
America. Table 3 shows our results. Panel (a) shows the regressions for spillovers from 
North America to Emerging Asia. The mean equation of the first regression includes as 
explanatory variables the lagged return on the Emerging Asia Index to control for serial 
correlation, and the lagged return on the North America Index. Even after taking account of 
conditional heteroscedasticy and serial correlation, the lagged return on the North America 
Index is statistically significant and its magnitude is not dramatically lower than that 

                                                 
6Hentschel (1995) proposed a more general family of models based on the Box-Cox transformation, which 
nests the most popular symmetric and asymmetric GARCH models.  
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reported in Table 2, Panel (d). Indeed, the coefficient on this variable drops from 0.463 to 
0.334.  
 
 The following two regressions replace the lagged return on the North America Index 
with its first crystal (D1), and with the sum of its first two crystals (D1+D2), respectively. 
Our conclusions remain unchanged: crystals D1 and (D1+D2) have explanatory power in 
each corresponding regression, and the coefficients on these variables do not vary 
considerable with respect to those reported in Table 2 (d). Panels (b) and (c) report 
analogous regressions of spillovers from North America to Europe and Latin America, 
respectively. As we concluded earlier, spillovers to Latin America are of greater magnitude 
than to Europe.  
 
 Finally, the regressions in Panels (e) and (f) attempt to measure individual spillovers 
from Europe and Latin America to North America. Emerging Asia is excluded because we 
already concluded that spillovers from this region to North America are weak. As 
previously found, spillovers from Latin America to North America and from Europe to 
North America are similar in magnitude within a four-day horizon. However, they seem to 
be larger from Latin America within a two-day horizon.  
 
 Consequently, if one wanted to forecast the evolution of North America returns, it 
would not be obvious whether to prefer Europe over Latin America. As Figure 3 shows, 
based on the QQ-plot of standardized residuals, the models in Tables 3(e) and 3(f) perform 
similarly. (The Akaike information criteria are close as well: –22,613 for the Latin America 
model and –22,442 for the Europe model). In addition, the regression of North America on 
Latin America’s (D1+D2) gives a similar estimate of the unconditional standard deviation 
of returns as that of North America on Europe’s (D1+D2): 9.15 and 9.41 percent, 
respectively.  
 
 We also computed alternative indicators of performance to compare both models. 
First, we ran a regression on the naive estimate of North America’s return volatility  i.e., 
the absolute value of the daily return, |rt| on the conditional in-sample volatility estimate 
given by each model. Table 4 shows the regressions. The Europe model yields a slightly 
better fit than the Latin America model, with an R2 of 26.43 percent.  
 

[Table 4 about here] 
 
 In turn Figure 5(a) shows 95-percent value-at-risk (VaR) in-sample estimates, 
whereas Figure 5(b) presents 95-percent VaR out-of-sample forecast for different time 
horizons for a $10,000 investment. The in-sample VaR for one-day horizon is computed as 
follows: 
 

 qtt2121t10

t

q )z(VaRˆ))DD(ˆrˆˆ(VaR σ++δ+δ+δ−= −

∧
,   (17) 
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where 2
1t1

2
1t11t10t ˆˆ)ˆˆ|ˆ(|ˆˆˆ −−− σβ+εγ+εα+α=σ , and VaR(z)q is the qth quantile of the 

standard normal distribution. The out-of-sample VaR for a k-period time horizon is 
computed as  
 

 q
2

jt

k

1j
t

k

1j
jt2121jt10

kt,t

q )z(VaR)(Ê))DD(ˆrˆˆ(VaR +
==

+−+

+

σ++δ+δ+δ−= ∑∑
∧

, (18) 

 
where )(Ê 2

jtt +σ  is given by expression (16) evaluated at the parameter estimates.  
 
 VaR estimates are similar, although the Latin America model tends to be more 
conservative. For in-sample VaR, the percentage of times the actual loss exceeds the 95%-
VaR is 4.14 for the Latin America model, and 4.72 for the Europe model. Out of sample, 
the gap between the potential loss at the 95 percent confidence level given by the two 
models widens as the time horizon increases. This is a consequence of the fact that the 
unconditional variance yielded by the Latin America model is lower than that yielded by 
the Europe model.  
 
