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Abstract

Despite the dominant role of replacement purchases in many consumer durable categories, the
research in this area has not been extensive. Only in the last few years has the economic theory made
progresstowardsto amorerigorous analysisof the dynamic natureinvolved in replacement decisons. Asa
consequence of this, applied researchers have switch from conventiona discrete choice models to new
econometric techniques (e.g., durationanayss) that alow for richer rel ationships between socioeconomic
variables, characteristics of the durable good, and the likelihood of its replacement over time. Our study
focuses on two home gppliancestaken from the“ Residential Energy Consumption Survey” (RECS). Based
on a duration model that alows for unobserved heterogeneity across households, we conclude that
household demographics and product features (both observable and unobservable) in generd have
datistica power to explain replacement decisons over time.
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Introduction

Consumer durable goods, such as automobiles and home gppliances, have become standard items
for avast mgority of households. Electronic innovations have contributed over the yearsto an increasing
inventory of durable goods. Indeed, the high penetration of such goods has led current sdes to consist
mostly of replacement purchases. For instance, in 1994 about 75 per cent of appliance sales were
accounted for by replacements ("U.S. Industrid Outlook 1994," United States Department of Commerce,
1994). As exigting units age over time and as new product features are devel oped, replacement sdesare
expected to rise even higher.

Despite the dominant role of replacement purchases in many consumer durable categories, the
research inthisareahas not been extensve. Thereare severd factorsthat makethe satistica andysisof the
demand for durable goods complex (Raymond, Beard and Gropper, 1993). Firs, the dement of timing
involved in the acquisition and replacement of durable goods does not arise in typicd demand studies.
Second, due to their longevity, consumers generally replace durable goods infrequently, leading to some-
data driven difficulties of andyzing durable goods acquistion with conventiond datidticd tools (eg.,
regresson analyss). Third, given that the demand for many durable goodsis aderived demand, numerous
factors that are relevant to explain purchase behavior are unobservable (e.g., tastes for comfort and/or
efficiency). Findly, the shortage of suitable data restricts empirica work.*

Given tha consumers usudly buy only one unit & a time of most durable goods, a popular

econometric tool to analyze acquisition of durable goods has been discrete or qualitative choice models
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(e.g., Farrel, 1954; Cragg, 1971; Dubin and McFadden, 1984; Berkovec and Rust, 1985; Train, 1986).

However, conventiona discrete choice models seem restrictive for andyzing complex dynamic processes,
such asthose involving replacement decisons. The reason isthat the predictive value of these modelsonly
accounts for decisons taken in the "next" period of time. Recent studies have shown that using random:
parameter logit models may be asolution for this deficiency. Indeed, these models dlow for repeated
choices by the same economic agents over time (e.g., Revelt and Train, 1998).

Inthelast few years economists have made progressin modeing the dynamic nature of replacement
decisonsmorerigoroudy. For example, e ements of dynamic programming and stochastic processes have
madeit possible to develop structura micro replacement models(e.g., Rust 1985, 1986, 1987; Y e 1990;
Dixit and Pindyck 1994; Mauer and Ott, 1995; Fernandez, 1999). In addition, applied researchers have
turn to new econometric techniques, such asduration analysis, which have proven to be more gppropriate
than conventiona discrete choice models to andyze replacement decisions. For instance, recent empirical
gudies have shown that duration models dlow for richer relationships between socioeconomic variables,
characterigtics of the durable good, and the likelihood of its replacement over time (e.g., Antonides, 1990;
Gilbert, 1992; Raymond, Beard and Gropper, 1993).

Our study focuses on replacement of two home appliances taken from the “Residentid Energy
Consumption Survey” (RECS). This survey, conducted by the U.S. Department of Energy, provides
information on energy consumption within the United States residentia sector. Based on aduration model

that allowsfor unobserved heterogeneity across households, we conclude that household demographicsand

! The economics literature has by contrast produced a sizeable amount of theory on aggregate demand for durable goods.
For instance, there are several studies on the dynamics of investment in the presence of adjustment costs¥ eg., search
costs, taxes and other transaction costs, and imperfectionsin the secondary markets.
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product features, both observable and unobservable, in genera have datistica power to explain

replacement decisions over time.

The main contributions of our paper are the following. First, previous work in the area has mostly
focused on a single consumer durable good in isolaion, and has dedt primarily with samples from a
particular geographic region of the United States. Second, the impact of unobservable factors on
replacement times has not been explored in the literature so far. Third, our quantification of how
socioeconomic factors, energy use characteristics as well as attributes of the durable good determine
replacement decisionsover timemay bereevant for policy making (e.g., assessment of penetration rates of
energy efficient appliances),? sales forecasting, production planning, and development of new marketing
techniques.

This paper is organized as follows. Section 11 briefly summearizes previous empirica work donein
the area of replacement of consumer durable goods. Section 111 describes the RECS data used in our
edimation. Section IV reports our main findingsfrom fitting replacement model s to space heating equipment
and centrd air-conditioning systems. We first restrict equipment operation costs to be uncorrelated with
unobservable factors, such as product quaity. This condraint is later relaxed by modeing unobservable
heterogeneity parametrically. We aso test the presence of unobservable heterogeneity without modeling it
explicitly by usng themethod of generdized insrumenta variables. Findly, Section V summarizesour main
conclusons.

