

1

A Novel Approach to Joint Business and Information System Design

Oscar Barros
 Universidad de Chile, Departamento de Ingeniería Industrial,
 República 701, Santiago, Chile
 obarros@dii.uchile.cl

Abstract

In this paper, I will present a novel approach to encapsulate high level knowledge and business

logic in Business Objects Frameworks. These frameworks are derived from formal and

explicit Business Process Patterns, which are generalized designs that include the best

practices for businesses in a given application domain. A pattern and a framework derived

from it can be applied to the design of a process for a given business in the domain and to

develop an Information System to support such a process. This provides a very flexible way,

based on reusable components, to develop solutions and software for complex business

decisions, and is an alternative to packaged products. The approach is exemplified by using a

realistic application.

2

1. Introduction

Competitive pressure, globalization, and the wide availability of Internet have made it

necessary to perform formal designs of businesses. While in the past, business practices--

rules, routines, procedures, and processes--could evolve in a piecemeal, an isolated, and

historical way, the likes of Amazon, Dell and FedEx, today, need a rigorous and systemic

design of such practices, to insure that customers´ requests for products and services are

processed at the speed of the Internet. In turn, this requires that the value chain process, from

receipt of orders to the delivery of the product or service, be formally designed in an

integrated way to assure a smooth flow of orders, in a mostly automated way. In order to

automate practices to perform well, their design, expressed as business logic, should insure

optimized management of key variables. For example, sales management should be based on

sound analytical techniques, such as time series analysis and data mining, to predict customer

behavior, and act proactively in connection with it. Credit management should also use

predictive analysis, such as Neural Networks, to evaluate risk; supply management should

apply mathematical models to optimize stock; and operations management should plan

production or services execution to assure orders satisfaction and optimize the use of

resources. Furthermore, the relationships among these decisions should be taken into account;

thus, supply should be based on sales plans that consider customers´ behavior and/or

production/service plans, which should also use sales plans.

The approach to business design that we consider in this paper starts with the idea that

it is possible to formalize domain knowledge for classes of businesses into structures, such as

patterns or frameworks, which can be reused to facilitate process redesign and support systems

development [7, 8, 13, 18]. The objective of these structures is to simplify and accelerate

process innovation

There have been several attempts to implement the above idea. In particular, in the line

of frameworks, several authors [7, 13, 14] have established the need for Business Objects

(BO) that represent things and behavior in a business domain and provide a solution to

generalized, recurring problems in it. Such Business Objects (BO) would be organized in a

framework that can be adapted and specialized to solve particular business problems, which is

3

not necessarily executable. The value of a Business Objects Framework (BOF) depends on

the relevance, in terms of impact on business results, of the business situation it represents, the

quality of the support it gives to such a situation, and the effort needed to make it work.

Examples of specific well known attempts to implement these ideas are as follows:

i) The San Francisco Project [7] that, based on requirements derived from a vertical

domain defined by several of IBM’s business partners, developed an extendable

component-based development platform. This included basic business logic for

common business functions--e.g., financial management, order management, and the

like--to be enhanced and extended by developers; Common Business Objects (CBO)

that perform processing functions used in many application domains; and a

Foundation, which provides an infrastructure that is used to build the business logic

and the CBO. These components were commercially available for a few years and are

no longer marketed by IBM.

ii) Fowler’s patterns [14], that are published frameworks in domains such as accounting,

billing, and payroll. They identify object structures and associated logic that

synthesize generalized solutions in such domains. The logic considered is mostly

processing logic and not true decision oriented business logic.

iii) The Catalysis approach [13], which proposes frameworks similar to Fowler’s, but for a

wider range of domains. It attempts to cover some business decision logic, but at a

basic, naive level.

 All the above approaches share a common weakness, which is that they do not start

with an explicit business process domain model that defines with precision the high level

decision logic needed to run a business according to the best practices.

 In terms of a business design, there have been many proposals in the line of business

process reengineering [15, 19, 20]; recent proposals are as follows: One of the approaches

proposes to specify business logic as a formal set of rules, before doing a system or

application design [23]. Another one, very popular at the time of this writing, is a process-

based approach that is founded on a formal language (Business Process Modeling Language:

4

BPML) that allows us to model processes and would eventually have execution facilities to

run such models [24, 25]. These models do not use any domain specific semantics; they allow

us to write business logic, but do not have any predefined ones. It is clear that none of these

approaches start with a formal normative business model from which a process and system

design are derived.