 From the above, we conclude that Latin America is nearly as good a predictor of the 
performance of North America as it is Europe. Or put another way, spillovers from each 
region to North America are close in magnitude.  
 
IV Conclusions 
 
 International transmission of stock market returns and volatility in international 
financial markets has become an important research area in finance in the past few years. 
Different econometric techniques have been used to quantify such spillovers (e.g., 
multivariate GARCH models, vector autorregresive regressions (VAR), extreme value 
theory). In this article, we use wavelet analysis, a relatively new statistical technique that 
has started to become popular in finance. Wavelet analysis allows for the decomposition of 
time series data into orthogonal components with different frequencies. This makes it 
possible to quantify correlations between markets at different time horizons. 
 

The focus of this article was the quantification of price spillovers in stock markets at 
different time scales. We looked at eight equity indices that comprise the G7 countries, 
Europe, Eastern Europe and the Middle East, Latin America, North America, Emerging 
Asia, the Pacific region, and the Emerging Far East for the period 1990-2002. 
 
 Our estimation results show evidence of price spillovers from the G7 countries to 
Europe, Eastern Europe and the Middle East, Emerging Asia, Europe, Latin America, and 
North America. However, price spillovers of these regions to the G7 countries are weaker 
at different time scales. Similarly, we find price spillovers from North America to Latin 
America, Emerging Asia, the Far East, and the Pacific region, and from both Europe and 
Latin America to North America. Our results are robust to the existence of asymmetric 
GARCH-effects and serial correlation in returns.  
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Table 1 Descriptive Statistics of Returns on Selected Morgan Stanley Stock Indices: 1990-2002 
 

 Latin 
America 

North 
America 

Emerging 
Asia 

Europe Europe & 
Middle East 

Pacific Emerging 
Far East 

G7 

Observations 3,362 3,362 3,362 3,362 3,362 3,362 3,362 3,362 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Median 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
Std. dev. 0.016 0.010 0.013 0.010 0.015 0.014 0.014 0.009 

25%-quantile −0.007 −0.004 −0.006 −0.005 −0.007 −0.007 −0.008 −0.004 
50%-quantile 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
75%-quantile 0.009 0.005 0.006 0.006 0.008 0.007 0.007 0.005 

Minimum −0.145 −0.069 −0.075 −0.085 −0.102 −0.078 −0.081 −0.048 
Maximum 0.135 0.055 0.076 0.053 0.083 0.108 0.113 0.047 

Jarque Bera test 1,191.2 250.2 285.4 298.2 316.7 314.5 291.3 137.1 
P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 
Notes: (1) Figures are daily and measured in US dollars, and were obtained from Bloomberg. (2) The Latin 
America index includes Argentina, Brazil, Chile, Colombia, Mexico, Peru, and Venezuela; the North America 
index includes Canada and the United States; the Emerging Asia index includes China, India, Indonesia, 
Korea, Malaysia, Pakistan, Philippines, Taiwan, and Thailand; the Europe index includes Austria, Belgium, 
Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, 
Spain, Sweden, and the United Kingdom; the Europe and Middle East index includes the Czech Republic, 
Hungary, Israel, Jordan, Poland, Russia, and Turkey; the Pacific index includes Australia, Hong Kong, Japan, 
New Zealand, and Singapore; the Emerging Far East index includes China, Indonesia, Korea, Malaysia, 
Philippines, Taiwan, and Thailand. Finally, the G7 index includes Canada, France, Germany, Italy, Japan, the 
United Kingdom, and the United States. (3) The Jarque-Bera test detects whether the probability distribution 
function of a series departures from normality.  
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Table 2  Returns Spillovers 
 

(a) G7 regressions 
 

 
 Europe (EUR) 

Rt
G7 on Rt

EUR Rt
EUR on Rt

G7 Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.564 0.448 0.000 0.795 0.448 
 (0.926) (0.000)  (0.578) (0.000)  

D1 0.000 0.411 0.104 0.000 0.666 0.119 
 (0.508) (0.000)  (0.375) (0.000)  

D1+D2 0.000 0.501 0.257 0.000 0.742 0.270 
 (0.467) (0.012)  (0.330) (0.000)  