[ Previous Empirical Research

2 The National Appliance Energy Conservation Act of 1987 set in the United States efficiency standards for several
categories of major household appliances, including refrigerators and freezers, water heaters, dishwashers, clothes
washers and dryers, and kitchen ranges and ovens.
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From the mid-1980's onwards, progress has been made on determining empirically what factors

affect replacement decisons at the consumer level (e.g., Hoffer and Reilly, 1984; Bayus, 1988, 1991,
Bayus and Gupta, 1992; Antonides, 1990; Gilbert, 1992; Raymond, Beard, and Gropper, 1993; Cripps
and Meyer, 1994; Marrel, Davidsson and Galing, 1995). These studies stress the importance of
demographic and lifestyles variables, perceived obsolescence, styling and fashion, prices, environmentd
awareness, and uncertainty, among other variables, on the likelihood of replacement.

In this section we only refer briefly to three empirica sudies that are smilar to ours in
methodologica terms. Antonides (1990), Gilbert (1992), and, Raymond, Beard, and Gropper (1993).
These three papers dso study replacement decisions using duration models.

Antonides studies replacement of washing machinesin the Netherlands. His most important findings
arethat failurerate of washing machinesisincreasing with equipment age, household size, andincome, andit
is decreasing with purchase price.® In addition, the author concludesthat expected lifetimes corresponding
with durationdependent hazard rates are more plausible that those corresponding with constant hazard
rates.

Gilbert andyzes automobile replacement in the United States. She cong dersthree different hazard
functions: replacing with a new vehicle (h,), replacing with a used vehicle (h,), and digposing without
replacement (hy). Both h, and hy are found to beincreasing with income, whereasthe opposite holdsfor h,,.
Whilerace, household size, life stage of household, education, and car odometer reading seem dso relevant

to replacement decisions, macroeconomic variables such as interest rate, unemployment rate, new car

3The author points out that family size and price can be regarded as proxies for frequency of use and product quality,
respectively.
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inflation rate, used car inflation rate, auto maintenancerate, and gasolineinflation rate appear asSatigticaly

inggnificant.

Raymond, Beard, and Gropper study replacement of main heating equipment in the State of
Alabama, United States. The authors resultsindicate that the probakility of equipment replacement depends
negatively on the age of the head of the household and the availahility of naturd gas, and postively on
equipment age, and higher than expected household energy usage.* Other regressorsincluded in the hazard
specification areincome, apoor credit rating dummy variable, an urban location dummy, and house square
footage. None of these variables, however, turn out to be Satigticaly significant.

Inthe next two sectionswewill look at replacement of two gppliancesfromthe* Residentid Energy
Consumption Survey” (RECS), 1990%4 specificaly, space heating equipment, and central air conditioners.
Raymond, Beard, and Gropper'swork is particularly useful for us becauseit dealswith replacement of one
of the applianceswe andyze. In sdlecting the rlevant variablesto beincluded in this particul ar replacement
modéd, therefore, we consider those economic variables used by the authors as well as other economic
factors that seemed relevant given the nationa scope of our data set.

It is important to note that Raymond, Beard, and Gropper’s andysis is focused on a particular
geographic region of the United States. Therefore, sgnificant purchase price and fud price differentids
across households are not observed in their sample. Since thisis not the case for us, we dso control for
equipment operation cods. Unfortunately, we do not have information on purchase prices for any of the

gpplianceswe anayze. Operation costs, however, may beindirectly correlated with purchase pricethrough

“Thisvariable is measured as (u-0)/(, where u is actual consumption of electricity (average kWh/month), and () represents
the fitted value from alinear regression of u on household's stock of energy using durable goods and exogenous factors
such as house square footage and housing unit type.



equipment qudity.

In what respects to centra air conditioners, their replacement model was expressed in terms of
economic variables and equipment characterigtics that the economic theory would suggest as relevant.
Ohbvioudy, such sdlection was subject to our data congtraints.

1 The Data

The “Resdentia Energy Consumption Survey” (RECS) 1990 contains gpproximately 5,100
households, out of which 3,398 are homeowners. The RECS is a nationa sample survey for the United
States that has been conducted triennialy by the U.S. Department of Energy since 1984. The universe of
the RECS comprises dl housing units occupied as a primary resdence in the 50 states and Didtrict of
Columbia

The two mgor parts by which the RECS is conducted are the Household Survey and the Energy
Suppliers Survey. The Household Survey gathers information regarding the housing unit through persond
interviewswith the selected househol ds. The Energy Suppliers Survey collects dataregarding actud energy
consumption from household hilling records maintained by the fuel suppliers. The data are gathered by
questionnaires mailed to dl suppliersfor the sdlected households.

