Technical Appendix 1: Gibbs Sampler for structural demand model

In this Appendix we describe the procedure to sample each of the parameters of the model from their
full-conditional posterior distribution according to the assumptions in Section 4. We note that in
the case of the full-conditional posterior simulation of 8;, & and 1 we use a MH step with candidate
vectors generated from a normal distribution with mean equal to the current value (random walk)
and a variance matrix proportional to the current value of D, £ and X¢, respectively (see C.3, CA4

and C.5 for details).
a) Sampling Choices (y;):

1. In each iteration (k) randomly select N/2 pairs of consumers without replacement and enu-

merate these pairs. Let (i1p,i2,) be the indexes of consumers in pair p and (zl-(i))t, Zz(fp)t) their

choices in period t in the current iteration k.

2. For each period t and starting from the first pair, successively and jointly draw the choices of

(k1) z(k+1)) from their full-conditional posterior distribution. The

each pair of consumers (Zilpt ) Zig

pair (p) subscript is dropped for notational convenience. In addition, define w; = 1 if ¢; > 0
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where h(-|-,-) is the likelihood contribution of next-period coupons based on current coupons



and choices. This function is defined as follows:

(26) h(cijisl cije, zijt) = (rijerr (Cije, 2ije)) 9 (L= rijega (cige 2ie)) 9, t=1,.,T — 1.

Finally, with the complement of the probability defined in equation (26), the pair of choices
remain at their current values by assigning: (z (k+1), zg”l)) = (zlglk), zl(j) ).

b) Sampling Coupons (c¢;;):
In every iteration k, for each period ¢t and for every consumer i, successively draw cgf ) as

follows:

1. Let b; the brand chosen by consumer i in period ¢ (i.e., z;,: = 1)

2. Let ¢, be such that:

(a) fw; =1, ¢y , = ¢/, (this condition is required in order to satisfy condition (14)), and
define the set Q; = {1, ..., J}\{b;}, otherwise, if w; = 0 define Q; = {1,..., J}.

(b) If 0y = 1, generate cj;,, from a Bernoulli distribution with probability 0.5, for all b € Q;;

: *
otherwise, set cjj,, = 0.

3. Accept ¢}, according to the following MH probability:
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otherwise, assign c( ) - cgf ).



Also note that the acceptance rate of candidate vectors of coupons can be increased if some
elements of Q; are removed at random in each iteration (i.e., if the value of ¢;j is left constant
for some components in a given iteration). For example, for the data set used in the empirical
application, if four elements are removed at random from Q;, then the acceptance rate exhibits

values closer to 25% instead of values below 10%.

c) Sampling 6;:
Define ¢, = ¢ijizijtl{y,>01- In every iteration k, for each consumer ¢, successively draw 6; using

a Metropolis-Hastings step specified as follows:

1. Let [; =0, if max cije = 1; otherwise, set [; = —oo.
J7

2. Let u; =0, if II}E:;X ngt =0 and n}%x zijtcijt = 1; otherwise, set u; = +oo.
I I

(%)

3. Generate a candidate value v from a normal distribution with mean equal to 1),

)

(the value
of 1; in the current iteration), variance equal to a,- fo and truncated in the interval (I;, u;).
We note that Dy, is the diagonal element of D that corresponds to the coupon redemption

utility coefficient (v;), while ay; is a scalar tuning parameter for the jumping kernel used in

the MH step.

4. Generate a candidate value ¢} from a normal distribution centered on the current value (¢F)
and with variance matrix equal to a¢Dg€) . We note that Dék) is the current value of the
variance-covariance matrix of ¢; and a4 is a scalar tuning parameter for this jumping kernel.
In our simulation experiment we used a4 = 0.28 and ay = 6 - 0.28 in order to obtain a MH

acceptance rate for 6; between 20% and 30%.

