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Components of Attentional Effort for Repeated Tasks 

Abstract 

This paper identifies four attentional processes that increase efficiency and accuracy 

in repeated lexicographic tasks using an instructed strategy approach. We propose a 

framework to decompose attentional effort used to make a decision into four components: 

Orientation, Wrong Target, Duration, and Repetition. Orientation assesses attention to 

decision rules and the location of relevant information. Wrong Target measures wasted effort 

on unneeded information. Duration gauges time spent on each piece of needed information. 

Repetition measures the number of views on each relevant item. Greater Orientation is 

associated with lower effort in other components and increased accuracy. Repetition is most 

variable across individuals but generates the greatest improvement with practice. Duration is 

less affected by the other components and shows minimal improvement with experience. 

Finally, Wrong Target is similarly resistant to practice, but it is the only component strongly 

and positively associated with making errors.  
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Components of Attentional Effort for Repeated Tasks 

1 Introduction 

Individuals often perform tasks repeatedly. For example, consider a financial analyst using 

balance sheet information to calculate the risk of a loan; a customer service representative 

processing a refund; a radiologist searching a chest image for cancerous nodules, a consumer 

choosing which products to purchase in every visit to a store, or a travel agent finding the 

flights that meet a traveler’s requirements. For these tasks to be successful they require 

learning the rules and using acquired knowledge to find and process relevant information.      

This paper uncovers four relevant attentional components critical to performing 

repeated tasks and proposes a conceptual framework to characterize them. We examine these 

components that combine to make up effort used in making a decision: Orientation, Wrong 

Target, Duration, and Repetition. Orientation is a measure of attention to the rules and the 

location of important information. Wrong Target quantifies the proportion of attention to 

unneeded information. Duration is the time spent accessing each piece of relevant 

information. Finally, Repetition assesses the extent to which relevant information is 

repeatedly accessed.  

We demonstrate the applicability of this framework with an eye-tracking study where 

participants search for the best alternative using an instructed lexicographic rule (in line with 

other papers using an instructed strategy approach, see, for example, Fechner, Schooler, & 

Pachur, 2018). The lexicographic rule is particularly appropriate for three reasons. First, the 

simplicity of the task allows participants to perform it repeatedly in a single lab setting and 

identify the learning processes over time. Second, the defined rules for the lexicographic task 

make it possible to determine the extent to which the participants focused on the most 

valuable information. Finally, the lexicographic rule and the similar take-the-best rule 
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(Gigerenzer & Goldstein, 1996) have been found to be more effective than complex 

compensatory rules in a number of real decision contexts. For example, Graefe & Armstrong 

(2012) show election predictions are better assessed with a lexicographic rule than a 

compensatory rule, while Pachur & Marinello (2013) show that expert airport custom 

inspectors gain from a take-the-best rule, and Garcia-Retamero & Dhami (2009) demonstrate 

that experts predicting burglaries gain from a lexicographic rule. Generally, Gigerenzer & 

Gaissmaier (2011) propose that quick and frugal decision making characterized by take-the-

best rule is most effective when there is high cue redundancy and high variability in cue 

weight, particularly in information intensive, cognitively demanding contexts.  

Our goal is to understand the attentional processes that lead to greater efficiency and 

accuracy through the use of an instructional strategy approach. Specifically, the application of 

our proposed decomposition allows us to answer three research questions. First, how much 

do the four components vary across participants and change with experience? Second, does 

effort in one component alter the need for effort in the others? Finally, do the roles of the 

components shift with different performance incentives? 

The next section describes our proposed conceptual framework, outlining the 

relevance of the effort components and the links to previous research that investigated these 

components.  

2 A Conceptual Framework for Attention Effort  

Our research builds on earlier work that investigated the sources of effort in rule-based 

lexicographic decisions. Bettman, Johnson, & Payne (1990) and Khader, Pachur, Weber, & 

Jost (2016) differ in their focus of the factors that generate effort, but share with us the 

interest in using measures for a better understanding of the underlying processes in repeated 

structured tasks. 
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Bettman et al. (1990) define elementary information processes called EIP’s such as 

compare, eliminate, read or add that can be used to describe the operations needed when 

applying a decision strategy. Thus, a choice can be represented as a sequence of mental 

events in which the effort needed to implement a decision strategy can be quantified as a 

function of the elementary steps needed. The authors explore a number of tasks, including the 

use of a lexicographic rule, and show that addition and multiplication take substantially more 

time and perceived effort than comparisons or eliminations. They show that the EIP 

framework can be used to predict response times and subjective cognitive effort for defined 

choice strategies across tasks that differ in terms of the number of attributes and alternatives. 

Their results include but are not focused on the read, compare and eliminate EIPs that are 

central for the lexicographic rule. However, their idea of identifying elementary information 

processes provides an innovative way to characterize the effort implications across diverse 

decision processes.    

Khader et al. (2013) ask participants to comply with a take-the-best lexicographic 

decision rule on binary choices. Processing of the decisions requires recall of relationships 

among attribute levels learned during an extensive training session. They track the time 

needed to complete each task and thereby estimate the effort from using information recalled 

from long-term memory. They also find a weaker temporal effect associated with attending to 

attributes that are otherwise irrelevant to the particular task. Importantly, using fMRI they are 

able to identify different neural locations associated with recalling location, facial or product 

information cues. The paper thus identifies the neurological basis for effort related to memory 

recall. 

Both research approaches differ in the kind of cognitive effort associated with 

repeated decisions. Bettman et al. (1990) explores computational effort, while Khader et al. 

(2016) assesses memory retrieval. In contrast to both, our paper demonstrates that the 
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attentional effort of a lexicographic task that does not require computation or long-term 

memory can provide insights about how attention evolves across four distinct components. 

We measure external attention to rules (Orientation), correct application of the rules (Wrong 

Target), attentional duplication (Repetition) and processing speed (Duration). Based on these 

measures we assess the extent to which each attentional component differentially decreases 

with time and impacts total attention. While these have been examined in a number of 

studies, ours may be the first that brings them together in one study. Because our research 

framework is new and the possible interaction effects of the components have not been 

studied, our research approach is exploratory in nature. Next, we review empirical findings 

regarding each of the four components.  

2.1 Orientation 

Orientation measures attention to rules and the location of important information to complete 

a decision task. Early researchers emphasized the importance of knowing the rules for proper 

performance (Langley & Simon, 1981). Russo & Leclerc (1994) suggested that the decision-

making process consists of three consecutive stages: orientation, evaluation and verification. 

Their eye-tracking studies demonstrated that decision makers need time for orientation before 

evaluating stimuli in a task. Liechty, Pieters, & Wedel (2003) suggest that during exposure to 

complex scenes, attention switches between two latent states, which they labeled local and 

global. “The attention states themselves are unobservable but can be inferred from the 

patterns of eye movements that they give rise to. The idea is that people resolve the complex 

problem of attending to a natural scene by decomposing it into a set of simpler subproblems 

by attending to local regions in the scene over time” (p.130).  Thus, global scanning serves to 

orient the participant to assist in local evaluations. Applied to a lexicographic task, our study 

permits a separation between global (orientation) focus, characterized by finding out where to 
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look next, and a local (evaluation) stage that examines and processes task-relevant 

information. 

2.2 Wrong Target 

Wrong Target measures the extent to which the information from Orientation effort is 

incorrectly used. In the case of a lexicographic task, there is an optimal way to collect 

information that involves identifying the best alternatives in terms of the most important 

attribute and eliminating alternatives excluded by those important attributes. If more than one 

alternative remains, the process is repeated using the next most important attribute. Greater 

attention to Wrong Target results from violating the appropriate attribute order or from re-

examining eliminated alternatives. Decision makers gain location knowledge. Orquin, 

Chrobot, & Grunert (2018) showed that predictable locations facilitate attention to relevant 

stimuli, either from examining the rules or from memory. Location knowledge has been 

shown to speed up visual search for simple visual targets (see e.g. Chun & Jiang, 1998).  In 

line with Orquin & Mueller-Loose (2013), we expect that efficiency should increase through 

more fixations to task-relevant and fewer fixations to task-irrelevant information. 

A number of eye-tracking studies measure attention to irrelevant information 

(Gegenfurtner, Lehtinen, & Säljö, 2011; Haider & Frensch, 1999). These studies demonstrate 

that inappropriate attention is strongly associated with low expertise across a number of 

fields, results that are consistent with the idea that Wrong Target provides a relevant measure 

of inefficient attention processing.  

2.3 Fixation Duration 

Fixation duration is a measure of the time required for each fixation. Shorter times are 

associated with scanning and automatic processes, whereas longer fixations are linked with 

deeper processing (Velichkovsky et al., 2002). Empirical studies found that increased 
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cognitive load leads to increases in fixation duration (Rosch & Vogel-Walcutt, 2013). In line 

with this finding, Reutskaja, Nagel, Rangel, & Camerer (2011) provide evidence that average 

fixation duration decreases in more complex stimuli sets. Other studies confirmed that shorter 

average fixations of experts compared to novices enable them to more effectively interpret 

task-relevant information (Gegenfurtner et al., 2011).  