The Household Survey covers questions on type of the housing unit, year the housing unit was
constructed, space- heating fue's and equipment, water- heating fuelsand equipment, air-conditioning fuels
and equipment, cooking fuels and equipment, number, type, age, and size of refrigerators, inventory of
appliances, and demographic characterigtics of the occupants of the housing unit. Theinformation provided
by the RECS about the ages of home appliancesrefersonly to equipment the sampled househol ds currently

own. No information is provided about the age at which previous equipment has beenreplaced. Purchase



prices of the sampled appliances¥ proxy for equipment quaity4 are not recorded either.

Equipment ages are recorded in intervals. Toillustrate, consider the question about the age of air-
conditioning equipment depicted in Table 1. The questions about the ages of the other sampled appliances
are anadogous. Aswe will see later, such a characterigtic of the datawill impose some condraints on the
functional form of our likelihood function.

[Table1]
Y Replacement M odel

In this section we present replacement model sfor two gppliancesfrom the RECS 1990. Our base
model regards operation costs as an exogenous regressor. This assumption is later relaxed to alow for
correlation between this variable and unobserved factors, such as equipment qudity. Two different
approaches are consdered to test for unobserved heterogeneity: amodified version of the base modd that
includes an error term, and instrumenta variables in the context of nonlinear models.

4.1 BaseModel Specification

In generd terms, thefocus of duration modd sisthelength of timethat passesfrom the beginning of
some event either until itsend or until the measurement is taken, which may antecede termination (Greene,
1996). Typicaly, the observations consst of a cross section of durations or “spells’, t;, t,..., t,. The
process under observation has usudly begun at different pointsin caendar time, which meansthat durations
are not pelsin "red time" unlessthey share the same time origin (Kiefer, 1933).

A duration mode assumesthat thelength of timeor spell length, T, until an event occursisarandom

variable® with density f(t) and cumulative distribution F(t). The survivor function, G(t), is defined as the

We work with under| ying continuous random variables, although the same concepts can be defined for the discrete case.
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probability that the random variable T will equa or exceed the vdue t. That is, G(t) equas 1-F(t). A

particularly useful function for duration andyssis the hazard function, | (t). Thiscan beroughly defined as
the rate a which spels will be completed a duration t, given that they have lasted until t.

Under aproportiona hazard moded specification, the hazard function for household i dependsona
vector of explanatory variables, x;, with an unknown vector of parameters b, and on a nonnegative
“basding’ hazard function, | o(t,a), with a an unknown parameter. That is:

I (t|xi,a, b)=f (xi,b) I o(t,a), O<t<¥. D

A popular functiond form for f (xi, b) is exp(xi® ). We hypothesize a Weibull basdine hazard
model because of both its mathematica convenience and popularity in theliterature of duration models(eg,
Lancaster, 1979, 1990). In particular using a Weibull specification enables us to get a closed-form
expression for the likelihood function, as explained below. Let g=(a, b). Then

I (t]xi, @)= exp(xid) | ot,2), )

with | o(t,a)=at*™.
Gt @)= epf - ) ({x ,q)dsg = ep(- ep(id) £). €
I o

Given that the RECS only providesinformation on (discretized) current equipment ages, we need
the p.d.f. of equipment age. An approximation for the p.d.f of U,, the age of household i’ s durable good,

can be obtained from the renewal theorem (see, for example, Lancaster 1990):

. 0<u<¥, (4)

f(ulx, 0= exp(exp( x 'b)u?)

where
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ni = P (exp(x;'b)ta)dt. 5

By change of variablestheintegrd in (5) becomes:

= e (W dw, ©
a exp(—) °
a
which equas
n = epX D) g d), 0
a a

where (.) denotes the Gammafunction. Therefore the probakility that the age of householdi'sapplianceis
between | and m equas

m 'b) )2
rob(l <u <m) = 6exp(@<p( X,'b)u?) . ®

[ N;

or equivaently after change of variables’

Ll (‘)exp(W)WZl'ldw, 9)
)

where wy= exp(xi®b) 7, and w;=exp(x;®) nt.

4.2 Estimation Results of the Base M odel

We consder only those sampled households who own their homes, and for whom the homeisthe

& Aswe can see from Table 1, the current age of the appliances recorded in the RECS has been discretized. Therefore, an
adjustment needs to be made to the data before carrying out the estimation. In particular, if the underlying distribution of
elapsed duration is continuous and times are grouped into unit interval s, so that the discrete observed part is Z=[U], with
[U] the "integer part of U;" then the probability function of Z can be written as h(z)=P(Z=z)=P(u<U<u+1)=F(u+1)-Fu),
with F(.), thec. d. f. of equipment age. For example, the probability that equipment age is between two and four yearsold
isgiven by P(2<Z<4)=P(Z=2)+P(Z=3)+P(Z=4), which equals P(2<U<3)+P(3<U<4)+P(4<U<5)=F(5)-F(2), and so on.
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primary resdence. Our focus is eectric equipment: eectric space heeting equipment, and centrd air-

conditioners. In what follows, when not otherwise stated, dl the estimation is carried out by the method of
maximum likeihood.

Based on the econometric specification presented above, wefirst fit areplacement modd for pace
hesting equipment. Theregressorsof our mode are age of the head of the household, income, house square
footage, equipment operation cost, and dummy variables for urban location, natural gas availability, and
poor credit rating.”