 An older proposal in the line of BPP is the MIT Process Handbook project which is a

kind of knowledge base of business practices structured along business processes of different

domains [21]. However, publicly available business practices on the website [17] of the

project are very general and qualitative, and do not consider formal relationships among

themselves. Furthermore, it is not clear how to do process design using the handbook, and no

connection with system support for practices is considered.

 A recent paper in the CACM [26] proposes a four-step development life cycle for

component-based software. The authors of that paper aim to provide an approach driven by

the developer business strategy. They do this by considering techno-economic managerial

goals--cost effectiveness, ease of assembly, customization, reusability, and maintainability--in

software development, goals which are adequate, but do not consider domain knowledge in

component design.

 Compared to the approaches above, the most distinctive characteristic of our proposal

is that it explicitly uses domain knowledge and it is closer to the design of practices for the

most important decisions of a business than any previously presented one; it also provides a

very flexible, reusable component-based approach for supporting such decisions. It has been

widely tested in real-life situations in Chile.

The natural way to perform the design outlined above, is to use a business process

approach, where all the variables of sales, supply, and production are managed in an integrated

way, considering their interactions. This is the key proposal of this paper, but with an original

addition: to base process design on Business Process Patterns (BPP) that incorporate the best

practices that guide such design. These patterns, which have been tested and used in hundreds

of real situations, are presented in Section 2 of this paper.

5

The formalization of business design by means of BPP, which include optimized

business logic based on sound models and analytics, also makes it also possible to incorporate

an automated system support as part of such a design. This means that the usual Information

System requirements are derived from the business design in a formal way, which can then be

translated to common software models, e.g., UML. We show how this is done in Section 3.

Finally, generalized, reusable BPP and associated system requirements allow us to

derive reusable software frameworks that can be used in tandem with the patterns to give the

basis for a joint design of the business processes and support systems in practical situations.

Framework derivation from BPP is presented in Section 4.

2. Business Process Patterns

Business Process Patterns (BPP) are models of how a business, in a given domain,

should be run according to the best practices known [4]. Hence, they are based on empirical

knowledge of how activities of a process in the best companies of a given domain are

performed. Such knowledge can be obtained from literature sources [16, 27, 28, 30] and

direct observation of firms. Our patterns have benefited from the knowledge derived from

hundreds of cases in which processes of many different companies have been modeled,

analyzed, and redesigned∗, and from previous experience with the formal modeling of

Information Systems [3].

We have found that beyond the best practices for a given domain, usually expressed in

the form of a specific business logic, BPP share a common structure of activities and flows.

Thus, products or services provision processes--such as manufactured goods, health, justice,

and financial services, etc.--share a common structure. A first level of detail of such a

process structure is shown in Figure 1, where an activity-based modeling scheme that uses

IDEF0 is shown. This BPP, called Macroone, is a formalization of what is commonly known

as the value chain [22]. Such BPP establishes which sub-processes and relationships, by means

of information and physical flows, should exist in practice, in order that the type of business it

∗ Representative cases are published on the website www.obarros.cl (in Spanish)

6

realizes is well run. It includes Customer relationship management, Supplier relationship

management, Production and delivery management, Production and delivery of products or

services and State status [4]. Now, following the IDEF0 modeling scheme, we can detail such

a process by partitioning each of its sub-processes, as shown in Figure 2 for Customer

relationship management. Our BPP do not depend on IDEF0, so, other modeling approaches

can be used, such as the one proposed in [11].

 One activity in the model, called State status, is of particular interest, since it

represents the centralized IT-based storage of data needed to support the process. Thus the

BPP assumes that every transaction that occurs in the activities, other that State status, is

reported to this store, and the state of relevant entities is updated and fed back to former

activities, by means of State status information, so that they can act upon the knowledge

received.

Detail of flows, by means of attributes definition, and actions of activities, described by

business logic, are given in the BPP dictionary, which is supported by the software that runs

IDEF0*.