 
 Europe and Middle East (EME) 

Rt
G7 on Rt

EME Rt
EME on Rt

G7 Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.210 0.125 0.000 0.595 0.125 
 (0.474) (0.000)  (0.713) (0.000)  

D1 0.000 0.136 0.022 0.000 0.421 0.024 
 (0.526) (0.000)  (0.901) (0.000)  

D1+D2 0.000 0.174 0.057 0.000 0.475 0.055 
 (0.518) (0.000)  (0.899) (0.000)  

 
 Emerging Asia (EA) 

Rt
G7 on Rt

EA Rt
EA on Rt–1

G7 Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.179 0.066 0.000 0.527 0.132 
 (0.418) (0.000)  (0.369) (0.000)  

D1 0.000 0.020 0.000 0.000 0.313 0.018 
 (0.530) (0.315)  (0.538) (0.000)  

D1+D2 0.000 0.111 0.017 0.000 0.384 0.049 
 (0.527) (0.000)  (0.531) (0.000)  

 

 Emerging Far East (FE) 
Rt

G7 on Rt
FE Rt

FE on Rt–1
G7 Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.327 0.288 0.000 0.429 0.068 

 (0.163) (0.000)  (0.222) (0.000)  
D1 0.000 0.250 0.077 0.000 –0.196 0.005 

 (0.514) (0.000)  (0.308) (0.000)  
D1+D2 0.000 0.286 0.163 0.000 0.178 0.008 

 (0.493) (0.000)  (0.308) (0.000)  
 

 Latin America (LA) 
Rt

G7 on Rt–1
LA Rt

LA on Rt
G7 Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.049 0.008 0.000 0.849 0.206 

 (0.577) (0.000)  (0.470) (0.000)  
D1 0.000 –0.122 0.020 0.000 0.748 0.061 

 (0.521) (0.000)  (0.338) (0.000)  
D1+D2 0.000 –0.029 0.002 0.000 0.825 0.135 

 (0.521) (0.012)  (0.318) (0.000)  
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 North America (NA) 

Rt
G7 on Rt

NA Rt
NA on Rt

G7 Regression 
Scale intercept slope R2 intercept slope R2 

Return –0.000 0.710 0.691 0.000 0.973 0.691 
 (0.251) (0.000)  (0.072) (0.000)  

D1 0.000 0.616 0.235 0.000 1.001 0.280 
 (0.473) (0.000)  (0.073) (0.000)  

D1+D2 0.000 0.671 0.462 0.000 0.994 0.499 
 (0.393) (0.000)  (0.032) (0.000)  

 
 Pacific (PAC) 

Rt
G7 on Rt

PAC Rt
PAC on Rt

G7 Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.350 0.295 –0.000 0.843 0.295 
 (0.169) (0.000)  (0.118) (0.000)  

D1 0.000 0.261 0.075 –0.000 0.443 0.064 
 (0.514) (0.000)  (0.315) (0.000)  

D1+D2 0.000 0.303 0.164 –0.000 0.468 0.123 
 (0.493) (0.000)  (0.299) (0.000)  

 
 (b) Pacific regressions 

 
 Emerging Asia 

Rt
PAC on Rt

EA Rt
EA on Rt

PAC Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.445 0.173 0.000 0.389 0.173 
 (0.428) (0.000)  (0.824) (0.000)  

D1 0.000 0.443 0.064 0.000 0.316 0.052 
 (0.315) (0.000)  (0.533) (0.000)  

D1+D2 0.000 0.468 0.123 0.000 0.355 0.107 
 (0.527) (0.000)  (0.521) (0.000)  

 
 Europe 

Rt
PAC on Rt–1

EUR Rt
EUR on Rt

PAC Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.300 0.053 0.000 0.243 0.101 
 (0.237) (0.000)  (0.229) (0.000)  

D1 0.000 0.045 0.000 0.000 0.166 0.021 
 (0.335) (0.187)  (0.400) (0.000)  

D1+D2 0.000 0.174 0.013 0.000 0.199 0.050 
 (0.333) (0.000)  (0.393) (0.000)  