2.4 Repetition 

Repetition refers to the number of views on each relevant item. Decision-making research has 

used repeated fixations to help define stages of the decision-making process. Russo & Leclerc 

(1994) suggest that following orientation the first refixation indicates a transition to an 

evaluation stage. A final verification stage consists of consecutive fixations to a chosen 

option, using refixations to check for mistakes. Related research examining search among 

simulated store shelves by Van der Lans, Pieters, & Wedel (2008) provides evidence that 

repetition is associated with a greater ability to find a desired alternative. Glichrist & Harvey 

(2000) investigate refixation frequency and memory mechanisms in visual search. They find 

that participants frequently refixated on objects to compensate for limited functional memory. 

In the context of risky choice, research also indicates that Repetition decreases with task 

experience (Pachur, Schulte-Mecklenbeck, Murphy, & Hertwig, 2018) and increases with the 

difficulty of the task (Pachur, Hertwig, Gigerenzer, & Brandstätter, 2013). When considering 

multi-attribute judgments, Meißner, Musalem, & Huber (2016) show that decision makers are 

able to reduce effort and increase accuracy by repeatedly fixating on important attributes and 

attractive alternatives. 

2.5 Incentives 

In this paper, we assess the extent to which the roles of the components are stable with 

different incentive to be fast and accurate. This is important to measure the robustness of 
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these roles in the presence and absence of incentives. Furthermore, it is helpful to investigate 

whether these roles become more prominent when participants have economic incentives to 

perform faster and more accurately. We were also interested in examining whether the 

findings of Ederer & Manso (2013), apply to our context. Indeed, Ederer & Manso (2013) 

show that managers with financial incentives in a management game write more elaborate 

notes and perform better by practicing on a subset of earlier trials that do not pay for 

performance. Rather than just relying on two experimental conditions (with and without 

economic incentives), we build on this research by defining three conditions. Participants in 

the control condition are simply asked to do as well as they could on the tasks. Participants in 

the full-incentive condition get an award if their answers are correct and if they are among the 

fastest 10% of participants. Participants in a paused-incentive condition can use the first (six) 

tasks for practice before the incentives become binding. The contrast between the control and 

incentive groups assesses the general impact of monetary incentives, while the contrast 

between the paused- and full-incentive groups assesses whether practice tasks encourage a 

greater learning and performance. Finding that the paused-incentive conditions improve 

performance would generalize the Ederer & Manso (2013) finding of the value of incentive-

free practice.  

In summary, examining past research, there are studies of rule learning and 

acquisition from memory, studies of stimulus repetition and fixation duration, and studies 

demonstrating the efficient scanning of information leading to faster and more efficient 

choices. However, to the best of our knowledge, there are no studies that jointly measure the 

four components of Orientation, Wrong Target, Duration and Repetition together and their 

interaction with each other. Further, most research examining the constructs related to 

Orientation, Wrong Target, Repetition and Duration use somewhat different definitions than 

defined below for the lexicographic task. We will provide justification for our particular 
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measures, and then later examine the robustness of the results to different definitions and 

methods of analysis. 

3 Method 

3.1 Stimuli  

To introduce and develop the proposed effort components of the current study, it is useful to 

understand how they are measured in our study. Figure 1 provides a typical example of the 

lexicographic tasks presented to participants. The top of the figure displays the lexicographic 

rule while the left-hand column provides the locations of the six attributes that characterize 

four vacation choices.  

Figure 1. Example of a task in which participants apply a lexicographic rule

 

Note: Participants identified a package that follows the assigned lexicographic rules.  In the 

example, Packages B, C and D have the best Sea View; C and D are both excellent on Room 
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Category; Package C is cheaper than Package D, leaving C as the best alternative.  The 

minimum information needed for a correct answer are reflected in cells in bold above. 

 

We asked participants to imagine that a friend plans to go on vacation at a particular 

city. The participant’s task was to help a friend by selecting a vacation package for her. These 

vacation packages differ with respect to the six attributes and levels shown in Table A1 in 

Web Appendix A. Further details on the stimuli, procedure, apparatus and how we analyzed 

the eye-tracking data are available in Web Appendix A.  

To evaluate the vacation packages, the participant is asked to follow a lexicographic 

rule that reflects the friend’s preferences across attributes. The task was designed to be easy 

but tedious. It requires attention to the rules at the top of Figure 1 and the horizontal location 

from the attribute labels on the left before making the decision in the grid.   

3.2 Procedure 

Participants were told that the goal of the experiment was to monitor their attention as they 

solved several related tasks. A lab assistant greeted and then directed each participant to sit in 

front of a computer monitor that would present all stimuli. Adjusting the seat height and the 

remote eye-tracker assured an optimal recording quality of the eye tracker. Participants were 

also asked to sit relatively still and to solve all tasks without interruption, giving all answers 

solely with the computer mouse. Then participants provided informed consent. Each 

participant was randomly assigned to one of the three incentive conditions described in 

Section 2.5. 

The experiment started with a detailed explanation of the attributes and their 

corresponding levels. The participant’s task was to carefully read the information about the 

attributes and their levels. Then, the participants received information on a friend’s priorities 

in terms of the importance of attributes and their levels, and learned that their task would be 
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to determine the best option for their friend. Two practice tasks then followed. First, the 

computer showed the participant four alternative vacation packages where only one 

alternative was best on the most important attribute. The next practice task required a second 

attribute to break a tie. The process rotated back to the start of the practice tasks until both 

tasks were successful. Before participants started answering the block of 12 tasks the lab 

assistant rechecked and adjusted the instrument calibration. Then, the participant learned the 

incentive structure that would apply in their case.   

Within subjects the attribute order and their locations in the grid were unchanged 

across the 12 tasks. Each subject saw 2 tasks requiring one attribute, 2 tasks requiring two 

attributes, and so on up to six attributes. The idea is to provide each participant with a full 

range of effort levels across the tasks. The order of the 12 tasks was however, randomized 

across participants.  

 

3.3 Apparatus 

Eye movements were recorded using the Tobii T120 remote eye-tracking system with a 

sampling rate of 120 Hz (Tobii Software, 2016). This system is calibrated to have a deviation 

under 0.4 degrees of visual angle between true and measured gaze direction. The infrared 

sensors built into a 17’’ TFT monitor have a resolution of 1280 x 1024 pixels. The system 

adjusts to changes in the seating positions of participants. Accordingly, participants could 

make moderate movements in front of the computer monitor and a chin rest was not needed.  

For this analysis we treated all fixations characterizing the attribute order or their 

labels as defining one area of interest (AOI). Then the information about each alternative on 

each attribute is captured by fixations within the 24 cells within the grid, each treated as 
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separate AOIs. We refer readers to Web appendix A for more details regarding the apparatus 

and analysis of eye-tracking data.    

3.4 Participants 

In all, one-hundred and ninety-four engineering students (57% male) successfully completed 

the task. Three incentive conditions were available, with 69, 65 and 60 participants in the 

control, full- and paused-incentive conditions, respectively. Since all participants were 

students, we did not ask for their age. 56.6% of students participating were male. The three 

incentive subsamples did not differ significantly regarding gender (𝜒2 = 2.31, 𝑝 = .31) or 

the percentage of right-eye dominant participants (𝜒2 = .11, 𝑝 = .95). 

3.5 Operational Definitions of the Components of Attention Effort 

Below we define four components and two control variables affecting Attention Effort. 

Attention Effort is defined by the sum of fixation times to all areas of interest in a task rather 

than time measured by the computer clock. Clock time also includes time for fixations less 

than 60 milliseconds, saccades, blinks, and attention away from the tracked areas of interest. 

For our data, clock time is about 8% greater than Attention Effort but across tasks and 

participants has a .99 correlation with it. Attention Effort shows consistently stronger 

relationships than clock time with variables of interest like complexity and learning. If our 

task had involved processes like addition, multiplication, or calling on long-term memory, 

then attention outside of the screen might be more informative, but with our task there is little 

need for attention outside the measured AOIs.  

We next turn our attention to the operational definitions of the components that make 

up Attention Effort. While each of these components could be measured using different 

metrics, the chosen operationalizations allow attention time to be determined as the product 

of these metrics.  
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Orientation refers to the effort to understand the rules and guidelines of the task and 

identify the location of the relevant pieces of information. For our study, we measure 

Orientation by total attention time on all AOIs divided by the time in the 6-by-4 grid. Greater 

values of this ratio indicate that a larger fraction of time is spent attending to instructions and 

the labels of attributes and alternatives.  

