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Abstract 
 

Wavelet analysis, a refinement of Fourier analysis that was developed in the late 
1980’s, is a powerful tool for decomposing time series data into orthogonal components 
with different frequencies. Each frequency is localized in the time domain, which makes it 
possible to quantify correlations between time series at different time horizons.  
 
 In this article, we focus on the estimation of the capital asset pricing model (CAPM) 
at different time scales for Chile’s stock market. Our sample is comprised of twenty four 
stocks that were actively traded on the Santiago Stock Exchange over 1997–2002. We find 
evidence in support of the CAPM at a medium–term horizon. We extend the literature in 
this area to analyze the impact of time scaling on the computation of value at risk. We 
conclude that risk is concentrated at the higher frequencies of the data.  
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I Introduction 
 

The basic capital asset pricing model (CAPM), a corner-stone of modern finance, 
states that the risk premium of an individual asset equals its beta times the risk premium on 
the market portfolio. Beta measures the degree of co-movement between the asset’s return 
and the return on the market portfolio. In other words, beta quantifies the systematic risk of 
an asset––the amount of risk that cannot be diversified away. The CAPM was the result of 
independent work by Sharpe (1964), Lintner (1965), and Mossin (1966).  

 
In recent years, however, the CAPM has been questioned by several empirical 

studies. In particular, Fama and French (1992)’s work announced the death of beta. Using a 
sample for 1963-1990, they found that beta does a poor job of explaining the cross-section 
variation of average returns, as opposed to the book-to-market ratio and market 
capitalization (firm size). Kothari and Shanken (1998), however, conclude that Fama and 
French’s results hinge on using monthly rather than yearly returns. Kothari and Shanken 
argue that the use of annual returns to estimate betas helps to circumvent measurement 
problems caused by non-synchronous trading, seasonality in returns, and trading frictions. 
Based on annual returns over 1927-1990, the authors conclude that the betas are statistically 
significant, and that the incremental contribution of size to explaining cross-section 
differences in returns, beyond beta, is small.  
 

Simultaneously, several authors have worked on theoretical extensions of the 
CAPM: the after-tax CAPM that accounts for the fact that investors have to pay higher 
taxes on high-dividend yield stocks, and, therefore, must be compensated with higher pre-
tax returns; the intertemporal CAPM that deals with a multi-period setting; the consumption 
CAPM that states that security returns will be closely correlated with aggregate economic 
output, as investors are concerned with protecting their consumption over economic 
slowdowns; the international asset pricing model (IAPM) that establishes the conditions 
under which fully integrated capital markets are in equilibrium (see Megginson, 1997, for a 
through discussion and citations).  
 

Another topic that has been covered in the empirical literature of the CAPM, and 
that it is connected with our research, is the testing of asset pricing models that allow for a 
time-varying beta, a time-varying risk premium, or both. This research area has received 
the name of tests of the conditional CAPM because the next period expected return and/or 
variance is routinely updated conditional on the most recent past information. Typically, the 
machinery used in such testing is generalized autoregressive conditional heteroscedastic 
(GARCH) and GARCH-in-mean (GARCH-M) processes (e.g., Engle, Lilien and Robins, 
1987; Bollerslev, Engle, and Wooldridge, 1988). An alternative, but promising, approach is 
wavelet methods.  

 
Wavelet analysis is a refinement of Fourier analysis that was developed in the late 

1980’s, and which offers a powerful methodology for processing signals, images, and other 
types of data. In particular, the discrete wavelet transform allows for the decomposition of 
time series data into orthogonal components with different frequencies. This makes it 
possible to quantify correlations between markets at different time horizons. As discussed 
in the next sections, wavelets will allow us to estimate the CAPM for different time 
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horizons. Recent applications of wavelet methods in economics and finance are Ramsey 
and Lampart (1998), Norsworthy, Li and Gorener (2000), Lee (2001a, 2001b), Li and 
Stevenson (2001), and Gençay, Whitcher, and Selcuk (2003).  
 

Ramsey and Lampart (1998) study the permanent income hypothesis, and conclude 
that time–scale decomposition is very important to analyzing economic relationships. In 
particular, they find that an appropriate way to model the consumption–income relationship 
during the post–war period is at the time scale dominated by a trend. At lower scales (i.e., 
higher frequencies), the degree of fit and the slope of the consumption–income relationship 
declines monotonically, except for the lowest scale.  
 

Norsworthy, Li and Gorener (2000) and Gençay, Whitcher, and Selçuk (2003) apply 
wavelet analysis to the estimation of the CAPM. The main conclusion of Norsworthy et al. 
is that the major part of the market’s influence on an individual asset return is at higher 
frequencies. In other words, the beta coefficient will generally decrease when regressing an 
individual asset return on the smoother components of the market portfolio. Moreover, the 
R2 of such regressions will generally decline as the frequency of the market portfolio 
decreases.  

 
Unlike Norsworthy et al., who model an individual asset return on different time 

scales of the market portfolio, Gençay et al. focus on a portfolio and calculate the wavelet 
variance of the market return and the wavelet covariance between the market return and the 
portfolio return at each scale to obtain the corresponding portfolio beta. Their finding is that 
the relationship between the return on a portfolio and its beta becomes stronger as the scale 
increases. That is to say, the predictions of the CAPM model are more relevant at the 
medium-term than at short-time horizons. 
 
 Lee (2001a) studies the interaction between the U.S. and the South Korean stock 
markets. Using the KOSPI and the DJIA, and the KOSDAQ and the NASDAQ, he finds 
evidence of price and volatility spillover effects from the U.S. to South Korea, but not vice 
versa. Lee concludes that his findings confirm the importance of innovations in developed 
stock markets to the determination of stock returns and volatility in emerging economies. In 
turn Lee (2001b) illustrates the use of wavelet analysis for seasonality filtering of time-
series data. 
 