 
 Europe and Middle East  

Rt
PAC on Rt–1

EME Rt
EME on Rt

PAC Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.072 0.006 0.000 0.282 0.068 
 (0.339) (0.000)  (0.892) (0.000)  

D1 0.000 –0.084 0.003 0.000 0.232 0.021 
 (0.335) (0.001)  (0.902) (0.000)  

D1+D2 0.000 –0.011 0.000 0.000 0.242 0.037 
 (0.333) (0.565)  (0.901) (0.000)  
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 Latin America 

Rt
PAC on Rt–1

LA Rt
LA on Rt

PAC Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.150 0.033 0.000 0.172 0.020 
 (0.250) (0.000)  (0.281) (0.000)  

D1 0.000 0.103 0.006 0.000 0.004 0.000 
 (0.336) (0.000)  (0.353) (0.889)  

D1+D2 0.000 0.139 0.018 0.000 0.106 0.006 
 (0.331) (0.000)  (0.352) (0.000)  

 
 North America 

Rt
PAC on Rt–1

NA Rt
NA on Rt

PAC Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.374 0.080 0.000 0.080 0.011 
 (0.147) (0.000)  (0.102) (0.000)  

D1 0.000 0.259 0.017 0.000 –0.044 0.002 
 (0.331) (0.000)  (0.128) (0.023)  

D1+D2 0.000 0.323 0.044 0.000 0.020 0.001 
 (0.325) (0.000)  (0.128) (0.188)  

 
(c) Latin America regressions 

 
 Emerging Asia 

Rt
LAon Rt

EA Rt
EA on Rt–1

LA Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.242 0.035 0.000 0.203 0.069 
 (0.289) (0.000)  (0.375) (0.000)  

D1 0.000 0.037 0.000 0.000 0.130 0.019 
 (0.353) (0.308)  (0.538) (0.000)  

D1+D2 0.000 0.143 0.008 0.000 0.148 0.024 
 (0.351) (0.000)  (0.535) (0.000)  

 
 Europe 

Rt
LAon Rt

EUR Rt
EUR on Rt–1

LA Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.532 0.114 0.000 0.106 0.028 
 (0.492) (0.000)  (0.490) (0.000)  

D1 0.000 0.327 0.019 0.000 –0.029 0.095 
 (0.349) (0.000)  (0.403) (0.060)  

D1+D2 0.000 0.452 0.060 0.000 0.046 0.004 
 (0.338) (0.000)  (0.402) (0.000)  

 
 

 Europe and Middle East 
Rt

LAon Rt
EME Rt

EME on Rt–1
LA Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.242 0.048 0.000 0.177 0.038 

 (0.328) (0.000)  (0.737) (0.000)  
D1 0.000 0.115 0.005 0.000 0.047 0.001 

 (0.352) (0.000)  (0.883) (0.060)  
D1+D2 0.000 0.171 0.016 0.000 0.096 0.008 

 (0.349) (0.000)  (0.882) (0.000)  
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 Emerging Far East 
Rt

LAon Rt
FE Rt

FE on Rt–1
LA Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.154 0.018 0.000 0.148 0.028 

 (0.282) (0.000)  (0.234) (0.000)  
D1 0.000 0.003 0.000 0.000 0.102 0.005 

 (0.353) (0.907)  (0.308) (0.000)  
D1+D2 0.000 0.096 0.005 0.000 0.137 0.016 

 (0.352) (0.000)  (0.305) (0.000)  
 

 North America 
Rt

LAon Rt
NA Rt

NA on Rt
LA Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.729 0.209 0.000 0.286 0.209 

 (0.794) (0.000)  (0.217) (0.000)  
D1 0.000 0.629 0.070 0.000 0.286 0.081 

 (0.336) (0.000)  (0.112) (0.000)  
D1+D2 0.000 0.682 0.136 0.000 0.305 0.155 

 (0.318) (0.000)  (0.098) (0.000)  
 

(d) North America regressions 
 

 Emerging Asia 
Rt

NAon Rt
EA Rt

EA on Rt–1
NA Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.088 0.012 0.000 0.463 0.140 