Asreported in Table 2, the age of the head of the household aswell asthe age of the durable are
datigticaly significant indicators of replacement. In particular, the older the head of the household, theless
likely that the durable will be replaced. This empirica finding was aso reported by Raymond et. a (1993)
for heating equipment in the state of Alabama. The authors do not attempt to find an explanation for such
finding, but we believe that one possibleinterpretation isthat preferences of older households change more
dowly. Or, dternatively, that older households may have higher implicit discount rates (e.g., Train, 1985).

The estimated coefficient on time (i. e, parameter dpha) is greater than one. Thisimpliesthat, as
equipment gets older, it is more likely that replacement takes place. Thisis due in part to the natura
equipment depreciation process. Age of the current unit may be aso a good indicator of perceived
obsolescence. This may arise from the desire of new technologies and/or features, image or syling
preference changes, and changesin price expectations (Bayus and Gupta, 1992). Raymond et d. draw an

anad ogous conclusion with respect to the effect of equipment age on replacement.

"Those people who received aid in terms of food stamps, unemployment benefits or income from AFDC (Aid to Families
with Dependent Children) during the 12 months prior to the conduction of the survey have been classified ashaving a
poor credit rating.
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[Teble 2]

As expected, higher income is associated with ahigher probability of replacement. Moreover, the
probability of replacement of space heating equipment increases with operation costs, once we account for
house square footage (our proxy for equipment Sze)) In turn our estimation shows that increasesin house
square footage (“equipment sze”) delay replacement. Intuitively, bigger houses require more expensive
equipment, especidly designed to heat more extensive aress.

AsRaymond et d. conclude, the dummy variablefor naturd gasavailability isstatisticaly sgnificant
at the5 per cent leve, and is associated with alower probability of replacement. Thisresult may arisefrom
differentidsin equipment lifetime of gas versus e ectric powered equipment. In particular, those households
without gas service in their neighborhood cannot switch from an eectric to a gas powered system and,
hence, they are more likely to replace eectric equipment, as the authors suggest.

Thefit of themodd is quite good in overdl terms. Except for thefirst age category of Table 1, the
percent prediction error isbelow 6 per cent. The predicted lifetimefor an dectric heating system isabout 20
years, which is within the age ranges given by the industry in 1992: 10 (low), 20 (high), 16 (average).
(Source: "A Portrait of the U.S. Appliance Industry 1992." Appliance, September 1992. Dana Chase
Publications).

We dso computed margina effects of changes of economic factors on the probability of heeting
system replacement. These margina impacts are caculated as the change in probability of replacement
(over agiven time interval) per unit change in the explanatory variable, and are computed at the sample
means of the regressors. We find, for example, that a 10-year increase in the age of the head of the

household reduces the probability of replacement within 20 yearsby 11 per cent. By contrast, aone-dollar
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increase in monthly operation costs leads to an increase of 7.3 per cent in the probability of replacement

within 20 years. The overdl probability of replacement for this time period equals 55 per cent.

Finally, Table 3 reports our results for centrd air-conditioners. Important factors for replacement
are age of the head of the household, cooling capacity, and operating costs. As before, replacement is
negatively associated with increasesin the age of the head of the household, and positively associated with
increases in operating costs. Income and urban location do not seem to play an important role in the
replacement decisions of this particular gppliance.

We find that a greater cooling capacity leads to later replacement. At afirst glance one would
conjecture that this might be due to ahigh and positive correlation between cooling capacity and operation
costs. However, cooling capacity isnot strongly correlated with operating codts, after controlling for family
sze, climate and house square footage. Hence, the strong and negative impact of cooling capacity on
replacement decisions may come from the fact that more efficient units are probably more technologically
advanced, and therefore more expensive to replace. House square footage seems a'so to be capturing a
price effect, given its negative correlation with replacement time.

[Table 3]

The Weibull modd fits the data quite well. Except for the second and third age categories, the
percent error of the fitted frequencieswith respect to the actua onesisbelow 5 per cent. Thefitted lifetime
for centra air conditionersis gpproximately 15 years. This seems a reasonable estimate when compared
with the industry’s average prediction in 1992: 12 years. (Source: "A Portrait of the U.S. Appliance
Industry 1992." Appliance, September 1992. Dana Chase Publications.)

Cooling capacity isthe variable that has the largest impact on the probability of replacement over
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time. Indeed, we find that a 1,000 Btw/hr-increase in cooling capacity decreases the probability

of replacement by 22 per cent within 20 years.

4.3  Testing for Unobserved Heter ogeneity

Operation costs depend on variousfactors. In the case of heating equipment, for example, they are
afunction of exogenousvariablessuch asclimate, and utility rate sructure; choice variables such ashousing
gructure, type and Size; and, product features such as qudity. Thesefactorsusualy affect ownership spdls
but quantifying their margina impact on replacement may be difficult (or impossible) because they arein
generd unobservableto researchers. In particular, product quality cannot be exactly measured, so assuming
operation costs as exogenous may lead to biased estimates.