 Li and Stevenson (2001) use wavelets to study the relation between futures and spot 
prices. They find that the lead-lag relationship between the spot and the futures index 
prices, well-documented in the literature, is more persistent when more detailed 
information is used for price reconstruction. Therefore, if the non-contemporaneous 
relationship between the spot and the futures indices is due to market imperfections, 
investors should concentrate exclusively on those imperfections that are likely to take place 
in the very short run.  
 

Further discussion of the use of wavelets in economics and finance can be found in 
Ramsey (2002).  
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 This article is organized as follows. Section II presents a brief theoretical 
background on the CAPM and wavelets. Section III shows our estimation results for the 
CAPM and value at risk at different time scales, using a sample of firms that traded actively 
on the Santiago Stock Exchange over 1997-2002. Finally, Section IV presents our main 
conclusions. 
 
II Theoretical Background 
 
2.1 A Market Equilibrium Model: The CAPM 
 

The capital asset pricing model states that the equilibrium rate of return on all risky 
assets is a function of their covariance with the market portfolio. The derivation of the 
CAPM equation is based upon the assumptions of risk-averse investors, frictionless 
markets, absence of information costs and information asymmetries, unlimited borrowing 
and lending at the risk-free rate, and perfect divisibility and marketability of financial assets 
(see, for instance, Copeland, Weston, and Shastri, 2004; Megginson, 1997).  
 
 The CAPM establishes that the expected return on any risky satisfy the equation: 
 
 )RR(ER)R(E fmifi −β+= ,       (1) 
 
where Ri is the return on asset i, Rf is the risk-free rate, Rm is the return on the market 

portfolio, and 
)R(Var

)R,R(Cov

m

mi
i =β  is the asset’s beta.  

 
 The (E(Rm)–Rf) term is referred to as the market risk premium, given that it 
represents the return over the risk-free rate required by investors to hold the market 
portfolio.  
 
 Equation (1) can be re-written as 
 
 )RR(ER)R(E fmifi −β=− .       (2) 
 
 This says that the risk premium on an individual asset equals its beta time the 
market risk premium.  
 
 The empirical version of equation (2) is given by 
 
 ifmiifi )RR(RR ε+−β+α=− ,       (3) 
 
where εi is a random error term. From this expression, we can obtain the following 
relationship for the variance of the return on asset i: 
 
 22

m
2
i

2
i εσ+σβ=σ .         (4) 
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Equation (4) says the total risk of an asset (variance) can be partitioned into systematic risk 
(a measure of how the asset covariates with the economy), 2

m
2
i σβ , and unsystematic risk 

(independent of the economy), 2
εσ .  

 
 
2.2 Wavelet Analysis in a Nutshell 
 
 Wavelets or short waves are similar to sine and cosine functions in that they also 
oscillates about zero. However, as its name indicates, oscillations of a wavelet fade away 
around zero, and the function is localized in time or space.2 In wavelet analysis, a signal 
(i.e., a sequence of numerical measurements) is represented as a linear combination of 
wavelet functions.  
 
 Unlike Fourier series, wavelets are suitable building-block functions for signals 
whose features change over time, and for non-smooth signals. A wavelet allows for 
decomposing a signal into multi–resolution components: fine and coarse resolution 
components.  
 
 There are father wavelets φ and mother wavelets ψ such that 
 
 ∫ =φ 1dt)t(   ∫ =ψ 0dt)t( .       (1) 
 
 Father wavelets are good at representing the smooth and low-frequency parts of a 
signal, whereas mother wavelets are good at representing the detailed and high-frequency 
parts of a signal. The most commonly used wavelets are the orthogonal ones (i.e., haar, 
daublets, symmelets, and coiflets). In particular, the orthogonal wavelet series 
approximation to a continuous signal f(t) is given by 
 
 )t(d...)t(d)t(d)t(s)t(f k,1

k
k,1k,1J

k
k,1Jk,J

k
k,Jk,J

k
k,J ψ++ψ+ψ+φ≈ ∑∑∑∑ −− , (2) 

 
where J is the number of multi-resolution components or scales, and k ranges from 1 to the 
number of coefficients in the corresponding component. The coefficients sJ,k, dJ,k,..., d1,k are 
the wavelet transform coefficients, whereas the functions φj,k(t) and ψj,k(t) are the 
approximating wavelet functions. These functions are generated from φ and ψ as follows 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
φ=φ −

j

j
2/j

k,j 2
k2t2)t(   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
ψ=ψ −

j

j
2/j

k,j 2
k2t2)t( .   (3) 

 
 The wavelet coefficients can be approximated by the following integrals 
 
 ∫ φ≈ dt)t(f)t(s k,Jk,J   ∫ ψ≈ dt)t(f)t(d k,jk,j , j=1, 2, ..., J.   (4) 

                                                 
2 Mathematically, a function ϖ(.) defined over the entire real axis is called a wavelet if ϖ(t)→0 as t→±∞.  
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 These coefficients are a measure of the contribution of the corresponding wavelet 
function to the total signal. On the other hand, the approximating wavelet functions φj,k(t) 
and ψj,k(t) are scaled and translated versions of φ and ψ. As equation (3) indicates, the scale 
or dilation factor is 2j, whereas the translation or location parameter is 2jk. As j gets larger, 
so does the scale factor 2j, and the functions φj,k(t) and ψj,k(t) get shorter and more spread 
out. In other words, 2j is a measure of the width of the functions φj,k(t) and ψj,k(t). Likewise, 
as j increases, the translation step gets correspondingly larger in order to match the scale 
parameter 2j.  
 
 Most applications of wavelet analysis make use of a discrete wavelet transform 
(DWT). The DWT calculates the coefficients of the approximation in (2) for a discrete 
signal of final extent, f1, f2,.., fn. That is, it maps the vector f=(f1, f2,…,fn)′ to a vector ω of n 
wavelet coefficients that contains sJ,k and dj,k, j=1,2,…, J. The sJ,k are called the smooth 
coefficients and the dj,k are called the detail coefficients. Intuitively, the smooth coefficients 
represent the underlying smooth behavior of the data at the coarse scale 2J, whereas the 
detail coefficients provide the coarse scale deviations from it.  
 