Wrong Target is effort wasted from examining unneeded information. It is assessed as 

the ratio between attention time spent in the grid divided by the time on the subset of cells 

needed to make a correct lexicographic decision. Hence, greater Wrong Target implies less 

selective information processing evidenced by a greater fraction of time spent on irrelevant 

information. Rather than focusing on needed cells, it is possible to define Wrong Target as 

the number of attributes that are accessed in the wrong lexicographic order (Khader et al., 

2016). Our measure of Wrong Target is preferred for our task because it not only penalizes 

attention to attributes in the wrong order, but also the acquisition of information about 

alternatives that should have been excluded. 

Duration is the average time spent attending each piece of relevant information, 

measured as the ratio of the time on the needed cells over the number of fixations on those 

cells. Duration could have been measured by average fixation duration of all fixations in a 

task, rather than just those required for the correct decision. The decision to base Duration on 

needed cells follows from work suggesting that effort on needed cells decreases with 

experience (Gegenfurtner et al., 2011; Orquin & Mueller Loose, 2013).  

Repetition, the fourth component, is defined as the number of repeated fixations per 

needed cell and it is hence measured as the ratio between the number of fixations to needed 

cells and the number of needed cells.  Focusing on these cells emphasizes the functional 

aspect of repetition in this task reinforcing the location of important attributes and can be 
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used to check the accuracy of the choice. Our focus on Repetition for needed cells is 

therefore in line with earlier research by Glichrist & Harvey (2000) who investigated search 

task in which only relevant stimuli were provided.   

Complexity is a critical control variable characterizing effort required within each of 

the 12 tasks. It is operationalized as the minimum number of cells out of 24 (6 attributes x 4 

alternatives) needed to identify the best alternative. In the Figure 1 example, Complexity is 

4+3+2 =9. Complexity varies randomly between 4 and 21 cells across tasks. We note that one 

could operationalize complexity considering both the number of needed attributes and the 

number of needed alternatives per attribute. This alternative definition yielded very similar 

insights. 

By design, the four components and Complexity mathematically determine Attention 

Effort, such that: 

Attention Effort = Orientation *Wrong Target *Duration *Repetition *Complexity  (1)           

where  

 Orientation      =   Attention Effort / Time on grid 

 Wrong Target  =   Time on grid / Time on needed cells 

 Duration          =   Time on needed cells / Fixations on needed cells 

 Repetition        =   Fixations on needed cells / Number of needed cells  

 Complexity      =   Number of needed cells              

There are several advantages to building components which when multiplied together 

with Complexity perfectly predict Attention Effort. First, having multiplicative components 

accounts for all the variance in Attention Effort. Further, the structure permits a separation of 

direct and net effect on Attention Effort due to a change in each component. The direct effect 

is simply the percent change in Attention Effort from a change in one component, assuming 
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that a change in any component has no effect on the others. If instead we allow components 

to alter each other within the task, we can estimate a net effect that incorporates cross effects 

between components. We will show that allowing for a correlation among components leads 

to both better prediction of the components of effort and better insight about their 

interrelationships.  

Accuracy is not directly part of the model since over 96% of the tasks were done 

correctly by participants. Our high accuracy rates reflect similar levels found in Bettman et al. 

(1990) or Khader et al. (2016).  However, we will measure accuracy to see if accuracy shifts 

with experience or is significantly related to the components of Attention Effort. 

4 Modeling Individual Participant Effort Components 

We formulate a statistical model which has three main features. First, it is a joint model of the 

four attentional components. Second, it allows for heterogeneity among participants, and 

finally it controls for learning and task difficulty. We elaborate and justify each of these 

below.   

Joint Model. It is important to note the four components are defined as interleaved ratios 

where the numerators and denominators of one component are linked to the next component. 

This formulation, which produces a multiplicative decomposition of Total Attention Effort, 

may induce artefactual correlations among the components. It is, however, an empirical 

question whether these components are correlated. Our formulation addresses this issue by 

jointly modeling all four components allowing them to be correlated with each other.  

Task Experience and Complexity. A goal of our research is to determine the extent to which 

the four components vary with practice or the difficulty of a task. Previous studies (e.g., 

Meißner et al., 2016) suggest that participants facing repeated tasks decrease task time with 
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experience. We measure the rates of change on each of the four effort components that 

participants achieve as they accumulate more experience.  

 Finally, our design varies the difficulty of the tasks faced by each participant. In some 

tasks, the participant may find the best alternative by inspecting only a few cells, while in 

others the same participant may be required to access most of the cells. These different 

requirements may affect the effort of the participant along the four components. We control 

for these differences in task difficulty by using the Complexity measure defined earlier. Since 

Complexity varies randomly across tasks and participants, including it as a covariate 

substantially reduces the error term.  

 Throughout, the joint model is formulated with all variables transformed to natural 

logarithms. Working in a log space has four benefits. First, since the relationships between 

the components are multiplicative, then the logs additively decompose the log of Attention 

Effort.  Second, that additivity generates estimates that can scale across different levels of 

analysis, so that the coefficients for a number of pooled analyses will be identical to those 

averaged across individuals. Third, there is substantial evidence that learning effects are 

robustly accounted for with a power model of logged experience (Anderson & Schooler, 

1991; Ritter & Schooler, 2001). Finally, with the current data, the distributions of the four 

component measures across decision makers are positively skewed. Taking logs substantially 

reduces that skewness for most components.1 Shapiro-Wilk tests indicate that the 

distributions of all logged variables, except orientation, do not significantly differ from 

normality. 

                                                           
1 Attention Effort and four of its five components become more normally distributed when logged. The only 
exception is Orientation which is slightly more normal in raw compared with its logged form. 
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 Consistent with these features of the model, we define 𝑦𝑖𝑓𝑡 as the effort allocated to 

attention component factor 𝑓 by participant 𝑖 at task 𝑡, with 𝑓 = {o, w, d, r}, where each of 

these elements refers to Orientation, Wrong Target, Duration and Repetition. We also control 

for the complexity (Cit) of task t for participant i to adjust for the effort allocated as a function 

of the minimum number of cells needed to identify the best alternative. Thus: 

ln⁡(𝑦𝑖𝑓𝑡) = 𝛽𝑖𝑓 + 𝛾𝑖𝑓 ln(𝑡) + 𝛿𝑓 ln(𝐶𝑖𝑡) + 𝜖𝑖𝑓𝑡,             (1) 

where:                                𝜖𝑖𝑡 ≡ (𝜖𝑖𝑜𝑡, 𝜖𝑖𝑤𝑡, 𝜖𝑖𝑑𝑡, 𝜖𝑖𝑟𝑡)′ and 𝜖𝑖𝑡~𝑁(0,Ω). 

The intercept 𝛽𝑖𝑓 represents the baseline allocation to attention factor 𝑓 by participant⁡𝑖. The 

logarithms of learning (ln(𝑡)) and Complexity (ln(𝐶𝑖𝑡)) are zero centered to facilitate 

interpretation of the model parameters. Thus, the intercept 𝛽𝑖𝑓 reflects the effort level for 

component 𝑓 of individual 𝑖 at the geometric means of task number and Complexity. The 

parameter 𝛾𝑖𝑓 measures the degree of learning of subject 𝑖⁡with respect to component 𝑓, since 

it is an estimate of changes in effort associated with a change in task experience. The 

coefficient 𝛿𝑓 controls for the impact of Complexity on component 𝑓, while 𝜖𝑖𝑓𝑡 represents 

fluctuations in component 𝑓 after controlling for individual differences, learning and 

Complexity.  

 These fluctuations measure whether a participant places a stronger (or weaker) 

emphasis on a particular component for a specific task. We use a general covariance matrix 

for these fluctuations (Ω) that accounts for the fact that components reflect different ratios of 

fundamental variables which, in itself may generate correlations among components. The 

Seemingly Unrelated Regression (SUR) framework allows the concatenation of different 

effort components across participants. This approach of combining several equations into one 

model to improve estimation efficiency was proposed by Zellner (1962) and has been cited as 

one of the most successful and lasting innovations in econometrics (Griffiths, 2003).  
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 Our model also allows participants to be heterogeneous in their mean effort levels 

(𝛽𝑖𝑓) for each component. Rather than using a fixed effects approach for the baseline (𝛽𝑖𝑓) 

and learning parameters (𝛾𝑖𝑓), a random-coefficients model simultaneously estimates 

heterogeneity across participants in terms of the baseline (𝛽𝑖𝑓) and learning parameters (𝛾𝑖𝑓). 

Accordingly, we denote by 𝛽𝑖 ≡ (𝛽𝑖𝑜, 𝛽𝑖𝑤, 𝛽𝑖𝑑, 𝛽𝑖𝑟) and 𝛾𝑖 ≡ (𝛾𝑖𝑜, 𝛾𝑖𝑤, 𝛾𝑖𝑑, 𝛾𝑖𝑟) and let 

𝛽𝑖~𝑀𝑉𝑁(𝜃𝛽 , 𝑉𝛽) and 𝛾𝑖~𝑀𝑉𝑁(𝜃𝛾, 𝑉𝛾); where 𝑉𝛽 is a full variance-covariance matrix and 𝑉𝛾 

is a diagonal variance matrix.2 

  Web Appendix B details the Bayesian estimation. We use a Bayesian procedure 

implemented in Stan (Carpenter et al., 2017) to estimate the parameters. The Bayesian 

estimation approach has been used in other studies using eye tracking. For instance, Wedel, 

Yan, Siegel, & Li (2016) investigate the extent to which eye movements reveal effective 

strategies in physician search for lung nodules in x-rays.   