To test the vdidity of the hypothesis of exogenous operation costs, we follow two different
gpproaches. i) aparametric gpproach that explicitly models unobserved heterogeneity; and, ii) generdized
ingrumental variable estimation.

4.3.1 Modding Unobserved Heter ogeneity

Suppose that v represents unobserved heterogeneity of household i coming from, for example,
equipment quality or any other source that is not currently captured by the above mode specification.®
Furthermore, following Lancaster (1979), let us assume for mathematica convenience that v liesin the
Gammafamily. Specificaly, assumethat thiserror term is digtributed as Gammawith mean 1 and variance

s;? and uncorrelated with regressors and duration, T. Moreover, suppose that s; isalinear function of a

8AsGreene (1996) points out, introducing v; is a counterpart to the incorporation of adisturbanceterm in aregression
mode.
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constant term, operation costs, and equipment size. Such a specification in principa enables usto detect

some forms of unmeasured household heterogeneity that may be correlated with operation costs, such as
equipment qudity. Spedificdly,

fvipx) 1 vi™ ep(- vis;?), (10)
where s;=d;+d,* operation costs + ds*equipment Sze, d;, j=1, 2, 3, are parameters, and X; is a vector
containing household' s operation costsand equipment size.

Thedigribution function of T conditiona on the current value of the regressors can be obtained by

integrating over the digribution of v;:
L
¥ i $2
S{z)= ¢y ep{vi(si? +em(z b}y, ={1+s?eq(z bt} ", (1)
0

with z=(x;, other relevant regressors for household i), and a and b, parameters. In order to obtain (11),
we kept our previous assumption of a proportiona hazard mode with an underlying Weibull distribution.

Letting s?® 0 yields the Weibull modd of the previous section.®

By change of variableswe get:
% ey oL 1 ‘b, _,111
E(tjz) = J1+s?ep(z b) )57 dt = — exp(12) B(= =, 5), (12)
0 a Si a a

as?
where B(.) represents the Beta function, and B(s;*-a™, a™)=Ga™) G(s;*-a™) /&(s;?). By (11) and

(12) we can obtain an asymptotic gpproximetion of the density of equipment age, U:

°As d,, & and d; become statistically insignificant, the model boils down to that of the previous section.
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{1+s?exp(z,'b)u}*"
g(u|zi):
et 5 )
a a a
as;

,u>0. (13)

By change of varigbles, the termsin the likelihood function for the RECS data teke the form

Prob(wa<w<wb)—ﬁowgz (1- w)® dw, O<w<1, (14)
By ™
a a

1
=1

withw,= (1+s?exp(z®)ud) ', wo = (1+s2 exp(zd)u?) ™
Table 4 reports our estimation results for space hesating equipment. Given that the RECS does not
record equipment size, we used house square footage as a proxy. Hence, the standard deviation of v, is
given by si=d;+d,*monthly operation costs+ds;*house square footage,. Our estimates suggest some
evidence of unobserved heterogeneity acrossthe sampled households: both d, =0.784 (constant term) and
d, =-0.144 (esimated coefficient on monthly operation cost) are significant a the 5 per cent level.
[Table4]

Thestatistical significance of the beta estimate on operation costs, b, =0.195, isdlightly reduced by

alowing for unobserved heterogeneity. This means that operation cogts affect replacement timing mostly
through unobserved factors such as product efficiency. However, the b’ sarein generd quiterobust to the
induson of s;. Indeed, their magnitude and datistica Sgnificance are not noticesbly changed when

compared with those of the base modd. In addition, our estimate of expected lifetime of dectric heaters,
19.6 years, isonly a4.1 per cent smaller than that obtained in the previous section. Themargind effects of
changesin household characteristics and product festures on the probability of system replacement aredso

robust to our parametric specification of unobserved heterogeneity (Table 5).
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[Teble 5]

Table 6 presents our results for central air conditioners. In this case the sandard deviation of v,
takes the form s;=d;+d,*monthly operation costs+ds*cooling capacity;. Our estimation suggests that
unobserved heterogeneity may be partialy associated with operation costs and cooling capacity. Aswe
pointed out in the previous section, the latter variable may be corrdated with the cost of replacing an
exiging unit. If priceisaproxy for equipment quality, then the satigticaly sgnificance of operation costsand
cooling capacity would give some support to our hypothesis of unobservable heterogeneity being partialy
associated with product quality.

[Table 6]

The bottom of Table 6 shows that accounting for unobserved heterogeneity also reduces the
edimate of expected lifetimein thiscase. Thisisnow 14.3 years, that is, about 6 per cent smadler thaninthe
base model .

Table 7 shows the effect of margina changes in the explanatory variables on the probability of
replacement. In particular, margind changes of operation costs and cooling capacity now have alarger
impact on thetiming of replacement than inthe base mode. Thereason isthat thesetwo variables affect the
survival probabilities not only through the proportiona hazard function but aso through s ;2.

[Table7]

As we see, there is some evidence of unobserved household heterogeneity associated with
equipment operation costsfor both appliances. The existence of correlation between v; and operation costs
suggests, therefore, that the latter may be indeed affected by product quality.