 When the length of the data n is divisible by 2J, there are n/2 coefficients d1,k at the 
finest scale 21=2. At the next finest scale, there are n/22 coefficients d2,k. Similarly, at the 
coarsest scale, there are n/2J dJ,k coefficients and n/2J sJ,k coefficients. Altogether, there are 

n
2
1

2
1

n J

J

1i
i =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∑

=

 coefficients. The number of coefficients at a given scale is related to the 

width of the wavelet function. For instance, at the finest scale, it takes n/2 terms for the 
functions ψ1,k(t) to cover the interval 1≤t≤n.  
 
 The wavelet coefficients are ordered from coarse scales to fine scales in the vector 
ω. If n is divisible by 2J, ω will be given by 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
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⎛
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d
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J

M

,          (5) 

 
where  

 

)'d,...,d,d(

)'d,...,d,d(
)'d,...,d,d(
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J

=
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=
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 Each of the sets of coefficients sJ, dJ,…,d1 is called a crystal. 
 
 Expression (2) can be rewritten as  
 
 f(t) ≈ SJ(t)+DJ(t)+DJ–1(t)+...+D1(t),       (6) 
where  
 
 )t(s)t(S k,J

k
k,JJ φ=∑         (7a) 

 )t(d)t(D k,J
k

k,jJ ψ=∑        (7b) 

 
are denominated the smooth signal and the detail signals, respectively. 
 
 The terms in expression (6) represent a decomposition of the signal into orthogonal 
signal components SJ(t), DJ(t), DJ–1(t), ...,D1(t) at different scales. These terms are 
components of the signal at different resolutions. That is why the approximation in (6) is 
called a multi-resolution decomposition (MRD).  
 
2.3 Computation of Wavelet Variance and Covariance 
 
 Wavelet variance analysis consists in partitioning the variance of a time series into 
pieces that are associated to different time scales. It tells us what scales are important 
contributors to the overall variability of a series (see Percival and Walden, 2000). In 
particular, let x1, x2,..., xn be a time series of interest, which is assumed to be a realization of 
a stationary process with variance 2

Xσ . If )( j
2
X τυ  denotes the wavelet variance for scale 

τj≡2j−1, then the following relationship holds:  
 

 )( j
1j

2
x

2
X τυ=σ ∑

∞

=

        (8) 

 
This relationship is analogous to that between the variance of a stationary process and its 
spectral density function (SDF): 
 

 df)f(S
2/1

2/1
X

2
X ∫

−

=σ         (9) 

 
where SX(f) is the SDF at the frequency f ∈ [–1/2, 1/2].  
 
 The SDF for a stationary process decomposes the variance across different 
frequencies, whereas the wavelet variance decomposes it across different scales. Given that 
the scale τj can be related to range of frequencies in the interval [1/2j, 1/2j–1], the wavelet 
variance usually leads to a more succinct decomposition. Moreover, unlike the SDF, the 
square root of the wavelet variance is expressed in the same units as the original data.  
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 Another advantage of the wavelet variance is that it replaces the sample variance 
with a sequence of variances over given scales. That is, it offers a scale–by–scale 
decomposition of variability, which makes it possible to analyze a process that exhibits 
fluctuations over a range of different scales.  
 Let ⎣ ⎦jj 2/nn =′  be the number of discrete wavelet transform (DWT) coefficients at 

level j, where n is the sample size, and ⎥⎥
⎤

⎢⎢
⎡ −−≡′ )

2
11)(2L(L jj  be the number of DWT 

boundary coefficients3 at level j (provided that jj Ln ′>′ ), where L is the width of the 
wavelet filter4. An unbiased estimator of the wavelet variance is defined as 
 

 ∑
−′

−′=′−′
≡τυ

1n

1Lt

2
t,jj

jj
j

2
X

j

j

d
2)Ln(

1)(ˆ       (10) 

 
 Given that the DWT decorrelates the data, the non-boundary wavelet coefficients in 
a given level (dj) are zero–mean Gaussian white noise process.  
 
 Similarly, the unbiased wavelet covariance between the time series X and Y, at 
scale j, can be defined as 
 

 )Y(
t,j

1n

Lt

)X(
t,jj

jj
j

2
XY dd

2)Ln(
1)(ˆ

j

j

∑
−′

′=′−′
≡τυ       (11) 

 
provided that jj Ln ′>′ . 
 
 In the CAPM model, as proposed by Gençay, Whitcher and Selçuk (2003), the 
wavelet beta estimator for asset i, at scale j, is defined as 
 

 
)(ˆ
)(ˆ

)(ˆ
j

2
R

j
2

RR
ji

m

mi

τυ

τυ
=τβ         (12) 

 
where )(ˆ j

2
RR mi

τυ  is the wavelet covariance of asset i and the market portfolio at scale j, and 

)(ˆ j
2
R m

τυ  is the wavelet variance of the market portfolio at scale j.  
 
 

                                                 
3 ⎣ ⎦x  and ⎡ ⎤x  represent the greatest integer ≤x and the smallest integer x≥, respectively. Boundary 
coefficients are those that are formed by combining together some values from the beginning of the sequence 
of scaling coefficients with some values from the end.  
4 In practical applications, we deal with sequences of values (i.e., time series) rather than functions defined 
over the entire real axis. Therefore, instead of using actual wavelets, we work with short sequences of values 
named wavelet filters. The number of values in the sequence is called the width of the wavelet filter, and it is 
denoted by L.  
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III Data and Estimation Results 
 
 In this section, we focus on estimating the CAPM at different time scales for a 
group of stocks regularly traded on the Santiago Stock Exchange. We selected those stocks 
that were traded at least 85 percent of all business days over the sample period (January 
1997-Sepetmber 2002). Table 1 presents descriptive statistics of excess returns on the 24 
stocks in the sample and on the proxy for the market portfolio, the Price Index of Selected 
Stocks (IPSA). The latter gathers the 40 most actively-traded stocks on the Santiago Stock 
Exchange over the past year. The risk-free rate of return is proxied by the 30-day nominal 
interest paid on bank deposits. This choice is based on data availability of interest rates at a 
daily frequency, and on the fact that longer-maturity interest rates are inflation indexed. 
Given that we work with nominal returns, we use a nominal proxy for the risk-free rate.  
 