 (0.110) (0.000)  (0.203) (0.000)  
D1 0.000 –0.148 0.012 0.000 0.350 0.036 

 (0.125) (0.000)  (0.533) (0.000)  
D1+D2 0.000 –0.009 0.000 0.000 0.376 0.069 

 (0.128) (0.616)  (0.527) (0.000)  
 

 Europe 
Rt

NA on Rt
EUR Rt

EUR on Rt–1
NA Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.385 0.152 0.000 0.328 0.104 

 (0.193) (0.000)  (0.716) (0.000)  
D1 0.000 0.157 0.011 0.000 0.066 0.001 

 (0.125) (0.000)  (0.403) (0.011)  
D1+D2 0.000 0.293 0.064 0.000 0.300 0.032 

 (0.333) (0.000)  (0.395) (0.000)  
 

 Europe and Middle East 
Rt

NAon Rt
EME Rt

EME on Rt–1
NA Regression 

Scale intercept slope R2 intercept slope R2 
Return 0.000 0.145 0.044 0.000 0.362 0.063 

 (0.113) (0.000)  (0.584) (0.000)  
D1 0.000 0.045 0.002 0.000 0.149 0.005 

 (0.128) (0.017)  (0.883) (0.000)  
D1+D2 0.000 0.094 0.012 0.000 0.241 0.021 

 (0.125) (0.000)  (0.882) (0.000)  
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 Emerging Far East 

Rt
NAon Rt

FE Rt
FE on Rt–1

NA Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.073 0.011 0.000 0.366 0.068 
 (0.102) (0.000)  (0.143) (0.000)  

D1 0.000 –0.034 0.065 0.000 0.248 0.014 
 (0.128) (0.065)  (0.306) (0.000)  

D1+D2 0.000 0.022 0.000 0.000 0.314 0.038 
 (0.128) (0.132)  (0.300) (0.000)  

 
 Pacific 

Rt
NAon Rt

PAC Rt
PAC on Rt–1

NA Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.080 0.011 0.000 0.374 0.080 
 (0.102) (0.000)  (0.147) (0.000)  

D1 0.000 –0.044 0.023 0.000 0.259 0.017 
 (0.128) (0.023)  (0.331) (0.000)  

D1+D2 0.000 0.019 0.189 0.000 0.323 0.044 
 (0.128) (0.189)  (0.325) (0.000)  

 
(e) Europe regressions 

 
 Emerging Asia 

Rt
EURon Rt

EA Rt
EA on Rt–1

EUR Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.207 0.064 0.000 0.307 0.071 
 (0.308) (0.000)  (0.389) (0.000)  

D1 0.000 0.113 0.007 0.000 0.110 0.004 
 (0.403) (0.000)  (0.540) (0.000)  

D1+D2 0.000 0.143 0.020 0.000 0.177 0.015 
 (0.400) (0.000)  (0.538) (0.000)  

 
 Emerging Far East 

Rt
EURon Rt

FE Rt
FE on Rt–1

EUR Regression 
Scale intercept slope R2 intercept slope R2 

Return 0.000 0.221 0.229 0.000 0.300 0.050 
 (0.229) (0.000)  (0.222) (0.000)  

D1 0.000 0.152 0.020 0.000 0.043 0.000 
 (0.400) (0.065)  (0.306) (0.240)  

D1+D2 0.000 0.182 0.047 0.000 0.172 0.011 
 (0.394) (0.132)  (0.307) (0.000)  

 
Notes: p-value between parentheses. The wavelet function used in all cases is a symmmlet, s8.  
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Table 3 Spillovers after Controlling for Asymmetric GARCH effects and Serial Correlation 
 

(a) Spillovers from North America to Emerging Asia (EA) 
 

Dependent variable: Rt
EA 

 Value Std. error t-test p-value 
Constant –5.574e-5 1.432e-4 –0.389 0.349 

Rt–1
NA 0.334 0.021 15.658 0.000 

Rt-1
EA 0.206 0.019 11.115 0.000 

Variance equation 
 Value Std. error t-test p-value 

Constant 1.459e-6 6.028e-7 2.420 0.008 
α 0.101 2.368e-3 4.256 0.000 
β 0.891 2.456e-3 36.272 0.000 
γ –0.162 0.047 –3.457 0.000 