 * Examples of dictionary use are given in [29]

7

Figure 1. Business Process Pattern for value chain

If we want to give further detail, we have to be more specific about the domain, so that

we can define the business logic and flows, with precision. In order to show how to do this

and use the same example for the rest of the document, we synthesize our experience of many

real cases in the following domain definition for the activity Marketing and customer analysis

of Figure 2.

8

Figure 2. Detail of the Customer relationship management

We assume a domain where private firms sell products in a competitive market. Under

this assumption, we decompose Marketing and customer analysis as shown in Figure 3.

9

Figure 3. Detail of the Marketing and customer analysis

Finally, to give more details of the activity Customer and sales behavior analysis of

Figure 3, we reduce the domain to situations where businesses sell physical products to a large

number of customers. Specifically, we have in mind cases such as retail using any channel:

face to face, telephone, Internet, etc; also wholesale distribution and direct sales by

manufacturing or service firms, e.g., telecommunications. Under this assumption, we

decompose the said activity in Figure 4, where we will concentrate on Forecast model

development. For such an activity in this specific domain, we can be very precise about the

business logic that produces an optimal or near optimal solution that represents a best practice.

Business logic, which guides the action in an activity, determines the exact information flows

that are required and that are produced. We will show, in the next section, how such logic is

specified.

10

.

Figure 4. Detail of the Customer and sales behavior analysis

We have shown details of a fourth level of decomposition of just one activity in a given

domain. In a real-life situation, where a BPP is to be used to redesign a whole process, all the

lowest level activities of it should be detailed, which, of course, we do not do here, because we

are just presenting the way our approach works. Also, all the logic for the different activities

should be consistent, since they generate the flows that allow the interaction among

themselves, as shown in Figures 1, 2, and 3. Thus, for example, the logic for producing the

Sales plan message using Sales forecast models in Figure 3, should be the right one in terms of

the generation of information needed by Production & delivery management and Supplier

relationship management in Figure 1.

11

Of course, BPP can be developed for any business domain of interest, which, besides

the cases already presented, may include new product development, business planning, human

resource management, financial resource management, etc. We have developed many of these

BPP, which have been applied to business and process design in cases such as

telecommunications customer analysis and service [12], surgical facilities management [29],

and justice administration [29].

3. Business logic specification

 Our aim is to develop generalized business logic for a specific domain. In the case we

are presenting, we have defined our domain, as outlined in the previous section, as a situation,

representative of many real life experiences that can be formalized as follows.

 Consider the activity of Forecast model development of Figure 4. We assume we

have a situation, where, due to the sales to a large number of end users in a

competitive market, a forecast based on sales history is possible. We also assume that,

previously, a datamart with a relevant and clean history has been set up in the activity

Customer and sales data base preparation in Figure 4. Then we can model the situation as in

Figure 5, where an analyst in the Forecast model evaluation will have a System support for

evaluation with a business logic that allows him to do the following:

i) For all current forecast models for sales items, made available through Clean analysis

data and current models to calculate forecast error, such as mean absolute percentage

error, by comparing a selected history of forecast and actual sales.

ii) For selected sales items and forecast methods--e.g., Exponential Smoothing, Box-

Jenkins, Neural Networks--, to fit data to the model using historical sales data,

proposing adequate model parameters, and providing estimated forecast error to the

analyst.

iii) To update models selected by the analyst in State status for routine use in forecasting

in Sales planning of Figure 3.

12

This is a simplification of real cases we have performed [1, 29] where the logic can be

more complex, involving model identification and training with more analyst responsibility

than the one outlined. Such additions and detailed logic are included in a working framework

that is currently being applied to sales forecasting in a retail chain.

 The support modeled in Figure 5 is the typical requirement specified by a Use Case of

UML. Since our representation is more precise and consistent with the process design, we will

use it to directly model system support in more detail by means of a Sequence Diagram. This

is shown in Figure 6.

 Figure 5. System support for model development

13

S ys tem
 : Sa les P la nner

P eriodic ally , analys t runs error
c alc ulat ion for s ales item s to verify
forecas t quality

Calc ulates er ror for perio ds
s pe c ifi ed by analy s t

If error greater than des ired value,
s elec t his toric al inform at ion and
m odels to adjus t old m odel and/or fit
a new one. F it s elec ted m odels to

his toric al data, ident ify ing
adecuate m odel and
param eters E valuates propos ed m odels and

param eters and dec ide on m odel
ac c eptanc e. In c as e of no acc eptanc e,
analy s t provides m odel param eters .