[Table 1] 
 
 The figures in Table 1 show that, as is the case with most financial assets, excess 
returns on the stocks and the market portfolio exhibit little skewness but high excess 
kurtosis.  
 
 The next step consists of running some exploratory regressions to study the 
relationship between the excess return on each individual stock and the time scales of the 
market portfolio. In particular, we estimate a linear regression of each stock excess return 
(Ri–Rf) on each recomposed crystal j of the market portfolio (Rm–Rf)j:  
 
 j

i
j
mi

j
i

j
i

j
fm

j
i

j
ifi D)RR(RR ε+β+α≡ε+−β+α=−  j=1, 2,.., 6. (13) 

 
 Given that we work with daily data, wavelet scales are such that scale 1 is 
associated with 2-4 day dynamics, scale 2 with 4-8 day dynamics, scale 3 with 8-16 day 
dynamics, scale 4 with 16-32 day dynamics, scale 5 with 32-64 day dynamics, and scale 6 
with 64-128 day dynamics. Scale 7 corresponds with 128-256 day dynamics, that is, 
approximately one year. The linear model in (13) is estimated up to scale 6 of the market 
portfolio because scale 7 includes not only D7 but also S7. Therefore, when recomposing 
the market excess returns at scale 7, we cannot separate D7 from S7.  
 
 For illustrative purposes, Figure 1 shows the recomposed crystals D1 and D6 of the 
excess return on the market portfolio at scales 1 and 6, respectively. As we see, D1 depicts 
the high frequency movements of the market portfolio, whereas D6 depicts its long-term 
behavior.  

[Figure 1] 
 
 Table 2 reports the regression results. When looking at individual excess returns, the 
mean contribution of j

mD  tends to decline as the scale increases, and so does its explanatory 
power measured by R2. This implies that the major part of the market portfolio’s influence 
on individual stocks is at higher frequencies (i.e., lower scales). Put another way, the 
systematic-risk component of the excess returns on individuals stocks is captured to greater 
extent by the detailed components of the market portfolio.  
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[Table 2] 

 
 An alternative way of analyzing the same issue is by regressing each individual 
excess return on the recomposed residues of the market portfolio. The residue of the market 

portfolio at scale j is defined as ∑
=

−=
j

1i

i
mm

j
m DRS , j=1, …, 6. By construction, as the scale 

increases, the variation of the market portfolio left out in the recomposed residue decreases. 
And, in consequence, the fraction of systematic risk of each stock explained by the 
recomposed residue of the market portfolio falls monotonically with frequency, on average 
(Table 3). Similar conclusions are drawn by Nortsworthy, Li and Gorener (2000) for a 
sample of 99 stocks of the S&P 500 in 1998.  
 

[Table 3] 
 

Our above findings can be visualized in Figure 2, for the particular case of the CAP 
stock. Panel (a) shows the CAP excess return on scales 1 to 6 of the market portfolio. As 
the frequency of the excess return on the market portfolio declines, the relationship between 
the two variables departures more from linearity. A similar pattern is observed in Panel (b), 
where the CAP excess return is plotted against scales 1 to 6 of the market portfolio 
residues.  

[Figure 2] 
 
 Strictly speaking, j

iβ  in equation (13) is not a true beta because the excess returns on 
the individual stock and the market portfolio are measured at different time scales. 
Therefore, a more accurate measure of beta, at scale j, is given by expression (12). Table 4 
shows our estimation results. We also report an R2 for each scale, which is computed as 
 

 
)(ˆ
)(ˆ

)(ˆ)(R
j

2
R

j
2
R2

jij
2
i

i

m

τυ

τυ
τβ=τ        (14) 

[Table 4] 
 

Unlike the results reported in Tables 2 and 3, the linear relationship between the 
excess return and the market portfolio becomes in general stronger at higher scales of the 
two variables. This is illustrated in Figure 3, where each recomposed crystal of the excess 
return on the CAP stock is plotted on the corresponding recomposed crystal of the market 
portfolio. The linear association between the two variables is particularly strong at scales 2 
and 3. This evidence implies that the fraction of systematic risk contained in an individual 
stock at lower frequencies has a higher association with lower frequencies of the market 
portfolio.  

[Figure 3] 
 
 The betas reported in Table 4 allow us to compute an average market premium at 
each time scale. Specifically, we run a regression on the average risk premium of each 
stock fi RR −  on its wavelet beta estimate at scale j, )(ˆ

ji τβ . The regression is also 
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estimated for the betas obtained from the raw data. Table 5 reports the ordinary least-
squared estimates, whereas Figure 4 shows the average risk premium for each of the 24 
stocks in the sample on its corresponding beta at scales 1 to 6.  
 

[Table 5, Figure 4] 
 

 From the sample, the average market premium was –9.06 percent per year. The 
slope estimate at scale 2, which is statistically significant at the 10 percent level, is the one 
closest to this figure: –11.5 percent per year. At scales 4 to 6, the relationship between the 
average risk premium and the wavelet beta of each stock is statistically insignificant. 
Meanwhile, the first row of Table 5 shows that the average market premium yielded by the 
raw data (–13.7 percent per year) underestimates the sample average market premium. 
These results, along with those reported in Table 4, indicate that the CAPM model tends to 
be more statistically significant at scales 2 and 3 of data. In other words, its predictions are 
more meaningful for investment horizons of 4-16 days.  
 