 The SUR analysis relies on a joint model of the four components and allows 

participants to be heterogeneous in their mean effort allocated to each component and in their 

learning curves. To test the incremental value of the SUR analysis, we estimated a simplified 

version of our main model where each component is modeled independently, thus eliminating 

the SUR error structure. The test of the original model generated a very strong support for our 

SUR model with a 694 Bayes factor in favor of our model over one that separated the 

component analyses.  

The estimated model parameters can assess the direct and net effects of each 

component factor f on total attention effort. The direct effect measures the extent by which 

total effort changes when one of the components is increased, assuming all other components 

                                                           
2 Using a full variance-covariance specification for 𝑽𝜸 increases the number of parameters to be estimated, 

increasing the complexity of the model, but leads to similar results.  
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remain unchanged. When determining this direct effect, a reasonable change in a component 

can be obtained from its standard deviation across participants: 

     𝐷𝑖𝑟𝑒𝑐𝑡𝑓 = 𝑆𝑡𝑑𝑒𝑣(𝛽𝑖𝑓) = √𝑉𝛽𝑓𝑓
.⁡⁡⁡⁡       (2) 

In contrast with the direct effect, the net effect considers the associations across 

components. For example, a participant who allocates more effort to Orientation might avoid 

task-irrelevant information and hence demonstrate a lower value of Wrong Target. To 

account for these associations, the net effect measures how a change in one component 

affects total attention effort not only via changes in that component but also through other 

components.   

Further, the net effect in an additive model takes a particularly easy form that depends 

on the direct effects weighted by the correlation between each pair of components. Web 

Appendix B derives this result.  

                         𝑁𝑒𝑡𝑓⁡⁡ = 𝐷𝑖𝑟𝑒𝑐𝑡𝑓 +⁡∑ 𝐷𝑖𝑟𝑒𝑐𝑡𝑓′
⁡ ∗ 𝐶𝑜𝑟𝑟(𝐹

𝑓′≠𝑓 𝑓′, 𝑓)                             (3) 

Finally, our model estimates also give us insights in terms of learning along each of the 

attention components. If 𝛾𝑓 is the coefficient of task time in log scale, the percent change in 

factor f over the 12 tasks can be measured as: 

                          % change in f =  𝛾𝑓 ∗ ln 12          (4) 

5 Results from the Joint Model 

5.1 Total Attention Effort 

Figure 2 provides the time path of average Attention Effort across 194 participants, measured 

as the sum of fixation times to all AOIs in a task. The fitted power function closely 

approximates the actual data and generates an R2 =.93, substantially better fit than the R2 =.85 
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of a linear relationship. The constant term indicates that Attention Effort for the first task 

averages nearly 25 seconds while the fitted power function shows that the average drops to 

around 13 seconds by task 12, consistent with participants learning how to complete each 

task with less effort. That -.243 coefficient generates a 55% drop in effort across 12 tasks. 

Figure 2. Attention Effort across 194 Participants 

 

5.2 Effort Components  

Detailed estimation results are provided in Web Appendix C. Table 1 gives the correlation 

matrix of the four effort components across participants derived from the estimated variance-

covariance matrix, 𝑉𝛽. 
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Table 1. Derived Correlations among Effort Component Intercepts 

 
Orientation Wrong Target   Duration Repetition 

Orientation 1.00 
   

Wrong Target -0.54* 1.00 
  

Duration -0.36* 0.15 1.00 
 

Repetition     -0.17   0.00 -0.03 1.00 

*p<.05, n=194                                                                                                                                

Table 1 shows that the only significant correlations involve Orientation. It is 

significantly and negatively associated with Wrong Target and Duration and marginally with 

Repetition, implying that participants who pay attention to the rules and labels have fewer 

fixations on uninformative cells, spend less time per fixation and have (marginally) fewer 

repetitions on needed cells. Table 2 shows the means, rates of change, along with the direct 

and net effects of each component.  

Table 2. Means, Confidence Intervals, Changes, Net and Direct Effects of Effort 

Components from Bayesian Analysis 

 

Components Mean 2.5% 97.5% % Change from 

task 1 to task 12 

Direct 

Effect  

Net 

Effect 

       Orientation  2.06 1.45 2.91 -17% 19% 1%* 

Wrong Target  1.34 1.03 1.74 -4% 14% 6%* 

Duration 0.32 0.23 0.44 -6% 18% 12%* 

Repetition  2.02 1.32 3.10 -28% 24% 20% 

Note. Mean estimates are approximated as the exponential of the mean of the intercepts for 

each component. Direct and Net Effects are obtained using equations 2 and 3, respectively 

and then expressed as a fraction of their corresponding means. Confidence intervals give 

estimates of the heterogeneity among participants for each component. * indicates a 

significant difference between net and direct effects at p<0.05. 
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The means and confidence intervals across subjects are transformed back from log 

form to be consistent with their original definitions. Orientation is the ratio of total time over 

grid time. A mean of around 2, indicates that about as much time is spent on instructions and 

labels than on information within the 6 x 4 grid, with the low end of the range spending about 

50% and the upper end at 200% of grid time. Wrong Target relates to the proportion of time 

on unneeded information. A score of 1.34 implies that 34% of fixations are not needed, with 

95%, ranging between 3% to 74%. Duration reflects the number of seconds per fixation on 

needed cells. The average fixation takes around 1/3 of a second with a 95% range across 

participants between approximately between 1/5 and 4/10 of a second. Finally, Repetition is 

measured by the total number of fixations on needed cells divided by the number of needed 

cells. A value of 2.02 indicates that each needed cell is accessed twice on average. There is 

high variance about that estimate shown by the fact that almost 95% of participants averaging 

between 1.32 and 3.10 fixations per needed cell. 

The next column uses Equation 4 to estimate the change in effort for the average 

respondent for each component across the 12 tasks. Repetition drops by 28% and orientation 

drops by 17%. It makes sense that Repetition and Orientation would decrease with practice. 

Once a participant understands the meaning of the information in the grid then there is less 

need to review the rules or repeat access to the same information. By contrast, both Wrong 

Target and Duration show smaller improvements of 6% and 4% respectively, suggesting that 

there is either less motivation or ability to reduce effort for Wrong Target and Duration. 

Because of the multiplicative relationship among the components, the percent changes can be 

combined yielding a 55% drop in total Attention Effort. 

Now consider direct and net effects in the last two columns of Table 2. The direct 

effect of a standard deviation change in each component follows from Equation 2 

transformed back from log form. The greatest direct effect of 24% is from Repetition. 
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Orientation and Duration follow with 19% and 18% respectively, followed by Wrong Target 

at 14%.  

These direct effects suggest that examining Repetition would be the best way to 

identify participants with the fastest task time. However, the direct effects assume 

components do not impact each other. Equation 3 estimates the net effect by weighting each 

component by its correlation with the others. For example, the net effect of a standard 

deviation shift in Orientation from the correlations in Table 1 and the direct effects in 

Table 2. Table A4 of Web Appendix C provides detail.   

Net Effect (Orientation) = Direct Effect + through {Wrong Target, Duration, Repetition} 

Net Effect (Orientation) =           .18       +                 .13*-.54     + .17 *-.36 + .22 *-.17  

   =            .01 

The role of Orientation is clarified by the contrast between its direct effect of 19% and 

its net effect of 1%. Subjects with higher levels of Orientation display lower levels of the 

remaining three components, dropping the net effect of standard deviation shift in Orientation 

to a negligible change on Attention Effort. A similar pattern is observed for Wrong Target, 

where a direct increase of 14% is reduced to a non-significant net effect of 6%. For the other 

two components (Duration and Repetition), a similar but less extreme result is obtained. 

Their direct effects (+18% and +24%, respectively) are only partially compensated by their 

indirect effects, and their resulting net effects remain significantly positive (+12% and +20%, 

respectively). 

The joint model shows that the correlation among components generally decreases the 

net time of other components as they substitute each other. To assess the generality of these 

results, it is useful to see if the processes associated with the components differ across the 

three incentive conditions.   
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5.3 Impact of Performance Incentives  

The previous analysis of 194 participants pools data across three incentive assignments. By 

running the joint models within each incentive condition, it is possible to assess the degree to 

which the results generalize. Recall that the control condition provides no incentive for speed 

or accuracy, the Full-Incentive condition rewards relative speed for those with 100% 

accuracy across tasks, and the Paused-Incentive condition allows the first six tasks to be 

treated as practice that could help prepare a participant for later trials. 