5. Define 0} = (¢F ,97)".

6. Accept 07 with the following MH probability:
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otherwise assign GEkH) = ng), where ¢( - ;;, ayp Dy, l;, u;) denotes the density of a normal
distribution with mean v; and variance a, Dy, truncated between (I;, u;); and p;;:(6;) denotes
the probability that consumer ¢ chooses brand j in period ¢ when her vector of preference

coefficients is equal to ;.

d) Sampling & and &:
1. Let & =X¢ (34 ,)" " and let Z?m =x¢ —%¢ (20,)7'%d ., where n; = price;, — w,v;.

2. Generate 5;‘ from a normal distribution with mean ét(k) and variance matrix agEgm, where a¢

is a unidimensional MH tuning parameter (in our numerical experiment we used a¢ = 0.55).

3. Let 5;‘1 = N;‘fl/\/l—iﬁ; and gjt = 'Ydjf;ft—l + éjt

4. Accept & and & with the following MH probability:

=
1~

¢(é§k5gt> 5\77) pijt (&)t

@
Il

—
<.
Il

—

QM H¢ = min 15,

—=
1~

¢( ~§k);gt> 5\77) ngt(ﬁt )Zijt

@
Il

—_
.
Il

—

otherwise assign fgkﬂ) = §£ and §(k+1 = fgk), where p;j¢ (&) denotes the probability that

consumer ¢ chooses brand j in period ¢t when the vector of common demand shocks is equal

to €t‘

e) Sampling v;:

(k)

1. Generate v; from a normal distribution centered on v, and with variance matrix a, X¢, where
Y€ is the current value of the covariance matrix of v; (we used a, = 0.4 in the numerical

experiment).

2. Accept v} with the following MH probability:
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otherwise assign ylfkﬂ) = yt(k), where r;;(-) denotes the probability that consumer ¢ has a

coupon available for brand j in period ¢ as a function of the value of 1.

f) Sampling J;:

1. If in iteration k there is a positive number of coupons assigned to brand j in period ¢ (i.e., if

N
> cijt > 0), then set 5j(-f+1) =1 (see condition (11)).
i=1

k+1
aiy+y

2. If no coupons are assigned, set = 1 with the following probability:
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otherwise, set 6](.f+1) =0.

g) Sampling 6:

1. Define Ag and Bj as follows:

By= (v + ND) !

where Vo%l is the inverse of the prior variance for Vog = 10°I5 in the simulation experi-

ment).

2. Generate 0 from a normal distribution with mean Az and variance By.

h) Sampling D:

1. Let K be equal to the number of columns of D.

2. Generate D from an IW(K +2+ N, (K + 2)Ix + Zij\il(Gi —0)(6; — 6)").

i) Sampling a1, ..., ; and p:



1. Let a = (a1, ...,ag,p) .

2. Let X, be a matrix such that X.; = [I; my], where I; denotes an identity matrix with .J
rows and columns, while m; is a matrix that contains the values in period ¢ of marketing

variables assumed to be coordinated with coupon promotion.
3. Let E; = l'c,t& + 1.

T T -1
4. Let Az = Bj <Z Xét(EC)_lEt) and B = <V05} + > Xét(EC)_qut) , where Vj 5 is
t=1 o= ’

the prior variance of a (Vo g = 10*14 in the simulation experiment).
5. Generate a*t1 from a normal distribution with mean A; and variance Bs and set v =

Et - $c7ta(k+1) .

j) Sampling aj1:

2

. e . (k) .
1. Generate oy, from a normal distribution with mean a;,, and variance oy, .

2. Accept o, with the following MH probability:
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otherwise, let a(ﬁjll) = af]k_zl (in the numerical experiment, we set Vo q,,, = 10).

k) Sampling ¢:

T T
1. Generate g; from the following beta distribution: Beta <1 + >0, 1+T - 5jt>.
=1 t=1

1) Sampling v:
1. Let v = (v,..,v)})".