IV An application to Value at Risk 
 
 From the CAPM,  
 
 ifmiifi )RR(RR ε+−β+α=− .   k=1, 2,...,k.  (15) 
 
Then, the variance of the excess return i and the covariance between the excess returns i 
and j are given, respectively, by 
 
 22

m
2
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2
i εσ+σβ=σ , i=1, 2,..,k, 

 
 2

mjiij σββ=σ , 
 
where 22

i i
)(E εσ=ε  and E(εiεj)=0, ∀i≠j.  

 
 Consequently, the variance-covariance matrix of excess returns is given by 
 
 EββΩ +σ= 2

m'         (16) 
 

where 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

β

β
β

=

k

2

1

M
β  and 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

σ

σ
σ

=

ε

ε

ε

2

2

2

k

2

1

00

00
00

K

MOMM

L

L

E . 

 
 The (1–α) %-value at risk (VaR) of a portfolio of k assets is then 
 
 ωEββω )'(')(lV)(VaR 2

m0 +σα=α      (17) 



 12

 
where ω is a k x 1 vector of portfolio weights, V0 is the initial value of the portfolio, and 
l(α)=Φ−1(1−α), where Φ(.) is the cumulative distribution function of the standard normal.  
 
 For an equally-weighted portfolio, ωi=1/k, ∀ i, the VaR boils down to 
 

 ∑∑
=

ε
=

σ+⎟
⎠

⎞
⎜
⎝

⎛
βσα=α

k

1i

2
2

2k

1i
i

2
m0 ik

1k/)(lV)(VaR .    (18) 

 

 As k becomes large, 
2k

1i
i

2
m0 k/)(lV)(VaR ⎟

⎠

⎞
⎜
⎝

⎛
βσα≈α ∑

=

. That is, for a well-

diversified portfolio, all that matters to computing VaR is systematic risk.  
 
 We use equation (18) to compute the value at risk at different time scales. In 
particular, the VaR at scale j can be obtained by evaluating (18) at the j-scale components 
of the variance of the market portfolio return, the betas of the k stocks, and of the variances 
of the error terms that capture non-systematic risk.  
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⎠
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 In order to obtain )( j

2
i
τσε , we use the relation )()()()( j
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The variance of stock i at scale j, )( j

2
i τσ , the beta of stock i return at scale j, )( ji τβ , and 

the variance of the market portfolio at scale j, )( j
2
m τσ , can be computed using equations 

(10) and (12).  
 
 Now it should be the case that  
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The right-hand side of (21) is an approximation to the VaR of the raw data (equation 

(18)) because we do not have a beta estimate for the highest scale J. However, the rounded 
error should be negligible, in general, as most energy is concentrated at the lower scales.5 
                                                 
5 The energy in a given crystal is calculated as the sum of squares of all of its elements over the sum of 
squares of all observations in the original time series. One appealing characteristic of the discrete wavelet 
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 From expressions (18) and (21), we have 

 

∑∑

∑ ∑∑

=
ε

=

−

= =
ε

=

σ+⎟
⎠

⎞
⎜
⎝

⎛
βσ

τσ+⎟
⎠

⎞
⎜
⎝

⎛
τβτσ

≈
k

1i

2
2

2k

1i
i

2
m

1J

1j

k

1i
j

2
2

2k

1i
jij

2
m

i

i

k
1k/

)(
k
1k/)()(

1 . 

 
We can interpret the ratio  
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as the contribution of scale j to total value at risk.  
 
 Table 6 shows our computations. First, as expected, value at risk generally 
decreases as the time scale increases. Second, the contribution to total risk is higher at the 
lower scales. That is to say, potential portfolio losses at a 1-day horizon are larger when 
looking at the detailed components of the data. Finally, the last two rows of the table show 
the value at risk computed by equations (18) and (21), respectively. As we see, the 
discrepancy between the two figures shows up only at the fifth decimal.  
 

[Table 6] 
 
IV Conclusions 
 

The basic capital asset pricing model (CAPM) states that the risk premium of an 
individual asset equals its beta times the risk premium on the market portfolio. Beta 
measures the degree of co-movement between the asset’s return and the return on the 
market portfolio. In recent years, however, the CAPM has been questioned by several 
empirical studies.  

 
One strand of the literature has built asset pricing models that allow for a time-

varying beta, a time-varying risk premium on the market portfolio, or both. This research 
area has received the name of tests of the conditional CAPM because the next period 
expected return and/or variance is updated conditional on the most recent past information. 
Typically, such testing resorts to GARCH and GARCH-in-mean processes. An alternative 
approach is wavelet analysis, which is a refinement of Fourier analysis. Wavelets are a 

                                                                                                                                                     
transform (DWT) is that it is an energy preserving transform. This means that the energy in all the DWT 
coefficients equals the energy in the original time series. For instance, for the excess return on the IPSA, the 
first three crystals d1, d2, and d3 concentrate altogether 79 percent of the total energy, whereas crystals d1 to 
d6 concentrate approximately 98 percent of the total energy.  
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powerful tool for decomposing time series data into orthogonal components with different 
frequencies. Each frequency is localized in the time domain, which makes it possible to 
quantify correlations between time series at different time horizons.  
 
 In this article, we focus on the estimation of the CAPM at different time scales for 
Chile’s stock market. Our sample is comprised of twenty four stocks that were actively 
traded on the Santiago Stock Exchange over 1997–2002. We find evidence in support of 
the CAPM at a medium–term horizon. We extend the literature in this area to analyze the 
impact of time scaling on the computation of value at risk. We conclude that risk is 
concentrated at the higher frequencies of the data.  
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Tables 
 