Table 3 displays the mean, direct effect, net effect and change from tasks 1 to 12, for 

each condition using the same analysis as used in the pooled analysis. Generally, the results 

across conditions are very similar. An asterisk after the control condition indicates a 

significant difference between control and the average across the two incentivized conditions. 

An asterisk after the Paused-Incentive condition indicates a (p<0.05) significant difference 

from the Full-Incentive condition. Given the 32 comparisons, even with no effect at least one 

(p<.05) is expected by chance.  

Table 3 suggests that the components are for the most part robust to the incentive 

conditions. The most remarkable exception corresponds to the decrease in mean repetition 

levels as economic incentives are provided to participants. To study the evolution of the 

attention components under the different incentive conditions, it is useful to examine their 

time path across the 12 tasks. The estimates from the graphs below derive from a two-step 

process. The Bayesian analyses in log space predicted each component for each participant 

with centered task number and complexity. Then we adjusted each independent variable to 

reflect its value assuming that its complexity was at its average level. The graphs then show 

the complexity-adjusted average scores across participants in each condition. Across the 

components, the figures suggest intriguing differences. Figure 3 provides a graph for 
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Attention Effort. Confidence intervals for the values in Figures 3-7 are available in Web 

Appendix F. 

Table 3.  Effort Components across Incentive Conditions 

 Orientation 

 

Wrong 

Target 

Duration Repetition 

Mean      

  Control  2.08 1.36 0.32   2.27* 

  Full-Incentive 2.04 1.35 0.32 1.86 

  Paused-Incentive 2.05 1.31 0.31 1.94 

Direct Impact on Total     

  Control  18% 16% 20% 26% 

  Full-Incentive 23% 16% 20% 33% 

  Paused-Incentive 19%   10%* 18% 28% 

Net Effect on Total     

  Control  -9% 15%* 21%* 22% 

  Full-Incentive 0% -5% 12% 25% 

  Paused-Incentive 6% 5% -1% 18% 

Change from Task 1 to 12     

  Control  -20% -4% -4% -32%* 

  Full-Incentive -14% 2% -6% -25% 

  Paused-Incentive -16% -11%* -8% -25% 

 

Notes: * indicates a non-Bonferroni corrected significance at p <.05, while bold indicates 

significance after applying a Bonferroni correction for multiple comparisons. Asterisks above 

Control indicate that it is significantly different from the average incentive condition, 

asterisks above Paused-Incentive indicate that Paused- is significantly different from Full-

Incentive condition. Mean values are approximated as the exponential of the mean of the 

intercepts for each component. Direct and Net Effects are obtained using equations 2 and 3, 

respectively and then expressed as a fraction of their corresponding means. As an alternative 

to the Bonferroni correction, using the output of the Bayesian estimation, we verify that all 

tests marked with a * (except those for Net effect totals) are jointly significant with more than 

95% posterior probability. Full model results are available from the authors upon request. 
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Figure 3. Impact on Attention Effort from Incentives and Task Experience 

 

The incented conditions take significantly less total time compared with control. The 

lines provide the fitted power function, where the exponents reflect the percent change in 

response to a percent change in experience. All conditions exhibit a high fit of attention effort 

as a function of task experience. The difference in change scores demonstrates that the 

average time in the first task is almost 33% (29.2 vs. 21.9 seconds) higher in the control 

condition than in the incentive conditions, but that difference drops to 16% (14.9 vs.12.8 

seconds). Put differently, the participants without incentives initially spend more time than 

those with incentives, but are able to significantly lessen that gap with practice (t=2.937, 

p<.01).  

Additionally, those in the Paused-Incentive condition (compared to the Full-Incentive 

condition) have greater Attention Effort in the first task (t=2.252, p=.026) followed by lower 

attention in tasks 7 to 12 resulting in a greater change in the Paused- over Full-Incentive 

condition (t= 4.405, p<.01). This pattern is consistent with an exploration-exploitation 
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strategy (Peterson, Hammond, & Summers, 1965; Lauretro, Stefano. Canessa, & Zollo, 

2015). Exploitation in our context corresponds to the use of the knowledge gained in the six 

practice tasks to enable better performance in six later tasks. Evidence of exploration-

exploitation in the paused incentive condition take different forms as we explore the time 

paths of the four components of Attention Effort, beginning with Repetition. 

Figure 4. Repetition across Incentives and Task Experience 

 

Figure 4 graphs Repetition across incentives and task experience. The control and 

full-incentive conditions exhibit a high fit of repetition as a function of task experience, while 

the paused condition shows a moderate fit. The Paused-Incentive condition demonstrates 

slightly greater change across the 12 tasks compared to the Full-Incentive condition, similar 

to the pattern for Attention Effort, but the difference is not significant (t=1.204, p=.229). 

Note, however that in five out of the first six tasks average Repetition for the Paused-

Incentive is higher than the Full-Incentive condition, but the reverse happens in four out of 

the last six tasks. Thus, a simple sign test provides partial evidence for the hypothesis that 
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practice encouraged more exploration earlier and more exploitation later once incentives 

kicked in. 

Figure 5. Duration across Incentives and Task Experience 

 

Figure 5 provides the pattern for the Duration effort component. All conditions 

exhibit a lower fit as a function of task experience, when compared to those obtained for 

Repetition. This implies weaker improvements in Duration with practice. All three conditions 

generate similar times per fixation in the first four tasks, but for seven of the next eight 

paused-incentives fixations take less time than either the control or full incentives. 

Participants in the Paused-Incentive condition may have been able to learn better how to 

process the acquired information in the early rounds when speed was not incentivized and 

that enabled them to increase speed later. However, a general test of difference in learning 

across 12 tasks between conditions is not significant (Paused vs. Full: t=.75, p=.45; Paused 

vs. Control: t=1.76, p=.08), reflecting substantial variances within each condition. 
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Figure 6. Wrong Target across Incentives and Task Experience 

 

 

Figure 6 shows a unique pattern for Wrong Target. This figure shows little evidence 

of improvement with experience, as reflected by the low fit of each of the three models. The 

analysis indicates that those in the Paused-Incentive condition had greater improvement 

compared with those in the Full-Incentive condition. Much of that result comes from a high 

Wrong Target performance in the very first task and consistent low values thereafter. 

Focusing on the grid in that task may have helped participants to explore different 

relationships among the data points, enabling them to learn about the labels and locations of 

important attributes. This behavior may be similar to exploratory behavior (Hardy et al., 

2014) which generally increases learning.  
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Figure 7. Orientation across Incentives and Task Experience 

 

Figure 7 gives the pattern for Orientation across incentives. Orientation shows 

improvements with experience. These improvements are consistent with the relatively higher 

model fits obtained for this component. There are no statistical differences between the three 

conditions with respect to mean levels or changes across 12 tasks. There is, however, a 

consistent increase at task 7 that was generated by an introduction of the next tasks after task 

6. That pause encouraged a review of the rules and attribute positions that increased 

Orientation. The impact of that information is weaker for those in the Paused-Incentive 

condition because they had been told to expect a change after task 6. However, that 

difference in task 7 is not statistically significant (Paused vs. Full: t=0.79, p=.43).  

The major purpose of manipulating incentives was to establish the extent to which the 

effort component results apply across performance incentives. Overall, we find surprising 

consistency in the distributions of effort for the components across incentive conditions. As 

shown on Table 3, correlations among the components and the estimations of direct and net 

effects on total effort are very similar.  
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However, graphs provide promising evidence that participants in the Paused-Incentive 

condition increased effort during the practice tasks and reduced effort later. An alternative 

mechanism is that the pressure to perform may have interfered with learning for those in the 

Full-Incentive condition. If so, practice without performance incentives may provide for 

thinking smarter that later generates thinking faster (Einhorn & Hogarth, 1986; Tversky & 

Kahneman, 1986).   

5.4 Impact of Incentives on Accuracy   

As mentioned earlier, errors, defined as identifying the incorrect alternative, occur 

approximately at a rate of one in 20 tasks. It is not appreciably improved with practice across 

12 tasks. The correlation between task number and error is -.04. By contrast the correlation of 

task number with Attention Effort is -.34.  These results are consistent with research showing 

that decreasing attention time is relatively easy and common (Kool, McGuire, Rosen, & 

Botvinick, 2010; Shah & Oppenheimer, 2008). Additionally, Bettman et al. (1990) showed 

that decision makers attend more to effort reduction than accuracy minimization. Todd & 

Benbasat (1992) suggest a reasonable processing mechanism accounting for the primacy of 

effort reduction over error reduction: “Effort may be weighed more heavily than accuracy 

because feedback on effort expenditure is relatively immediate, while feedback on accuracy 

is subject to both delay and ambiguity” (p.375).  