Es t imat e c ons tants for
s ele c ted m odel with gi ven
param et ers and tes t for
err orsE valuate res ults and dec ide on m odel

goodnes s or that no m odel c an be
fit ted, in which cas e forec as t is to m ade
by a S ales P lanner. A dvis e S ales
P lanner on final conc lus s ion

Update m odel

 : A naly s t Run error calc ulation

Forec as t errors

Run m odel analy s is for s elec ted item s

P ropos ed m odel s and param erers

 Run mo del es tim ation and tes ting wi th
analy s t param eters

Res ults for m odels

 Run update m odel or no m odel fit ted

Run advis e S al es P l anner

Run m odel es tim ation and tes t ing
[Mod el ac cepted]

[M odel not ac c epted]

M es s ag e S ales Planne r

 Figure 6. Detail of the system support for model development

 In order to give a flavor of the detailed business logic included in the system support

shown in Figures 5 and 6, we have outlined a portion of the logic corresponding to the fitting

and estimation of a selected model to historical data of the latter figure. This logic, which is

shown in Figure 7, corresponds to a highly simplified version of the identification and

estimation of a Box-Jenkins model, once it has been determined that it is the most suitable for

the series at hand. The logic is mostly of statistical calculations, with some analyst

14

intervention for the more qualitative aspects. Hence, it leaves little room for introducing causal

business factors and decisions, such as economic environment, promotions, pricing policies,

and such . However, other methods, such as Neural Networks, stand alone or combined with

Box-Jenkins, allow us to consider such factors, in which case business logic would explicitly

consider the interaction between commercial decisions and forecast*. These possibilities are

considered in the full version of our framework.

4. From Business Process Patterns to Frameworks

From the BPP system support and business logic of the previous sections, we can

derive BOF with BO that incorporate the knowledge about the solution of a relevant problem

in the given domain. The purpose of this BOF is to provide a generalized solution to the

problem that can be used to develop an object-based software application, for any particular

real-life problem in the domain.

The mapping from BPP and business logic to a BOF is as follows [5]:

i) The structure of the BPP system support and the business logic of the domain gives a

first cut definition of the BO classes that encapsulate the algorithms or heuristics that

solve the problem for different cases in the domain.

ii) The structure of the BO can then be modeled using UML class diagrams and

operations or methods for classes defined according to business logic.

* An actual application of this idea was performed in the case reported in [1].

15

//Business logic outline for Box-Jenkins model identification and estimation
//Previously, several tests for determining the suitability of Box-Jenkins against other methods
have been performed; e.g., presence of trend, seasonality and white noise, and consideration
of the number of observations.

//Model identification

Calculate autocorrelations and partial autocorrelation functions.
Test for determining if series is stationary.
//Autocorrelation decay is evaluated.
If series is not stationary
 Do the series difference until it is stationary.
 //Times series is differenced corresponds to parameter d.
Endif

//Series is stationary.
Establish the behavior of autocorrelation and partial autocorrelation functions: decay,
oscillation, truncation, large particular values, etc.
Identify the type of model: MA(q), AR(p), ARMA(p,q) or ARIMA(p,q,d)
//This is based on the functions behavior.
Show the analyst autocorrelation and partial autocorrelation graphics and proposed model.
Accept the analyst approval of proposed model or own values for parameters p and q.

//Models estimation and testing

Estimate constants for model.
Perform model goodness test (Box-Pierce).
Test model by using new historical data to forecast and calculate forecast error.
Show analyst estimated model and tests.
If the analyst accepts the model or decides that no model can be fitted
 Update model.
Else analyst establishes new analyses to be made.
//This may mean going back to the model identification or selecting a model different from
Box-Jenkins.

Figure 7. Business logic for support of the forecasting model development

16

iii) The data needed to execute operations can then be derived from the data included in

the business logic.

iv) Data can be structured into data classes that interact with BO in (ii). A complete class

diagram with BO and databases can then be modeled using UML and collaboration

among classes specified with a Sequence Diagram.