Table 1 Descriptive statistics of excess returns 
 

Stock Trading 
days 

Average Median Std. Dev. 1st quartile 3rd-quartile Excess 
Kurtosis 

BESALCO 89% –0.001 0.000 0.023 –0.007 0.000 16.8 
CAP 95% –0.001 0.000 0.020 –0.011 0.008 3.9 
CERVEZAS 88% 0.000 0.000 0.022 –0.007 0.007 13.0 
CGE 93% –0.001 0.000 0.029 –0.015 0.010 2.8 
CMPC 100% 0.000 0.000 0.015 –0.008 0.006 2.3 
COLBUN 99% 0.000 0.000 0.022 –0.001 0.000 3.0 
COPEC 100% 0.000 0.000 0.018 –0.009 0.009 2.8 
CTC–A 100% –0.001 0.000 0.021 –0.012 0.009 5.7 
CUPRUM 96% 0.000 0.000 0.019 –0.006 0.006 7.2 
CHILECTRA 92% –0.001 0.000 0.017 –0.008 0.005 7.0 
D&S 98% 0.000 0.000 0.024 –0.010 0.010 12.7 
ENDESA 100% –0.001 0.000 0.019 –0.010 0.009 8.5 
ENERSIS 100% –0.001 0.000 0.021 –0.011 0.009 4.1 
ENTEL 100% 0.000 0.000 0.020 –0.011 0.009 3.1 
FALABELLA 99% 0.000 0.000 0.019 –0.010 0.009 4.9 
GASCO 89% 0.000 0.000 0.017 –0.002 0.003 5.1 
IANSA 99% –0.001 0.000 0.025 –0.015 0.003 3.5 
LAN 86% 0.000 –0.001 0.014 –0.007 0.006 6.3 
MASISA 94% –0.001 0.000 0.022 –0.010 0.009 3.9 
ORO BLANCO 93% –0.001 0.000 0.029 –0.015 0.010 2.8 
PARIS 93% 0.000 0.000 0.019 –0.010 0.007 6.4 
SAN PEDRO 98% 0.000 0.000 0.016 –0.006 0.007 5.1 
SM–CHILE B 97% 0.000 0.000 0.022 –0.001 0.000 14.1 
SQM–B 89% –0.001 0.000 0.023 –0.010 0.009 34.8 
IPSA (Market) 100% 0.000 –0.001 0.013 –0.007 0.006 6.2 

 
Notes: (1) The data source is the Santiago Stock Exchange. The sample period is January 1997-September 
2002, and returns are daily. (2) Trading days represent the percentage of business days over the sample period 
on which the stock was traded. (3) IPSA is a proxy for the market portfolio. It gathers the forty stocks that 
were most actively traded over the past year. (4) The proxy for the risk-free rate is the interest rate paid on 30-
day deposits.  
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Table 2   Individual Excess Returns on the Recomposed Crystals of the Market Portfolio 

 
 Beta R2 

Stock D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6 
BESALCO 0.318 0.228 0.225 0.712 0.311 1.615 0.019 0.005 0.002 0.011 0.002 0.033 
CAP 0.592 0.560 0.747 0.515 0.681 0.690 0.054 0.037 0.054 0.009 0.015 0.005 
CERVEZAS 0.245 0.679 0.992 1.014 0.832 0.642 0.009 0.045 0.064 0.035 0.025 0.003 
CGE 0.153 0.141 0.246 0.323 0.694 0.530 0.010 0.004 0.012 0.009 0.028 0.012 
CMPC 0.525 0.558 0.814 0.488 0.510 1.084 0.067 0.062 0.068 0.016 0.009 0.030 
COLBUN 0.598 0.497 0.515 0.412 0.450 0.773 0.053 0.021 0.014 0.006 0.005 0.007 
COPEC 0.924 0.826 0.955 0.709 0.734 1.112 0.155 0.100 0.069 0.024 0.014 0.026 
CTC–A 1.208 1.383 1.383 1.267 1.236 1.033 0.192 0.203 0.105 0.056 0.028 0.016 
CUPRUM 0.251 0.515 0.427 0.837 1.005 0.667 0.010 0.036 0.015 0.031 0.034 0.006 
CHILECTRA 0.723 0.734 0.928 0.799 0.938 0.762 0.123 0.098 0.073 0.043 0.024 0.013 
D&S 1.008 0.826 0.884 1.118 1.328 1.186 0.114 0.054 0.037 0.031 0.033 0.015 
ENDESA 1.200 1.227 1.062 0.975 1.183 1.089 0.212 0.204 0.078 0.037 0.033 0.020 
ENERSIS 1.276 1.200 1.135 1.172 1.206 0.943 0.213 0.173 0.079 0.047 0.030 0.013 
ENTEL 0.741 0.769 0.750 0.842 0.717 0.871 0.081 0.072 0.036 0.026 0.013 0.010 
FALABELLA 0.758 0.733 0.738 0.721 0.960 1.063 0.099 0.065 0.037 0.020 0.031 0.014 
GASCO 0.160 0.267 0.284 0.422 0.771 0.604 0.006 0.013 0.009 0.009 0.028 0.008 
IANSA 0.881 0.966 0.976 1.061 0.656 1.001 0.076 0.067 0.036 0.032 0.007 0.009 
LAN 0.200 0.266 0.739 0.755 0.934 2.100 0.004 0.004 0.019 0.014 0.013 0.034 
MASISA 0.519 0.460 0.727 1.065 1.095 1.444 0.043 0.019 0.032 0.031 0.033 0.015 
ORO BLANCO 0.585 0.711 0.766 0.799 0.478 0.980 0.028 0.031 0.021 0.009 0.003 0.006 
PARIS 0.513 0.743 0.783 0.669 1.088 0.999 0.048 0.073 0.044 0.022 0.043 0.011 
SAN PEDRO 0.243 0.425 0.543 0.293 0.590 0.855 0.016 0.032 0.037 0.004 0.014 0.017 
SM–CHILE B 0.361 0.171 0.103 0.445 0.576 0.329 0.018 0.003 0.001 0.006 0.008 0.001 
SQM–B 0.827 0.978 1.052 0.902 0.994 1.078 0.079 0.100 0.057 0.022 0.020 0.017 

Mean 0.617 0.661 0.741 0.763 0.832 0.977 0.072 0.063 0.042 0.023 0.021 0.014 
Std. Dev 0.344 0.335 0.317 0.278 0.277 0.371 0.066 0.059 0.028 0.014 0.012 0.009 