 Looking at error across individuals, the average error level is 4.9% in the Full-

Incentive condition but is 2.5% in the Paused-Incentive condition. That difference is 

marginally significant at p<0.10 level. Moreover, a supportive pattern occurs with the 

association of error levels and the different components of effort. Table 4 displays the 

correlations of error for each participant with their estimated intercepts for Orientation, 

Wrong Target, Duration, and Repetition.  
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Table 4. Correlation of Effort Components with Error 

Incentive condition Orientation 

 

Wrong 

Target 

Duration Repetition 

All pooled (n=194) -0.33* 0.59* 0.16* 0.01 

Control (n=69) -0.39* 0.61* 0.38* 0.28* 

Full-Incentive (n=65) -0.31* 0.64* -0.05 -0.14 

Paused-Incentive (n=60) -0.31*   0.44* 0.23 -0.04 

Notes. * Indicates non-Bonferroni corrected significance at p <.05, while bold indicates 

significance after applying a Bonferroni correction for multiple comparisons. 

 

Both Duration and Repetition are not consistently related to accuracy. When pooling 

all conditions, participants with higher levels of Orientation have significantly lower levels of 

error (r=-.33), while Wrong Target is positively correlated with error (r=.59). Simply put, those 

with greater Orientation make fewer errors, while those with high levels of Wrong Target make 

more errors. 

It is important to be cautious about generalizing these results from error levels. Errors 

occur for less than 6% of all tasks, and more than 72% of the participants have no errors at 

all. Thus, reliable results about the drivers of accuracy await studies that are more inherently 

error-prone and studies that separate incentives for accuracy and speed, rather than 

combining them together. 

5.5 Functional Roles of the Effort Components 

The pattern of results demonstrates that the four effort components have different 

functional roles. Briefly, Orientation is unique in enabling the other components to do their 

job more efficiently. Wrong Target, by contrast, provides a robust measure of dysfunctional 

processing that is difficult to alter with practice. Duration differs strongly across people, but 

like Wrong Target, is difficult to change with practice. Finally, Repetition varies most 

strongly across people, but it is associated with the greatest net impact on Attention Effort, 



   
 

34 
 

and the one that declines the most with experience. Below we provide more detailed accounts 

of these generalizations. 

5.5.1 Orientation 

Orientation is central because it is the only component that is significantly associated with a 

reduction in error and effort. As shown in Table 1, its negative correlation with Wrong Target 

(r=-.54) implies that greater effort in Orientation is associated with more effective positioning 

of fixations on relevant pieces of information. Its negative correlation with Duration (r =-.36) 

means that each fixation takes less time, and its marginally significant negative correlation 

with Repetition (r=-.17) implies that those with strong Orientation make fewer fixations on 

each needed cell. Consequently, participants one standard deviation greater on Orientation 

have a direct 19% increase in Attention Effort, which is fully compensated by the effort 

reduction in the three other components, yielding a negligible net change on Attention Effort.  

5.5.2 Wrong Target 

Wrong Target measures inefficiency coming from a tendency to focus attention on irrelevant 

information. Participants in our study did not differ substantially on this component. The 14% 

direct effect on Attention Effort from a one standard deviation shift in Wrong Target is 

significantly lower than the direct effects for the other three components (p = 0.02). Wrong 

Target has the strongest negative correlation with Orientation (r=-0.54). With practice, 

Wrong Target does not change much, dropping a non-significant 4% across 12 tasks for the 

average participant. Its lack of variance across participants and relatively slow response to 

experience suggest that it is hard to overcome poor attention strategy, either within or 

between decision makers. Like multiple-cue weighting strategies, it is hard to alter learned 

strategies when they are wrong (Peterson et al., 1965). In sum, Wrong Target has a unique 
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role among the components as a consistent measure of misguided but persistent Attention 

Effort.  

There is more than just an effort cost associated with Wrong Target. Decision makers 

with high wrong target scores are also more likely to make errors. The correlation across 

decision makers between number of errors and Wrong Target is 0.59. Across the different 

incentive conditions, focusing on unneeded information is a strong predictor of making 

mistakes.  

Our measure of Wrong Target shares findings from a number of eye-tracking studies 

that assess attention to irrelevant information (Gegenfurtner et al., 2011; Haider & Frensch, 

1999). These studies demonstrate that inappropriate attention is strongly associated with low 

expertise across a number of fields, results that are consistent with the idea that Wrong Target 

provides a durable measure of inefficient attention processing.  

5.5.3 Duration  

The time taken for a fixation can vary substantially across decision makers. More than 95% 

of the sample had average fixation times between a one-fifth and two-fifths of a second. 

However, the direct effect on Attention Effort from a one standard deviation shift in Duration 

is 18% and its net effect is a still significant 12%. Duration is also stable over time, its decline 

across the 12 tasks is not significant for the average participant. While Duration is 

significantly lower for those with higher Orientation, its correlations with Wrong Target and 

Repetition are not significant. Thus, the analogy of Duration with clock speed is fitting in this 

context. Participants may differ by a factor of two in their clock speed, but compared with 

other components a standard deviation shift in Duration has less impact on Attention Effort 

and it is less amenable to improvements over time. 
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5.5.4 Repetition  

We were surprised by the magnitude of the 2.02 mean Repetition score showing that needed 

cells are viewed on average more than twice. Only a few studies document a measure of 

Repetition. However, Reutskaja et al. (2011) show that in a choice of product images 

refixations occurred in about 25% of the trials. Repetition is useful for the participants when 

applying the lexicographic rule in two ways. First, it is helpful in verifying a relationship 

between alternatives. Second, it facilitates checking the correctness of information processed 

earlier (Russo & Leclerc, 1994).   

Participants one standard deviation higher in Repetition have an average 24% increase 

in Attention Effort. That increase is significantly greater than the corresponding changes in 

the other components. In addition, Repetition is only marginally associated with Orientation 

and not reliably related to Wrong Target or Duration. Participants are generally good at 

learning to avoid Repetition. It has the greatest decline with experience, dropping 28% across 

12 tasks for the average participant, demonstrating that decision makers have less need to 

revisit information after they come to understand its implications. In sum, while Repetition 

may be the variable that has had the least empirical investigation, it is the largest driver of 

effort in our study, and generates the greatest improvement in response to practice.  

For more substantial decisions Repetition can be both apparent and quite aversive. 

Consider what happens if one has to go over the same information many times or if one gets 

lost and has to retrace steps. For our task it appears that Repetition does not reach high levels 

of conscious awareness. It may be one of many tasks the brain effectively manages 

automatically. We find it surprising that that greater improvement in decision speed comes 

less from attention to the rules and format, or avoidance of unneeded information, or shorter 
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duration of fixations, but instead largely flows from decreases in repeatedly accessing the 

same information.    

6 General Discussion 

This paper proposes a framework for studying and decomposing attention effort of 

individuals performing repeated tasks. Our results best apply to structured repeated tasks such 

as identifying a medical tumor from a photographic image, selecting a candidate from 

resumes, or choosing the best route on a map. These tasks involve following rules to make a 

series of decisions requiring attention to and processing of specific information. Within that 

domain we believe our results provide the following conclusions about the components of 

effort that lead to greater efficiency.  

1. Knowing the rules and where to find important information are critical for performance. 

There is general agreement that learning has a central role in effectiveness (Langley & 

Simon, 1981). In our study participants with high Orientation levels are more likely to 

attend to relevant information and answer correctly. People who pay attention to the rules 

take less time in each single fixation and repeat fixations slightly less often. The 

manipulation of incentives generated intriguing effects on all components except for 

Orientation. Given its central role on performance it would be valuable to directly 

increase either the incentive to attend to the rules or the ease of getting that information. 

In our study all participants had to successfully make two simple trial runs (see Web 

Appendix A), but manipulating the number and complexity of those runs might confirm 

the benefits of greater effort in Orientation. 

2. Attention paid to less useful information is a strong predictor of poor performance. 

Wrong Target is a measure of a tendency to focus on less relevant information and is 

negatively associated with accuracy. It has relatively low variability across participants 
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and on average shows minimal improvement with practice. Generally, Wrong Target 

differs little across incentive conditions, with one surprising exception. For those in the 

Paused-Incentive condition, the first task has greater focus on Wrong Target and then that 

decreases effort in later tasks. It is thus possible that the exploratory effort in that first 

task enabled more efficient exploitation later. 

3. Repeatedly viewing the same information is a dominant source of attention effort in early 

tasks. Repetition accounts for the greatest variation in total effort across people, even 

after accounting for its complementary impact on other components. It also shows the 

greatest drop with practice, suggesting that early repetition increases speed of recognition 

and understanding later. Both initial Repetition and its reduction are greatest for 

participants in the control condition. Among those with incentives to perform quickly and 

accurately, having tasks for practice increases early Repetition as an investment in 

learning, and decreases it later when performance matters. 

4. Fixation duration is independent of the other components and shows little consistent shift 

with practice. Average fixation duration varies from 200 to 400 milliseconds across 

participants. However, its change across the 12 tasks tends to be less than 10% compared 

with changes twice as large for Repetition or Orientation. Further, its change is not 

significant for the average participant. In all, like clock speed in computers, Duration 

once set is relatively difficult to change.  