 
No-residual ARCH effects test (12 lags)=10.05, p-value=0.612 
 

Dependent variable: Rt
EA 

 Value Std. error t-test p-value 
Constant 8.230e-5 1.445e-4 0.570 0.285 

D1 0.299 0.033 9.027 0.000 
Rt-1

EA 0.246 0.018 13.272 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.437e-6 5.535e-7 2.597 0.005 

α 0.099 2.184e-3 4.557 0.000 
β 0.892 0.022 40.160 0.000 
γ –0.185 4.509e-3 –4.100 0.000 

 
No-residual ARCH effects test (12 lags)=8.853, p-value=0.716 
 

Dependent variable: Rt
EA 

 Value Std. error t-test p-value 
Constant 7.635e-5 1.451e-4 0.526 0.299 
D1+D2 0.295 0.025 11.700 0.000 
Rt-1

EA 0.236 0.018 12.791 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.423e-6 5.349e-7 2.661 0.004 

α 0.101 0.021 4.729 0.000 
β 0.891 0.022 41.011 0.000 
γ –0.179 0.046 –3.876 0.000 

 
No-residual ARCH effects test (12 lags)=10.52, p-value=0.594 
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(b) Spillovers from North America to Europe (EUR) 

 
Dependent variable: Rt

EUR 
 Value Std. error t-test p-value 

Constant 3.332e-5 1.518e-4 0.220 0.413 
Rt–1

NA 0.323 0.018 18.309 0.000 
Rt-1

EUR –0.025 0.024 –1.057 0.145 
Variance equation 

 Value Std. error t-test p-value 
Constant 2.771e-6 2.446e-6 1.133 0.129 

α 0.101 0.055 1.821 0.034 
β 0.863 0.079 10.996 0.000 
γ –0.311 0.075 –4.133 0.000 

 
No-residual ARCH effects test (12 lags)=4.46, p-value=0.995 
 

Dependent variable: Rt
EUR 

 Value Std. error t-test p-value 
Constant 1.360e-4 1.504 0.904 0.18 

D1 0.100 0.029 3.483 0.000 
Rt-1

EUR 0.083 0.023 3.600 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 2.164e-6 1.123e-6 1.927 0.027 

α 0.076 0.023 3.423 0.000 
β 0.893 0.034 26.341 0.000 
γ –0.333 0.093 –3.577 0.000 

 
No-residual ARCH effects test (12 lags)=4.17, p-value=0.998 
 

Dependent variable: Rt
EUR 

 Value Std. error t-test p-value 
Constant 1.636e-4 1.482e-4 1.104 0.135 
D1+D2 0.203 0.022 9.449 0.000 
Rt-1

EUR 0.052 0.023 2.323 0.010 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.963e-6 1.118e-6 1.756 0.040 

α 0.076 0.026 2.942 0.002 
β 0.898 0.037 23.938 0.000 
γ –0.327 0.086 –3.796 0.000 

 
No-residual ARCH effects test (12 lags)=4.49, p-value=0.973 
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(c) Spillovers from North America to Latin America (LA) 

 
Dependent variable: Rt

LA 
 Value Std. error t-test p-value 

Constant 2.189e-4 1.924e-4 1.138 0.128 
Rt

NA 0.606 0.025 24.695 0.000 
Rt-1

LA 0.184 0.017 10.957 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 9.497e-6 2.793e-6 3.400 0.000 

α 0.117 2.146e-3 5.461 0.000 
β 0.818 0.034 24.120 0.000 
γ –0.321 0.071 –4.546 0.000 

 
No-residual ARCH effects test (12 lags)=20.99, p-value=0.051 
 

Dependent variable: Rt
LA 

 Value Std. error t-test p-value 
Constant 4.008e-4 2.052e-4 1.953 0.025 

D1 0.576 0.041 14.221 0.000 
Rt-1

LA 0.246 0.019 13.132 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 9.400e-6 2.932e-6 3.206 0.000 

α 0.105 0.019 5.420 0.000 
β 0.836 0.031 27.011 0.000 
γ –0.367 0.082 –4.500 0.000 