 
Notes: (1) Scale 1: 2-4 days, scale 2: 4-8 days, scale 3: 8-16 days, scale 4: 16-32 days, scale 5: 32-64 days, 
and scale 6: 64-128 days.(2) D1 is the recomposed crystal of the market portfolio at scale 1, etc. The betas are 
obtained by running a regression of the individual stock excess return on the recomposed crystal of the market 
portfolio.  
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Table 3 Individual Excess Returns on the Recomposed Residues of the Market Portfolio 
 

 Beta R2 
Stock S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 

BESALCO 0.414 0.577 0.816 0.865 1.506 1.341 0.036 0.038 0.045 0.034 0.048 0.015 
CAP 0.657 0.721 0.693 0.803 1.006 1.359 0.129 0.094 0.040 0.033 0.020 0.017 
CERVEZAS 0.839 0.945 0.908 0.836 0.846 1.041 0.173 0.132 0.069 0.035 0.009 0.007 
CGE 0.298 0.384 0.507 0.629 0.577 0.654 0.056 0.060 0.055 0.051 0.024 0.011 
CMPC 0.647 0.718 0.651 0.795 1.039 0.968 0.186 0.127 0.061 0.048 0.044 0.015 
COLBUN 0.506 0.513 0.511 0.597 0.787 0.809 0.055 0.034 0.020 0.014 0.011 0.004 
COPEC 0.857 0.883 0.830 0.933 1.097 1.068 0.240 0.141 0.072 0.049 0.037 0.012 
CTC–A 1.312 1.255 1.162 1.073 0.938 0.743 0.408 0.206 0.102 0.047 0.020 0.004 
CUPRUM 0.615 0.690 0.902 0.953 0.873 1.153 0.119 0.085 0.081 0.051 0.017 0.012 
CHILECTRA 0.803 0.861 0.817 0.838 0.760 0.757 0.255 0.159 0.086 0.043 0.020 0.006 
D&S 0.960 1.059 1.197 1.254 1.166 1.125 0.171 0.119 0.085 0.055 0.022 0.006 
ENDESA 1.138 1.061 1.061 1.130 1.081 1.065 0.378 0.176 0.098 0.062 0.029 0.010 
ENERSIS 1.158 1.122 1.112 1.063 0.931 0.908 0.348 0.175 0.096 0.049 0.019 0.006 
ENTEL 0.804 0.833 0.898 0.942 1.211 1.806 0.174 0.103 0.068 0.042 0.031 0.025 
FALABELLA 0.796 0.844 0.918 1.056 1.194 1.344 0.180 0.116 0.081 0.063 0.033 0.019 
GASCO 0.375 0.455 0.603 0.718 0.648 0.731 0.062 0.052 0.049 0.043 0.015 0.007 
IANSA 0.957 0.950 0.932 0.811 0.990 0.969 0.153 0.086 0.050 0.019 0.013 0.005 
LAN 0.694 0.976 1.140 1.485 2.118 2.148 0.069 0.082 0.066 0.059 0.056 0.022 
MASISA 0.757 0.959 1.158 1.220 1.448 1.451 0.126 0.120 0.094 0.063 0.031 0.016 
ORO BLANCO 0.727 0.739 0.716 0.668 0.936 0.863 0.073 0.042 0.021 0.012 0.009 0.003 
PARIS 0.802 0.846 0.889 1.077 1.059 1.129 0.200 0.128 0.085 0.067 0.024 0.012 
SAN PEDRO 0.497 0.548 0.553 0.714 0.854 0.850 0.105 0.075 0.037 0.038 0.026 0.009 
SM–CHILE B 0.249 0.316 0.488 0.517 0.447 0.654 0.016 0.013 0.018 0.012 0.004 0.003 
SQM–B 0.990 1.000 0.961 0.999 1.004 0.861 0.221 0.120 0.063 0.041 0.022 0.005 

Mean 0.744 0.802 0.851 0.916 1.022 1.075 0.164 0.103 0.064 0.043 0.024 0.011 
Std. Dev 0.270 0.242 0.223 0.230 0.337 0.362 0.106 0.049 0.025 0.016 0.013 0.006 

 
Notes: (1) Scale 1: 2-4 days, scale 2: 4-8 days, scale 3: 8-16 days, scale 4: 16-32 days, scale 5: 32-64 days, 

and scale 6: 64-128 days. (2) The recomposed residues are computed as ∑
=

−=
j

1i

i
mm

j
m DRS , where j

mD  is the 

recomposed crystal of the market portfolio at scale j.  
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Table 4 Beta computed from Recomposed Crystals of Individual Stocks and the Market Portfolio 
 