These results suggest important questions for future extensions. This research shares 

three methodological characteristics that are rarely aligned in one study. First, each task has a 

unique correct response; second, it uses eye-tracking to provide detailed measures of 

attention, and finally the proposed framework structures the components multiplicatively. It 

is useful to consider each of these features individually. 
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Having a unique correct response for each task makes it possible to define the optimal 

path to identify the correct answer. That property permits detailed assessment of biases in 

behavior (Creyer, Bettman, & Payne, 1990; Huber, Ariely, & Fischer, 2002). Knowing the 

optimal response is crucial to be able to derive metrics such as Wrong Target. In addition, an 

agent task enables an assessment of accuracy. In our case the simplicity of the agent task 

limits the relevance to the general effort-accuracy tradeoff. Our research is similar to earlier 

empirical research that instructed participants to use specific choice strategies (Jiang, Potters, 

& Funaki, 2016; Schoemann, Schulte‐Mecklenbeck, Renkewitz, & Scherbaum, 2019). We 

believe that future studies could derive more insight from decomposing effort components for 

more complex and directly relevant tasks, such as selecting candidates for a job or finding 

items within a complex image. In those tasks, variation in error level could provide deeper 

insights into how attention can be modified to increase both speed and accuracy.  

Second, eye-tracking is needed to assess processing for this task. For our study, 

objective measures of the four effort components would be very difficult to observe without 

detailed measures of attention to instructions and accessed cells. Participants may have had a 

sense of how efficiently and confidently they performed, but most have very little idea about 

how much time they took or how accurate they were (Fennema & Kleinmuntz, 1995). Eye-

tracking enables an assessment of objective components of effort, and thus is most relevant to 

cases where it is possible to precisely determine attention (Lohse & Johnson, 1996). 

Fortunately, conducting large-scale eye-tracking studies has become much easier with 

cheaper and more reliable equipment. 

In our study, defining multiplicative components that together equal Attention Effort 

had important advantages, as discussed earlier in Section 3.5. The multiplicative framework 

can also be applied to other decision tasks (e.g., elimination by aspects) and Web Appendix E 

provides a discussion of the requirements for its application in other contexts. Alternatively, 
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one may formulate a non-multiplicative model, particularly when these requirements are not 

met. To test the usefulness of a non-multiplicative model we redefined the variables for our 

study. We measured Wrong Target as the fixation time per unneeded cells, and further broke 

the multiplicative model by defining repetition and duration on all, rather than on needed 

cells in the grid.  

With those changes Wrong Target became a stronger driver of Attention Effort, but 

the general relationships among the components had very similar means and growth rates 

compared with our original model. Thus, Repetition still has the greatest variance across 

participants initially and the greatest drop over time. Duration continues to have little change 

with experience and has minimal relationships with the other components. Orientation again 

shows its value in reducing effort in the other components, while Wrong Target remains as 

the measure that best identifies poor search strategy and implementation. While it is possible 

to explore different metrics and analysis measures, we are generally pleased by the robustness 

of our initial findings.  

It is also important to acknowledge that the relationships among the components 

reflect their distributions in a population, rather than their causal relationships. Given that 

people are poorly aware of the attentional processes, a difficult but important goal is to test 

the impact of altering the individual components of effort on both total effort and accuracy.  

Some important possibilities could be tested. For example, increasing practice sessions could 

be shown to reduce all the other effort components, while implementing time pressure could 

be found to decrease repetition but have minimal effect of duration. 

Ultimately, it is valuable to understand the components that lead to faster and more 

accurate activities. This study has the advantage of revealing attention processes that are 

reasonable and, from our perspective, surprising. We are less sure about the replicability of 
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particular results to totally different tasks that involve greater learning and task time. Still, the 

real benefit of the study is to provide a framework for attention-focused tasks, and to suggest 

roles for a number of new constructs that have promise to apply more generally.  
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Web Appendix A: Additional information about the eye-tracking experiment 

This web appendix provides additional details about the experiment regarding the stimuli, 

procedure, apparatus and analysis of the eye-tracking data. 

Stimuli: attribute levels, lexicographic importance and ordering 

As shown in Table A1, we use text only to describe the features, attributes and alternatives in 

all tasks to limit salience differences from non-textual images that could affect our results 

(Milosavljevic, Navalpakkam, Koch, & Rangel, 2012).  

Table A1. Attributes and levels used to describe the vacation package 

Attributes Levels 

Food quality Poor (-) Average (o) Good (+) 

Customer recommending 50% (-) 70% (o) 90% (+) 

Distance to CBD 3km (-) 2km (o) 1km (+) 

Sea view No view (-) Side view (o) Full view (+) 

Price per person $899 (-) $799 (o) $699 (+) 

Room category Standard (-) Superior (o) Deluxe (+) 

 

The attributes were shown at the top of the screen in order of decreasing importance. 

That order of the attributes (lexicographic rule) varied across subjects, while the order of the 

attributes in the grid was unchanged across subjects and across tasks. We expected that the 

task would be easier for those whose attribute importance order corresponded with their order 

in the grid. Accordingly, six versions of the attribute importance order shown in Table A2 

were tested to see if additional effort was generated by that lack of correspondence. The 

correlation varies between r=.82 where the most important attributes are near the top, and r=-

.66 where they are near the bottom. We tested the impact of the different components across 
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these six conditions and found very little difference in the allocation of effort components or 

their relationships with each other. 

Table A2. Attribute importance order given to participants 

 Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 

 Attribute 1 1 4 3 5 2 6 

 Attribute 2 4 6 2 1 5 3 

 Attribute 3 2 5 4 6 3 1 

 Attribute 4 3 1 5 4 6 2 

 Attribute 5 5 3 6 2 1 4 

 Attribute 6 6 2 1 3 4 5 

Correlation (order of the attributes in the decision matrix, attribute importance order given to 

participants in the question text) 

 0.83 -0.66 0.09 -0.26 0.03 -0.03 

 

Finally, it is important to control for the order in which the attributes needed to 

identify the best alternative are presented to participants. To do that the order of the 12 tasks 

was randomized across subjects. Of course, for some participants the least complex tasks 

came first while for others the most complex tasks came first. Both effects could alter the 

average effort components and their learning across 12 tasks. We control for complexity, 

learning and mean effort in one equation to resolve this issue. 

Procedure: dominant eye test 

The experiment ended with a standard dominant eye test. The interviewer asked the 

participants to point to a far object with an outstretched arm using both eyes. While still 

pointing, the participants closed one eye at a time. The eye-tracking the finger pointing at the 

target became our measure of dominance, with 61% of the participants assessed as right-eye 
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dominant. In the analyses we use the average of both eyes for all participants. However, our 

results remain almost identical if we use the dominant eye instead.  

Apparatus: setting and software  

The eye-tracking experiment took place in a windowless room illuminated with 

artificial light. To avoid distraction only the lab assistant and the participant were present in 

the course of an experiment. A heavy chair discouraged large changes in seating position or 

distance from the eye-tracking monitor. The assistant made sure that the distance from the 

participants’ eyes to the monitor was between 50 and 80 cm (ideally 60 cm). The seating 

height was adjusted so that the participant’s eyes were on the same level as the center of the 

monitor. The software used the standard 9-point calibration routine (with a gray background 

color) included in the Tobii software (Tobii Software, 2016). The presence of the assistant 

guaranteed that the participants completed the experiment in one sitting without pauses 

between tasks. We programmed our own software to present the stimuli in an online survey. 

By running the survey several times on the computer used before the experiment started, we 

made sure that all stimuli appeared immediately after clicking “next”. There was no fixation 

cross before seeing the stimuli, but our results were validated by finding almost identical 

results from deleting the first fixation. Thus, there were no breaks between tasks, except for 

an encouraging reminder at the end of task 6.  Participants could take as much time as they 

wanted to make a decision in every task. Participants indicated they had normal or corrected 

to normal vision and were allowed to wear glasses or contact lenses. They had to remove 

mascara if they had used it. None of the participants had droopy eyelids so that we had no 

problems with the system not finding the participants’ pupils. 

Analysis of the eye-tracking data: areas of interest, fixations and eye-tracking quality 
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The areas of interest (AOI) were defined as non-overlapping cells. All AOIs in the 6x4 

information grid have the same size (168 x 73 pixels). Moreover, in order to calculate the 

extent of orientation we defined three additional types of AOIs: question text (900 x 300 

pixels), attribute descriptions (199 x 73 pixels) and alternative labels (168 x 24 pixels). The 

AOIs including the features and attribute descriptions were substantially bigger than the 

descriptions, as can be seen from Figure 1. Different definitions of the AOIs have been tested 

in line with Orquin, Ashby, and Clarke (2016) to assure that the definition of the AOIs do not 

substantially influence the results. We emphasize that we assume that the center of the 

fixation, i.e. the x-y-coordinate, indicates the identity of the fixated AOI. In line with several 

other researchers (e.g., Yang, Toubia, & de Jong, 2015; Shi, Wedel, & Pieters, 2013) we 

expect that neighboring AOIs have been processed and we cannot exclude information from 

parafoveal viewing. 