 
No-residual ARCH effects test (12 lags)=12.73, p-value=0.389 
 

Dependent variable: Rt
LA 

 Value Std. error t-test p-value 
Constant 4.306e-4 1.999e-4 2.154 0.016 
D1+D2 0.590 0.028 20.723 0.000 
Rt-1

LA 0.229 0.018 12.792 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 9.251e-6 2.942e-6 3.144 0.000 

α 0.109 0.021 5.322 0.000 
β 0.829 0.032 24.973 0.000 
γ –0.335 0.075 –4.454 0.000 

 
No-residual ARCH effects test (12 lags)=17.71, p-value=0.185 
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(d) Spillovers from Emerging Asia to North America 

 
Dependent variable: Rt

NA 
 Value Std. error t-test p-value 

Constant 2.166e-4 1.326e-4 1.634 0.051 
Rt

EA 0.073 0.016 4.552 0.000 
Rt-1

NA 0.027 0.019 1.423 0.077 
Variance equation 

 Value Std. error t-test p-value 
Constant 9.819e-7 4.372e-7 2.246 0.012 

α 0.042 0.013 3.383 0.000 
β 0.932 0.018 52.238 0.000 
γ –0.600 0.167 –3.598 0.000 

 
No-residual ARCH effects test (12 lags)=3.807, p-value=0.999 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 2.374e-4 1.312e-4 1.810 0.035 

D1 –0.114 0.036 –3.130 0.000 
Rt-1

N 0.073 0.018 3.943 0.000 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.031e-6 4.016e-7 2.567 0.000 

α 0.046 0.012 3.806 0.000 
β 0.928 0.017 55.456 0.000 
γ –0.564 0.149 –3.776 0.000 

 
No-residual ARCH effects test (12 lags)=5.701, p-value=0.930 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 2.665e-4 1.312e-4 2.019 0.022 
D1+D2 0.005 0.027 0.228 0.410 
Rt-1

NA 0.057 0.018 3.095 0.002 
Variance equation 

 Value Std. error t-test p-value 
Constant 9.438e-7 4.000e-7 2.358 0.009 

α 0.042 0.012 3.602 0.000 
β 0.934 0.017 55.880 0.000 
γ –0.589 0.152 –3.887 0.000 

 
No-residual ARCH effects test (12 lags)=4.22, p-value=0.979 
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(e) Spillovers from Europe to North America 

 
Dependent variable: Rt

NA 
 Value Std. error t-test p-value 

Constant 1.411e-4 1.275e-4 1.107 0.134 
Rt

EUR 0.317 0.020 15.465 0.000 
Rt-1

NA –0.052 0.018 –2.906 0.002 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.164e-6 4.114e-7 2.829 0.002 

α 0.040 0.011 3.734 0.000 
β 0.925 0.015 62.721 0.000 
γ –0.712 0.232 –3.067 0.002 

 
No-residual ARCH effects test (12 lags)=4.503, p-value=0.995 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 2.172e-4 1.328e-4 1.635 0.051 

D1 0.092 0.031 3.011 0.001 
Rt-1

NA 0.052 0.017 2.936 0.002 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.110e-6 4.630e-7 2.398 0.008 

α 0.045 0.011 4.005 0.000 
β 0.929 0.017 53.366 0.000 
γ –0.581 0.125 –4.655 0.000 

 
No-residual ARCH effects test (12 lags)=4.019, p-value=0.998 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 2.470e-4 1.315e-4 1.879 0.030 
D1+D2 0.221 0.023 9.438 0.000 
Rt-1

NA 0.019 0.018 1.061 0.144 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.176e-7 4.275e-7 2.751 0.003 

α 0.047 0.010 4.500 0.000 
β 0.924 0.016 58.362 0.000 
γ –0.577 0.127 –4.545 0.000 

 
No-residual ARCH effects test (12 lags)=5.296, p-value=0.947 
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(f) Spillovers from Latin America to North America 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 1.572e-4 1.300e-4 1.209 0.113 

Rt
LA 0.210 0.018 11.128 0.000 

Rt-1
NA –0.287 0.017 –0.170 0.433 

Variance equation 
 Value Std. error t-test p-value 

Constant 8.395e-7 3.340e-7 2.514 0.006 
α 0.046 9.571e-3 4.778 0.000 
β 0.938 0.013 72.392 0.000 
γ –0.379 0.097 –3.912 0.000 