However, thisevidence isnot overwhelming, asthe estimated probabilities of replacement and the
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margind impact of danges in demographics and product features on replacement do not vary much.

Probably the strongest effect of unobserved heterogeneity shows in the reduction of the expected lifetime
edimate. Such finding may be indicative that low product quality accelerates replacement because it
possibly trandates into higher operation cods.
4.3.2 Ingrumental Variables Approach

The above conclusions certainly hinge upon the parametric functiona form chosen to modd
unobserved heterogeneity. So this section turns to an dternative approach that does not rely upon any
specific parameterization of unobserved heterogeneity: Hansen Singleton (1982)’ smethod of generalized
insrumenta variables (GIV). Our drategy is to test for possble endogeneity of operation costs by
comparing the GIV estimates with those of the base moded found by maximum likelihood (section 4.1).
Under the Welbull specification of the base modd, duration, T, has expectation and variance given by

equations (15) and (16), respectively:

£ %) = ep(* ) Gt ), (15)
vartlx) = e 23 2) a1+ 2) @1+ 1} (16)
a a a

As before the vector x; contains household characteristics and product features. Based on

Lancaster (1990), we find expressions for the expectation and variance of equipment age, U:

2
&)
E(uly) = exp(X) —2

al)

: (17)

X'
a
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3 2
5.0y &)
b b )
Var(u] x) = exp( =) —8-{exp( ) —8 ). 9
o) o)

Provided that we have at least as many orthogonality conditions of the form (19) and (20) as
parameters there are in the modd, (17) and (18) will suffice for parameter identification.

E{Y: (Ui-E(Ui]Y))} =0, (19

E{Yi [(U-EUIY)*Var(Ui|Y)]} =0, (20)
whereY; isavector of insrumental variables for household .

In order to compute the GIV estimates, we need to find exogenous variables that are correlated
with operation costs but that are uncorrelated with unobservable factors, such as equipment qudity. In
choosing our instruments, we looked at those exogenous variables that mostly explain thetota variationin
operation cogsin the context of alinear regresson.

For the heating equipment data, we selected as instruments family size, house square footage,
dummy variablesfor urban location and natura gasavailability, age of the house, number of heating degree-
days,® average dectricity rate, and income. Our estimates are shown in Table 8.

[Table§]

Under thenull hypothesisthat thelikelihood functionin (9) iscorrectly specified and operation costs

areindeed exogenous, both the ML estimates of the base modd and the GIV estimates are cons stent but

the ML estimatesare more efficient. TheWald statistic, g, in (21) isasymptoticaly distributed as chi- square

1% Heating degree-days (HDD) is the number of degrees the average daily temperatureis below the base temperature from
January 1990 to December 1990. The average daily temperature (ADT) is calculated as the arithmetic average of the
highest and lowest temperatures recorded on a given day That is, HDD = base temperature (65 Fahrenheit degrees) —
ADT.
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with p degrees of freedom (see Hausman, 1978):

q=N[qav - qulVargey - Vagul™ [daev - Gmu]® c*(p), (21)

withq =(a b), N, the sample size, and p, the number of parameters.

From the set of estimatesin Tables 2 and 8, we obtain g=19.4. Thecritical vauesforc?(9) at the5
and 1 per cent level are 16.9 and 21.67, respectively. So we reject the null hypothesis at the 5 per cent
level but not at the 1 per cent level. Consequently, the evidence of unobserved heterogeneity being partialy
captured by operation costs is not conclusive under this gpproach.

[Table 9]

In Table 9 we present the results of our GIV estimation for central air conditioners. The selected
instruments are house square footage, cooling degree-days,™* average electricity rate, age of the house,
humidity,*? family Sz, and cooling capecity. In this casethe Wald statistic, g, equals 27.9, which leadsusto
rgect the null hypothess a the 1 per cent level. Therefore, in this case there is more evidence of
unobserved heterogeneity than for dectric hesters.

In summary, both the parametric gpproach of section 4.3.1 and the GIV estimation method of this
section show some evidence of unobserved heterogendty partially associated with equipment qudlity.
However, this evidence is not conclusive for dectric heaters, and it is not overwheming for centrd air-
conditioners either. Therefore, our base modd is a reasonable approximation to describe replacement

decisonsof thesetwo particular home appliancesfrom the RECS 1990. Obvioudy, such aconclusion may

1 Cooli ng degree-days (CDD) isthe number of degrees the average daily temperature is above the base temperature from
January 1990 to December 1990. The average daily temperature (ADT) is calculated as the arithmetic average of the
highest and lowest temperatures recorded on agiven day. That is, CDD = ADT-basetemperature (65 Fahrenheit degrees).
12 Average humidity June-August 1990.
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change depending upon the gppliances and sample utilized. Therefore, it isadvisableto test for the existence

of unobserved heterogeneity by some method(s), such as those described in this paper. Failure to do so
may lead to incongstent estimates.
\Y, Conclusons

Despite the dominant role of replacement purchases in many consumer durable categories, the
research in this area has not been extensive. Only in the last few years has the economic theory made
progresstowardsto amorerigorous anaysis of the dynamic natureinvolved in replacement decisons. Asa
consequence of this, applied researchers have switch from conventiona discrete choice models to new
econometric techniques (e.g., duration andysis) that allow for richer relationships between socioeconomic
variables, characteristics of the durable good, and the likelihood of its replacement over time.