 We follow the steps above for the activity Forecast model development in Figure 5.

 The structure of the system support and business logic in Figures 6 and 7 leads us

directly into the BO structure of Figure 8, where we also show the data classes and the

operations for each class. We use common OO conventions for patterns and adopt some of the

ideas in [9] to organize classes. The structure is not complete, since it should be integrated

with all the components that support the Sales planning of Figure 3, where forecast models are

actually run to produce forecasts that are needed for generating sales plans, which we have

avoided to simplify presentation.

 The BO structure or framework of Figure 8 allows us to detail the way classes

collaborate to support the development of forecast models, which is shown in Figure 9.

 The BO of the framework can be organized according to the type of cases in the

domain. For example, in forecasting model development, a typology can be defined according

to the characteristics of sales data and commercial policy: cases with active marketing--such

as promotions, opportunistic pricing and the like--and more passive ones; cases with stable

sales behavior, in terms of trend and seasonality, and cases with no stability. It is obvious that

analysis can be tailored and made more specific for each particular case. In Figure 10 we show

in a simplified way how this is done in our forecasting framework. The key is to structure the

Model analyzer BO in component cases, which provide different solutions according to the

characteristics of the problem. In a way, this is a structure of the application domain. In Figure

10 such structure is organized according to the variables of stability and the type of marketing

previously mentioned. Then, for each case in the structure, an appropriate analysis is provided,

based on experience obtained from the results generated with the use of the most important

17

analysis methods [1, 29]. Hence, when using the framework, only its relevant parts can be

selected.

Requests processor

Run error calculation()
Run model estimation and testing()
Run model estimation and testing with analyst parameters()
Run model update()
Run model analysis()

<<boundary>>

Error calculator

Calculate error()

<<control>>

Results processor

Show forecast error results()
Show model analysis results()
Show estimation and testing results()

<<boundary>>

Model analyzer

Fit model and calculate parameters()
Estimate constants for model and test()

<<control>>

Forecast
period
forecast model
estimated forecast error
actual forecast error

Update forecast()

<<entity>>
Model parameters and constants
parameter or constant type
parameter or constant value

Update parameter or contant()

<<entity>>

Sales item
item number
model type
mean error

Update model()

<<entity>>

0..*

1

0..*

1

0..*

1

0..*

1

DB Interface

Get data()

<<interface>>

 Figure 8. Framework for forecasting model development

18

Analyst : Requests processor : Resul ts processor : Error calculator : Model analyzer : Model parameters : DB Interface : Forecast : Sales item

Run error calc ulat ion
Calculate forecast error

Show forecast error result sForecat error results

Run model analysis Fit m odel and c alculate parameters

Show model analysis results
Model analysis results

Periodically, analyst runs
error calculation for sales
items to verify forecast
quality

Get data

If error greater than desired
value, select historical
informat ion and models t o
adjust old model and/or fit
a new one. Get data

If model adequate,
analyst accepts it and
proceeds to model
estimation and testing;
else provide own
parameters for model
estimation and testing

[Model OK]

Get forecast

Run m odel est imat ion and testing

[Model not OK]

Determine if model is
adequate or item not
possible to forecat by
model and update Run model update

Update model

Update parameters

Estimate constants for models and test
Get dataShow estim ation and testing results

Update forecast

Estimation and testing results

Run model estimation
and testing with

analyst parameters

 Figure 9. Class collaboration for forecasting model development

19

 Another framework in which we use this idea for the structure of cases is presented in

[6]. This is a framework for scheduling, an activity that appears when decomposing

Production and delivery management of Figure1, in a domain that includes machine,

on site customer service (e.g., telephone repairs) and hospital surgical facilities

scheduling. This framework shows that all the problems in the domain share a common

structure (BOF) with several different cases, defined in terms of the number of

processors and configurations: series, parallel, and network. Such cases can be

selectively used according to the characteristics of the problem at hand.