2. Let zpj1 = /1 — p; (pricejl—Eﬁrieevg(Egé)_l&) and let zp; = pricet—yppricet_l—Zgrice7§(§lg7§)_1§t

for t > 2.
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3. Let Eprice,price|§ - Eprice,price - Eprice,g(zf,ﬁ) E{,price’

4. Let wj1 = /1 — vpj wj1 and Wy = wj; — Ypjwji—1 for t > 2.

5. Let W; a block-diagonal matrix, where the j*" block corresponds to @, for j =1, .., J.

Jt

T T —1
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6. Let AU - BU <tz:1 Wt/(zprice,priceK) 1Zpt> and BU - <‘/0,U + t; W{(Eprice,price\f) 1Wt> ’

where Vj,, is the prior variance of v (Vp, = 100l in the simulation experiment).

7. Generate v**tD from a normal distribution with mean A, and variance B,,.

m) Sampling ¥
1. Let é:t = (771,5751/5)/

2. Generate ©¢ from an TW(J + 2+ T, (J 4 2) 0.01 Io; + S, &C)).

n) Sampling X¢:

1. Generate ¢ from an IW(J +2+T7 —1,(J+2) 1, + 23:2 ;).

o) Sampling ~:
L. Let G = (m,&;)"
2. Let ¢ = (i, &)
3. Let Dy a diagonal matrix with diagonal elements equal to the components of (;.

T-1 T -1
4. Let A, = B, <t21 Dg(zd)—lgtH) and B, = <V0771 + t; Dg(zd)—1Dt> , where Vp, is the

prior variance of vy (Vp 4 equals the identity matrix in the simulation experiment).

5. Generate v* from a normal distribution with mean A, and variance B,.

6. Let 77 = /1= ()2 mj1, §1 = /1 — (7)? &n- Let &=, &)
j j lj

7. Accept v* according to the following MH probability:
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(k+1)

otherwise, set ~ = ~(k),

Technical Appendix 2: Estimation of the marginal likelihood

In what follows we derive an estimator of the marginal likelihood by generalizing the harmonic mean
method proposed by Newton and Raftery (1994). This generalization is needed for the aggregate
estimation procedures presented in this paper that are based on augmenting the aggregate data
(A) with unobserved sequences of choices (Z) and coupons (C).

As before, define w; = 1 if ¥; > 0 and, otherwise w; = 0. Let w define a vector with the values
of w; for all consumers. In addition, Let Qx denote the set of all values of (Z,C,w) consistent
with the aggregate data (A) under model M and let ¢ denote the collection of parameters that
determine the likelihood of the augmented choices and coupons (i.e., ¢ = {0, 7}). We are interested
in computing p(A|M), the marginal likelihood of the aggregate data A under model M. For
notational convenience, we drop the model subscript (M) and we refer to p(A|M) and Q¢ simply
as p(A) and Q, respectively. By noting that [ p(p)de = 1, it is straightforward to verify that the

marginal likelihood p(A) satisfies the following equation:
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Using Bayes Law and noting that p(A|Z, C,w, ) = 1 for any pair (Z,C,w) € , the following

identity can be easily derived:

1 p(Z7 C7w7<p|A)
28 = PEBYY gz cw) e
(28) 24 T . Cwg)  THOW

Using this identity in equation (27) we obtain:
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Consequently, using equation (29) we can estimate p(A) as follows:

(30) p(A) = i ,

1 1
m 24 p(Z0,C0 L0 0)

3

where each quadruplet (Z ONeONBION cp(l)) is drawn from the posterior distribution p(Z, C,w, ¢|A).
Therefore, this estimator corresponds to the harmonic mean of the likelihood of the augmented
choices and coupons amplified by |Q2|, where the values for (Z ONeONBION gp(l)) can be obtained
from the MCMC output.

Finally, we note that if two models M and My share the same set of feasible combinations
of choices and coupons (i.e., Qn, = Qur, = Q), then for the purposes of model selection, it is not
necessary to compute ||, which is constant for these two models and, thus, it is not needed to

compute the corresponding Bayes factors.
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