 
No-residual ARCH effects test (12 lags)=4.696, p-value=0.993 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 2.164e-4 1.316e-4 1.645 0.050 

D1 0.186 0.023 8.094 0.000 
Rt-1

NA 0.079 0.018 4.473 0.002 
Variance equation 

 Value Std. error t-test p-value 
Constant 1.078e-6 3.789e-7 2.845 0.002 

α 0.045 8.730e-3 5.266 0.000 
β 0.928 0.014 68.721 0.000 
γ –0.552 0.137 –4.043 0.000 

 
No-residual ARCH effects test (12 lags)=4.255, p-value=0.978 
 

Dependent variable: Rt
NA 

 Value Std. error t-test p-value 
Constant 2.415e-4 1.313e-4 1.840 0.033 
D1+D2 0.203 0.019 11.174 0.000 
Rt-1

NA 0.055 0.017 3.328 0.001 
Variance equation 

 Value Std. error t-test p-value 
Constant 9.709e-7 3.422e-7 2.837 0.002 

α 0.044 9.908e-3 4.452 0.000 
β 0.934 0.013 71.716 0.000 
γ –0.492 0.127 –3.868 0.000 

 
No-residual ARCH effects test (12 lags)=5.296, p-value=0.947 



 28 

Table 4  Linear Regressions for Conditional Volatility of North America Returns 
 

(a) Latin America model 
 

 Coefficient Std. error t-statistic p-value 
Intercept –0.003 4.e-4 –7.773 0.000 
A-PARCH volatility 1.522 0.045 34.017 0.000 
R2=0.256     

 
(b) Europe model 

 
 Coefficient Std. error t-statistic p-value 

Intercept –0.002 4.e-4 –6.230 0.000 
A-PARCH volatility 1.380 0.040 34.739 0.000 
R2=0.264     

 
Note: The dependent variable is the absolute value of the daily return on the North America index (naive 
estimate). The Latin American model corresponds with a regression on the contemporaneous return on the 
North America index on its first lag and the (D1+D2) crystal of the return on the Latin America Index, after 
controlling for asymmetric GARCH effects. The A-PARCH volatility is the in-sample conditional volatility 
yielded by this model. In turn, the Europe model corresponds with a regression on the contemporaneous 
return on the North America index on its first lag and the (D1+D2) crystal of the return on the Europe Index, 
after controlling for asymmetric GARCH effects. The A-PARCH volatility is the in-sample conditional 
volatility yielded by this model. 
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FIGURES 
 

Figure 1 Different Orthogonal Wavelets 
 

(a) Mother Wavelets 
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(b) Father Wavelets 
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Note: d12 is a daublet, s12 is a symmlet, and c12 is a coiflet. The number is related to the width and 
smoothness of the wavelet function. For instance, the c24 wavelet is wider and smoother than the c12 
wavelet. (See Bruce and Gao, 1996). 
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Figure 2 Multiresolution Decomposition of Returns 
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Note: The wavelet function used in all cases is a symmmlet, s8. 
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Figure 3 Latin America on the G7 using crystals D1 and D5 
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Note: The left-hand side plot shows the Latin America daily return on the first crystal (D1) of the G7 daily 
return, while the right-hand side plot shows the Latin America daily return on the fifth crystal (D5) of the G7 
daily return. The wavelet function used is a symmmlet, s8. 
 

Figure 4 Models for Predicting North America Returns 
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Note: The Latin American model on the left-hand side corresponds with a regression on the contemporaneous 
return on the North America index on its first lag and the (D1+D2) crystal of the return on the Latin America 
Index, after controlling for asymmetric GARCH effects. In turn, the Europe model on the right-hand side 
corresponds with a regression on the contemporaneous return on the North America index on its first lag and 
the (D1+D2) crystal of the return on the Europe Index, after controlling for asymmetric GARCH effects. 
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Figure 5  Value at risk in and out of Sample for North America 
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(b) k-day horizon 
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Note: The amount invested is $10,000. 
 
 
 
 
 
 
 
 

 