 Beta for each scale R2 for each scale 
Stock 1  2 3 4 5 6 1  2 3 4 5 6 

BESALCO 0.281 0.230 0.400 0.535 0.684 1.494 0.036 0.025 0.049 0.075 0.200 0.364 
CAP 0.554 0.607 0.773 0.736 0.577 0.721 0.121 0.170 0.316 0.277 0.284 0.296 
CERVEZAS 0.283 0.628 0.931 1.074 0.926 1.058 0.032 0.151 0.328 0.346 0.553 0.565 
CGE 0.116 0.222 0.231 0.282 0.612 0.486 0.012 0.058 0.077 0.080 0.354 0.288 
CMPC 0.516 0.577 0.733 0.549 0.754 0.841 0.168 0.246 0.356 0.246 0.400 0.560 
COLBUN 0.600 0.480 0.574 0.459 0.471 0.508 0.087 0.089 0.182 0.147 0.185 0.464 
COPEC 0.894 0.846 0.937 0.779 0.872 1.037 0.354 0.388 0.423 0.392 0.513 0.670 
CTC–A 1.259 1.358 1.355 1.209 1.330 1.084 0.551 0.613 0.649 0.663 0.802 0.781 
CUPRUM 0.298 0.417 0.562 0.893 0.914 1.019 0.038 0.105 0.151 0.264 0.373 0.566 
CHILECTRA 0.739 0.726 0.925 0.837 0.803 1.031 0.307 0.339 0.513 0.503 0.488 0.661 
D&S 0.899 0.913 0.945 1.335 1.208 1.331 0.204 0.265 0.295 0.498 0.667 0.741 
ENDESA 1.192 1.197 1.097 1.060 0.987 1.095 0.533 0.655 0.553 0.593 0.625 0.857 
ENERSIS 1.223 1.218 1.180 1.177 1.022 0.937 0.527 0.572 0.586 0.636 0.601 0.579 
ENTEL 0.734 0.763 0.744 0.780 0.750 0.936 0.209 0.263 0.223 0.295 0.352 0.618 
FALABELLA 0.701 0.845 0.761 0.792 0.904 1.106 0.187 0.319 0.331 0.350 0.476 0.680 
GASCO 0.142 0.311 0.313 0.232 0.649 0.674 0.012 0.062 0.093 0.036 0.281 0.385 
IANSA 0.914 0.988 0.968 0.848 0.856 0.956 0.170 0.275 0.292 0.249 0.288 0.563 
LAN 0.151 0.325 0.553 1.023 0.963 1.347 0.006 0.031 0.064 0.250 0.275 0.434 
MASISA 0.466 0.560 0.707 0.944 0.975 1.317 0.074 0.144 0.192 0.352 0.476 0.673 
ORO BLANCO 0.572 0.750 0.813 0.626 0.534 0.760 0.054 0.120 0.161 0.148 0.163 0.386 
PARIS 0.522 0.699 0.757 0.795 1.032 1.202 0.122 0.242 0.312 0.366 0.571 0.587 
SAN PEDRO 0.203 0.486 0.540 0.408 0.675 0.871 0.023 0.168 0.243 0.182 0.450 0.671 
SM–CHILE B 0.314 0.194 0.201 0.327 0.380 0.333 0.027 0.016 0.021 0.064 0.121 0.156 
SQM–B 0.860 0.988 0.992 0.920 1.179 1.088 0.211 0.339 0.339 0.370 0.549 0.589 

Mean 0.601 0.680 0.750 0.776 0.836 0.968 0.169 0.236 0.281 0.308 0.419 0.547 
Std. Dev. 0.347 0.324 0.291 0.300 0.238 0.286 0.171 0.182 0.173 0.178 0.175 0.170 

 
Notes: Scale 1: 2-4 days, scale 2: 4-8 days, scale 3: 8-16 days, scale 4: 16-32 days, scale 5: 32-64 days, and 

scale 6: 64-128 days. (2) The wavelet beta estimator for asset i, at scale j, is computed as 
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Table 5 Market Risk Premium Estimates at Different Scales 
 

 Constant p-value Slope p-value R2 
Raw data –0.002 0.948 –0.059 0.083 0.13 
Scale 1 –0.010 0.597 –0.054 0.050 0.16 
Scale 2 –0.009 0.682 –0.049 0.103 0.12 
Scale 3 –0.002 0.952 –0.054 0.104 0.12 
Scale 4 –0.018 0.506 –0.031 0.348 0.04 
Scale 5 –0.042 0.263 –0.001 0.985 0.00 
Scale 6 –0.024 0.496 –0.019 0.591 0.01 

 
Notes: (1) The parameter estimates are obtained from a linear regression of the average stock excess return on 
the stock beta at each scale. (2) Scale 1: 2-4 days, scale 2: 4-8 days, scale 3: 8-16 days, scale 4: 16-32 days, 
scale 5: 32-64 days, and scale 6: 64-128 days. (3) The market risk premium is a daily average, and it is 
expressed in percentages. For instance, at scale 1, the risk premium is –0.054 percent per day, or –12.6 
percent with annual compound.  
 

Table 6 Value at Risk (VaR) at different time scales 
 

 95%-VaR Contribution to total VaR (%) 
Scale 1 0.010 30.04 
Scale 2 0.009 25.73 
Scale 3 0.008 17.89 
Scale 4 0.006 10.68 
Scale 5 0.005 7.20 
Scale 6 0.005 8.45 
Total  99.99 

Raw data 0.01825  
Recomposed data 0.01827  

 
Notes: (1) The VaR represents the potential loss, per peso invested, in 1-day horizon at the 95 percent 
confidence level. (2) The VaR at scale j is computed according to equation (19), where scale 1: 2-4 days, 
scale 2: 4-8 days, scale 3: 8-16 days, scale 4: 16-32 days, scale 5: 32-64 days, and scale 6: 64-128 days. For 
simplicity, we use the quantiles of standard normal distribution. (3) The contribution to VaR of scale j is 
computed according to expression (22). (5) The VaR for the recomposed data is calculated according to (21).  
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Figures 
 

Figure 1 Recomposed Crystals D1 and D6 of the Market Portfolio 
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Note: The wavelet function is a symmmlet, s8. The number is related to the width and smoothness of the 
wavelet function (see Bruce and Gao, 1996). The market portfolio is approximated by the Price Index of 
Selected Stocks (IPSA). The excess return on the IPSA is daily, and the sample period covers January 1997-
September 2002. 

 
Figure 2 CAP Stock and Time-decomposition of the Market Portfolio 

 
(a) CAP excess return on different scales of the market portfolio 
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(b) CAP excess return on market portfolio residues at different scales 
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Note: The wavelet function is a symmmlet, s8. 
 

Figure 3 Recomposed Crystals of CAP on Recomposed Crystals of the Market Portfolio 
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Note: The wavelet function is a symmmlet, s8. 
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Figure 4 Average risk premium at different scales 
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Notes: (1) The average excess return on each individual stock is plotted on its beta at different scales. (2) 
Scale 1: 2-4 day period, scale 2: 4-8 day period, scale 3: 8-16 period, scale 4: 16-32 day, scale 5: 32-64 days, 
and scale 6: 64-128 days. 
 