Analyzer-stable,
passive marketing

Fit ES()
Estimate ES()

Analyzer

Fit model()
Est imate model()

<<abstract>>

Analyzer-dynamic,
passive marketing

Fit BJ()
Estimate BJ()

Analizer-stable, active
marketing

Fit ES and BJ()
Estimate ES and BJ()

Analyzer-dynamic,
active marketing

Fit BJ and NN()
Estimate BJ and NN()

ES: Exponential Smoothing
BJ: Box-Jenkins
NN: Neural Nets

 Figure 10. Structure for the Model Analyzer

20

 Another characteristic of these frameworks is the possibility of having incrementally

more complex logic for each of the cases in a framework, defined as outlined above. Thus, for

example, for the forecasting case defined as stable sales behavior with trend and seasonality,

with little market intervention (stable, passive marketing in Figure 10), a first level of

complexity offered by the framework could be simple Exponential Smoothing with tendency

and seasonality, which does not need any statistical knowledge for its use and can be adequate

for small and medium sized firms. A second level of complexity could be the Box-Jenkins

method presented above, which requires statistical skills to be able to exploit its possibilities.

This can be appropriate for larger businesses where a more active marketing may need a

greater precision, and longer range forecasting capabilities can be of value, which will justify

providing the necessary skills for its use. Hence, in the application of a BOF to a particular

situation, the user of the framework may select the minimum level of complexity that solves

his problem Thus, for example, some developers will select in Figure 10 just the class

Analyzer-stable, passive marketing, according to the recommendations above. Others will

select both the former and Analyzer-stable, active marketing, in which case some sales items

could be forecasted by using simple Exponential Smoothing, while others, with more complex

behavior, could be forecasted by using Box-Jenkins. The framework advises, in this case,

which method is the most appropriate.

 The implementation of this feature, which allows the selection and use of

incrementally more complex solutions for a case, is based on OO inheritance. We have coded

our framework, based on this feature, and determined that it is very simple to select and

combine the options that they offer and to specialize them to particular applications. For

example, the second selection of the previous paragraph will mean that the method Estimate

ES and BJ will inherit Estimate ES, and this method itself can be inherited by a further

specialization to include analyses tailored to a particular application.

 The framework we have used as an example has been presented as stand alone, which

is not realistic. In some cases this would be integrated with other frameworks for other

activities in a process, as outlined in Section 2; in others, it can be used without integration,

21

but it should be, at least, be connected to the business data bases, which contain data needed

by the framework, instead of duplicating it.

 We have developed working frameworks for several activities of the process in Figure

1, which contain the best practices that can be automated in applications to support such

activities. In particular, we have frameworks for customer evaluation and order processing

which include automated customer classification, based on history and balance sheet

information; the framework we have presented in a very simplified way in this paper;

inventory management that includes JIT and Reorder Point cases, with probability

considerations for demand and lead times; and the scheduling framework mentioned above.

 Frameworks based on BPP provide an alternative to ERP approaches [2] for business

process automation, which have the advantage of greater flexibility and, at he same time,

provide pre-built customizable solutions.

4. Conclusions and Future Work.

 We have shown in detail the workings of our approach for developing BOF based on

BPP. This included the presentation of a realistic example framework. In particular, we have

presented a working procedure that can incorporate domain knowledge in providing

generalized solutions that are able to be reused and specialized, for integrated business and

system design in a given application domain. This also solves, in a generalized and rigorous

business design based way, the requirements problem in system development for situations

where complex business logic is involved.

 So it is apparently feasible to have the best of two worlds in the support of complex

business decisions: the advantages of pre-built software based on frameworks, with savings in

development costs, and also the option to easily customize and optimize a solution according

to the specific characteristics of a given case.

 Our research is continuing in several directions. Firstly, we are applying the full version

of the example framework of this paper to the actual solution of a real life retail forecasting

case in Chile. Numerical results of such an application will be presented in a sequel paper.

Secondly, such a framework is being extended to include cases not currently included; in

22

particular, for situations where analytical methods do not work well. Thirdly, frameworks for

other activities in the value chain defined in this paper--supply chain management, production

and operations planning, and logistics--are being perfected. Also, we are working on the

integration of these frameworks; in particular, we have developed an integrated framework,

which covers the whole value chain, with practices adapted to small and medium sized

companies [10]. Finally, we are perfecting the way to deliver these frameworks for practical

use by using technologies such as EJB and web services. A first test of these technologies was

done with the framework for small and medium-sized companies, which was developed using

EJB.