Our study focuses on two home gppliancestaken from the Residentia Energy Consumption Survey
(RECYS). Based on a duration model that alows for unobserved heterogeneity across households, we
concludethat household demographicsand product features (both observable and unobservable) in generd
have gatigtica power to explain replacement decisons over time. For example, we have found that while
older equipment is more likely to be replaced, older heads of households are less likely to acquire new
systems. In addition, thereis evidence from our estimation that higher operations costs (possibly correlated
with unobserved quality) lead to earlier replacement.

For home hesating systems, natura gas availability aso affects replacement decisions. In particular,
due possbly to lifetime equipment differentids, eectric equipment is replaced earlier than naturd gas
powered equipment. In addition, economic variables that are correlated with replacement cost aso affect

the probability of equipment surviva over time. For example, house square footageis negetively correlated
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with thelikelihood of replacing a heating system while the same relaionship holds for cooling capacity and

centra ar conditioners. Other variables such as income, family size and urban location do not in genera
seem to play an important role in replacement decisions.

The main contributions of our work are the following. Firt, previous work in the areahasmostly
focused on a single consumer durable good in isolaion, and has dedt primarily with samples from a
particular geographic region of the United States. Second, the impact of unobservable factors on
replacement times has not been explored in the literature so far. Third, our approach may be particularly
useful to generd planning of gppliances production for two reasons. (a) it makesit possible to quantify the
margina impact of percent changes in demographics and product characteristics on replacement; (b) it
predicts equipment lifetimesthat arewithin the ageranges given by theindustry. Fourth, our analysismay be
va uableto policy making. Indeed, operation costs seem to play animportant rolein replacement of eectric
heaters and central-air conditioners. Thisimplies that the development of more efficient technologies may
indeed affect the replacement rates of these and other home appliances.
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Tables

Tablel. About How Old is Y our Central Air-Conditioner Equipment?

Age Category

Lessthan two yearsold
2-4yearsold
59yearsold

10-19 years

20 yearsold or older

Does not know

8801#(.0I\JH

Not applicable

Table 2. Weibull Replacement Model for Electric Space Heaters

Vaiable Parz_:\meter Standard error T-statistic
estimate

Constant term -7.193 0.933 -7.707*
Age head of household (per 10 years) -0.144 0.047 -3.084*
Monthly income (per $10,000) 0.739 0.449 1.650**
Urban areadummy (=1 if yes) 0.180 0172 1.050
Natural gas availability (=1 if yes) -0473 0.158 -2.992*
House square footage (per 1,000) -0.105 0.077 -1.372%**
Monthly operation cost ($) 0.092 0.046 2,005
Poor credit rating dummy (=1 if yes) -0.183 0311 -0.591
Alpha 2414 0.255 9477*

Log of likelihood function at convergence =-737.65

Number of observations = 505

Estimated expected lifetime eval uated at sample means =20.4 years

* : Statistically significant at 5 per cent level for H,: b=0 against H: bt 0

*x . Statistically significant at 10 per cent level for H,: b=0 against H,: bt O

*kx . Statistically significant at 10 per cent level for H,: b=0 against H;:b<0



Table3 Weibull Replacement for Central Air Conditioners

Regressor Parameter estimate Standard error T-statistic
Constant term -3.598 0.398 -9.028*
Age head of household (per 10 years) -0.127 0.028 -4,533*
Monthly income (per $10,000) -0.036 0.229 -0.158
Urban areadummy (=1 if yes) -0.121 0.093 -1.309
House square footage (per 1,000) -0.061 0.041 -1.489***
Cooling capacity (per 1,000 Btu/hour) -0.156 0.017 -9.429*
Monthly operation cost ($) 0.052 0.024 2.146*
Poor credit rating dummy (=1 if yes) 0192 0.233 0.823
Alpha 1.925 0124 15.538*

Log of likelihood function at convergence =-1,859

Number of observations =1,245

Estimated expected lifetime evaluated at sample means =15.2 years

* : Statistically significant at 5 per cent level for Hy: b=0 against H;: b O

** : Statistically significant at 10 per cent level for H,: b=0 against H,:b<0

*okx : Statistically significant at 10 per cent level for H,: b=0 against H;:b<0

27
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Table4 Weibull Replacement Model with Unobserved Heterogeneity for Electric Space Heaters

Parameter estimate Standard error T-statistic
Rear essor s associated to d
Constant term 0.784 0.187 4.196*
Monthly operation cost ($) -0.144 0.017 -8.489*
House square footage (per 1,000) -0.046 0.066 -0.711
Regressor s associated to b;
Constant term -8.328 1417 -5.875
Age head of household (per 10 years) -0.167 0.052 -3.184*
Monthly income ($1,000) 0.883 0498 1771**
Urban areadummy (=1 if yes) 0.152 0.184 0.824
Natural gas availability (=1 if yes) -0477 0171 -2.777*
House square footage (1,000) -0.0%4 0.102 -0921
Monthly operation cost ($) 0.195 0.102 1.910**
Poor credit rating dummy (=1 if yes) -0.129 0.335 -0.386
Alpha 2614 0.319 8.174*

Log of likelihood function at convergence
Number of observations
Estimated expected lifetime evaluated at sample means

=735.69

505
19.6 years

* . Statistically significant at 5 per cent level for Hy: b=0 against Hy:bt 0
**: Statistically significant at 10 per cent level for H,: b=0 against H;:b* O
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Table5 Marginal Impacts on the Probability of Replacing Electric Space Heaters under Unobserved Heterogeneity

Time period (years)

Regressor 1-3 46 7-9 1-20
Age of head of household (per 10 -0.009 -0.004 -0.008 -0.129
years)

Monthly income (per $10,000) 0.005 0.020 0.043 0.630
House square footage (per 1,000) -7.9¢e-4 -0.003 -0.006 -0.083
Monthly operation cost ($) 6.9e-4 0.002 0.005 0.077
Overall probability of replacement 0.005 0.022 0.045 0548

Note: Marginal impacts are evaluated at sample means.



Table6 Weibull Replacement Model with Unobserved Heterogeneity for Central Air Conditioners

Parameter Standard error T-statistic

Regressorsassociated to d,
Constant term 1.169 0.349 3.349*
Monthly operation cost ($) -0.046 0.026 -1.760*
Cooling capacity (per 1,000 Btu/hr) -0.093 0.028 -3.380**
Regressorsassociated to b;
Constant term -2.990 0.640 -4.670*
Age head of household (per 10
years) -0.142 0.031 -4.504*
Monthly income (per $10,000) -0.062 0254 -0.241
Urban areadummy (=1 if yes) -0.107 0.102 -1.043
House square footage (per 1,000) -0.057 0.045 -1.242
Cooling capacity (per 1,000 Btu/hr) -0.264 0.051 -5.212*
Monthly operation cost ($) 0.053 0.450 1178
Poor credit rating dummy (=1 if yes) 0.216 0.296 0.731
Alpha 2.085 0199 10.436*

Log of likelihood function at convergence =-1,855.0

Number of observations = 1,245

Estimated expected lifetime eval uated at sample means =14.3years

* . Statistically significant at 5 per cent level for Hy: b=0 against Hy:b! 0

*x . Statistically significant at 10 per cent level for H,: b=0 against Hy:b 0
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Table7 Marginal Impacts on the Probability of Replacing a Central Air Conditioner under Unobserved

Heterogeneity

Time period (years)

Regressor 1-3 4-6 7-9 1-20
Age of head of household (per 10 -0.004 -0.010 -0.017 -0.199
years)
Monthly income (per $10,000) -0.002 -0.004 -0.007 -0.087
House square footage (per 1,000) -0.002 -0.004 -0.007 -0.080
Cooling capacity (per 1,000 Btu/hr) -0.007 -0.002 -0.019 -0.331
Monthly operation cost ($) 0.001 0.004 0.007 0.092
Overal probability of replacement 0.027 0.066 0.04 0.770
Note: Marginal impacts are evaluated at sample means.
Table8 Generdized Instrumental Variables Estimation for Electric Space Heaters
Parameter Standard error T-statistic
estimate
Constant term -8.767 1411 -6.213*
Age head of household (per 10 years) -0.302 0.127 -2.381*
Monthly income (per $10,000) 1176 1.080 1.088
Urban areadummy (=1 if yes) 0.374 0.266 1.408
Natural gas availability (=1 if yes) 0332 0178 -1.863**
House square footage (per 1,000) -0.249 0.364 -0.683
Monthly operation cost ($) 0.379 0.082 4.616*
Poor credit rating dummy (=1 if yes) 3.936 5.099 0.772
Alpha 2593 0.380 6.824*

Chi-square test of over-identifying restrictions=7.64, p-value=0.18
Number of observations = 505

* ;. Statistically significant at 5 per cent level for H,: b=0 against H;:bt 0
** Statistically significant at 10 per cent level for H,: b=0 against H,:bt O



Table9 Generdized Instrumenta Variables Estimation for Central Air Conditioners

Parameter estimate Standard error T-statistic

Constant term -2.613 0.940 -2.779*
Age head of household (per 10 years) -0.236 0.083 -2.862*
Monthly income (per $1,000) 1.385 1.095 1.269

Urban areadummy (=1 if yes) -0.419 0.459 -0.913
Cooling capacity (per 1,000 Btu/hr) -0.166 0.032 -5.219*
House square footage (per 1,000) -0.158 0.062 -2.535*
Monthly operation cost ($) 0.006 0.034 0.189
Poor credit rating dummy (=1 if yes) -1.322 1.187 -1113
Alpha 1.901 0.208 9.157*

Chi-square test of over-identifying restrictions=7.03, p-value=0.30
Number of observations = 1,245

*: Statistically significant at 5 per cent level for H,: b=0 against Hy:bt 0
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