23

References

1. L. Aburto, R. Weber, Demand Forecast in a Supermarket using a
Hybrid Intelligent System, in: A. Abraham et al. (Eds.), Design and Application
of Hybrid Intelligent Systems, IOS Press, Amsterdam, Berlin, 2003, 1076-108

2. Ahituv, N, S. Neumann, M.Zviran, A System Development Methodology for

ERP Systems, Journal of CIS XXXXII, (3) (2002) 56.

3. O. Barros, Modeling and evaluation of alternatives in Information Systems,
Information Systems 16 (5) (1991) 537-558.

4. O. Barros, Rediseño de Procesos de Negocios mediante el Uso de Patrones,

Dolmen, 2000.

5. O. Barros, Componentes de lógica del negocio desarrollados a partir de
patrones de procesos, Ingeniería de Sistemas XVI, (1) (22) 3-20.

6. O. Barros, S. Varas, Frameworks derived from business process patterns.

Technical Report 56, 2004, Industrial Engineering Department, University of
Chile (Available at www.obarros.cl).

7. K. Bohrer, V. Johnson, A. Nilsson, R. Rubin, Business process components for

distributed object applications. Communications of the ACM 41 (6)(1998) 43-
49.

8. M. Cline, M. Girou, Enduring business themes. Communications of the ACM

43 (5)(2000) 101-106.

9. J. Conallen, Modeling web application architectures with UML.
Communications of the ACM 42 (10)(1999) 63-77.

10. J. Contesse, Diseño y construcción de componentes de negocio a partir de

patrones de procesos para la creación de software de apoyo a PYMES,
Professional Thesis, 2003, Industrial Engineering Department, University of
Chile.

11. N. P. Dalal. M. Kamath, W. J. Kolarik, E. Sivaraman, Toward an integrated

framework for modeling enterprise processes, Commun. ACM 47 (3) (2004),
83 87.

12. A. Diaz, Introducción de tecnología de inteligencia de negocios al proceso de

ventas del área residencial de Telefónica CTC Chile, Professional Thesis,
2002, Industrial Engineering Department, University of Chile (Available at
www.obarros.cl).

24

13. D. F. D´Sousa, A. C. Nills, Objects Components and Frameworks with UML.
Addison-Wesley, 1999.

14. M. Fowler, Analysis Patterns: Reusable Objects Models. Addison-Wesley,

1996.

15. Gibson, M. L., T. Roberts, System Development Methodology: A
Misunderstood Cornerstone of Business Modeling and Software Engineering,
Journal of CIS XXXVII (2) (1996), 70.

16. R. Hieleber, T. B. Kelly, Ch. Ketterman, Best Practices, Simon & Schuster,

1998.

17. http://ccs.mit.edu/ph/

18. Kadiyala, R., R. Krovi, B. Rajagopalan, The Design of a Knowledge Based
Component to Support Information Re-Engineering, Journal of CIS XXXVII
(2) (1996), 44.

19. Kim, C., A Comprehensive Methodology for Business Process Reengineering,

Journal of CIS XXXVII, (1) (1996), 53.

20. Li, W.K., D. C. Yen, D. C. Chou, A Synergic Process for Outstanding and
Reengineering, Journal of CIS XXXVII (3) (19996), 29.

21. T. W. Malone, K. Crowston, G. A. Herman, Organizing Business Knowledge:

The MIT Process Handbook, MIT Press, 2003.

22. M. Porter, Competitive Strategy, Free Press, 1986.

23. R. G. Ross, Principles of the Business Rule Approach, Addison-Wesley, 2003.

24. H. Smith, P. Fingar, Business Process Management: The Third Wave, Megham-
Kiffer Press. 2003.

25. H. Smith, P. Fingar, IT doesn’t Matter-Business Process do, Megham-Kiffer

Press.

26. Vitharama, P. Zadei, H. Jain, Design, retrieval, and assembly in component-
based software development, Communications of the ACM 42(11)(2003) 97-
102.

27. www.bwpccoe.org

28. www.ebusinessforum.com

25

29. www.obarros.cl.

30. www.siebel.com/bestpractices