Fixations were defined as continuous gazes within each area of interest. The Tobii 

studio software preprocessed the eye-tracking data and the standard Tobii fixation filter (I-VT 

filter) identified fixations and saccades. We used the default parameters and, thus, fixations 

that were shorter than 60ms were discarded.  

The assistant who ran the experiment in the lab watched the generated eye-tracking 

videos to validate their eye-tracking quality. The exclusion of participants is thus based on 

the eye-tracking experience of the lab manager, but is not based on an objective quality 

threshold.  Out of 209 participants who took part in the experiment, the data of 13 

participants were incomplete or showed an unusual horizontal or vertical drift. For the 

remaining 196 participants, the eye-tracking quality was rated as being sufficiently high in all 

tasks. Two other participants were later excluded because of incomplete data.  Thus, we 

exclude 7.2% of participants from the analysis. Given that participants had to have high eye-

tracking quality in all tasks, we consider that percentage of lost data to be fair. 
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Web Appendix B: Hierarchical SUR Model and Bayesian Estimation 

We define 𝑦𝑖𝑓𝑡 as the time allocated to attention component factor  𝑓 by participant 𝑖 

at task 𝑡, where 𝑓 ∈ {o,w, d, r}. We control for the complexity of the task and the number of 

completed tasks. The model is formulated as follows: 

ln⁡(𝑦𝑖𝑓𝑡) = 𝛽𝑖𝑓 + 𝛾𝑖𝑓 ln(𝑡) + 𝛿𝑓 ln(𝐶𝑖𝑡) + 𝜀𝑖𝑓𝑡,            (B1)  

where: 

𝜀𝑖 ≡ (𝜀𝑖𝑜𝑡, 𝜀𝑖𝑤𝑡, 𝜀𝑖𝑑𝑡, 𝜀𝑖𝑟𝑡)′ and 𝜀𝑖~𝑁(0, Ω); 

Ln(𝑡) and ln(𝐶𝑖𝑡) are the natural logarithms of the task number and complexity, 

respectively. To facilitate the interpretation of the model parameters, these two variables are 

mean centered. Hence, the intercept 𝛽𝑖𝑓 represents the expected (log) allocation to attention 

component 𝑓 by participant 𝑖 given (geometric) mean levels of experience and complexity.  

We use a random coefficients specification to model heterogeneity across participants 

in terms of the baseline (𝛽𝑖𝑓) and learning parameters (𝛾𝑖𝑓). Accordingly, denote by 𝛽𝑖 ≡

(𝛽𝑖𝑜, 𝛽𝑖𝑤, 𝛽𝑖𝑑, 𝛽𝑖𝑟) and 𝛾𝑖 ≡ (𝛾𝑖𝑜, 𝛾𝑖𝑤, 𝛾𝑖𝑑, 𝛾𝑖𝑟). We then let 𝛽𝑖~𝑀𝑉𝑁(𝜃𝛽 , 𝑉𝛽) and 

𝛾𝑖~𝑀𝑉𝑁(𝜃𝛾 , 𝑉𝛾); where 𝑉𝛽 is a full variance-covariance matrix and 𝑉𝛾 is a diagonal variance 

matrix.1  

We use a Bayesian estimation approach. Bayesian methods facilitate the estimation of 

models with random effects circumventing the need for high dimensional integration. They 

also provide a numerically convenient way to obtain confidence intervals (i.e., posterior 

probability intervals) for the parameter estimates without assuming our data set is infinitely 

large.  

                                                           
1 Using a full variance-covariance specification for 𝑽𝜸 leads to similar results.  
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We specify the following hyperprior distributions: 𝜃𝛽~𝑁(0,2
2𝐼4), 𝜃𝛾~𝑁(0,2

2𝐼4), 

𝛿𝑓~𝑁(0,2
2), where 𝐼4 is an identity matrix with 4 rows and columns. Denote each of the 

diagonal elements of 𝑉𝛾 by 𝜌𝛾,𝑓
2 . Following the recommendations in the Stan manual (Stan 

Development Team 2017, p.39, p.145), we specify 𝑉𝛽 = (𝜌𝛽𝐼4)𝐿𝛽𝐿𝛽′(𝜌𝛽𝐼4)′ . Note that 𝐿𝛽 is 

the lower triangular decomposition of the correlation matrix based on 𝑉𝛽, while 𝜌𝛽 is a vector 

of standard deviations for each component of 𝛽 and thus equal to the square root of the 

diagonal elements of 𝑉𝛽. A prior on 𝑉𝛽 can be specified by defining priors on 𝐿𝛽 and 𝜌𝛽, as 

follows: 𝐿𝛽~𝐿𝐾𝐽(1) and 𝜌𝛽,𝑓~𝐶𝑎𝑢𝑐ℎ𝑦(0,2.5). The same approach is used to specify a prior 

distribution on Ω as follows: Ω = (𝜌𝜀𝐼4)𝐿𝜀𝐿𝜀′(𝜌𝜀𝐼4)′ , where 𝐿𝜀 is the lower triangular 

decomposition of the correlation matrix based on Ω, while 𝜌𝜀 is a vector of standard 

deviations for each component of 𝜀. We then specify the following priors: 𝐿𝜀~𝐿𝐾𝐽(1) and 

𝜌𝜀,𝑓~𝐶𝑎𝑢𝑐ℎ𝑦(0,2.5).  

We then use a Hamiltonian Monte Carlo (HMC) approach to estimate the model 

parameters, where the estimation is conducted in Stan based on its implementation in R 

(Carpenter et al., 2017). The output of this estimation is a set of draws of the model 

parameters from their posterior distributions.  

Direct and net effects 

The calculation of direct and net effects relies on the assumption that the distribution 

of the parameters follows a multivariate normal distribution across respondents. A 

fundamental property of the Multivariate Normal distribution (Tong, 2012) establishes that:  

 

If (
𝑥
𝑦) ∼ 𝑀𝑉𝑁((

𝜇𝑥
𝜇𝑦
) , [

𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦
2 ]) then 
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𝐸(𝑥|𝑦 = 𝑦0) = 𝜇𝑥 + (𝑦0 − 𝜇𝑦)
𝜎𝑥𝑦

𝜎𝑦
2     (B2) 

 

Now, let 𝑦0 = 𝜇𝑦 + 𝜎𝑦, then 

 

𝐸(𝑥|𝑦 = 𝜇𝑦 + 𝜎𝑦) = 𝜇𝑥 + (𝜇𝑦 + 𝜎𝑦 − 𝜇𝑦)
𝜎𝑥𝑦

𝜎𝑦
2

= 𝜇𝑥 + 𝜎𝑦
𝜎𝑥𝑦

𝜎𝑦
2

= 𝜇𝑥 +
𝜎𝑥𝑦

𝜎𝑦

= 𝜇𝑥 +
𝜎𝑥𝑦

𝜎𝑦
.
𝜎𝑥

𝜎𝑥

= 𝜇𝑥 + 𝐶𝑜𝑟𝑟(𝑥, 𝑦)𝜎𝑥

(B3) 

 

Where the correlation between 𝑥 and 𝑦 is given by 
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
. 

Hence:  

𝐸(𝑥|𝑦 = 𝜇𝑦 + 𝜎𝑦) − 𝐸(𝑥|𝑦 = 𝜇𝑦) = 𝐸(𝑥|𝑦 = 𝜇𝑦 + 𝜎𝑦) − 𝜇𝑥 = 𝐶𝑜𝑟𝑟(𝑥, 𝑦)𝜎𝑥         (B4) 

 

Therefore, when component 𝑓 changes from 𝜇𝑓 to  𝜇𝑓 + 𝜎𝑓⁡, the indirect effect of 

component  𝑓 on component 𝑓′ is given by  

𝐸(𝑓′|𝑓 = 𝜇𝑓 + 𝜎𝑓) − 𝜇𝑓′ = 𝐶𝑜𝑟𝑟(𝑓, 𝑓′)𝜎𝑓′          (B5) 

Given this result, and using each of the HMC draws (after warmup), the calculation of 

direct and net effects is done as follows: 

𝐷𝑖𝑟𝑒𝑐𝑡𝑓 =
1

𝑅
∑ √𝑉𝑓𝑓

(𝑟)𝑅
𝑟=1 ⁡                  (B6) 

𝑁𝑒𝑡𝑓 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑓 +
1

𝑅
∑ ∑ 𝑐𝑜𝑟𝑟(𝛽𝑖𝑓 , 𝛽𝑖𝑓′)

(𝑟)
√𝑉𝑓𝑓

(𝑟)
𝑓′≠𝑓

𝑅
𝑟=1 ⁡⁡⁡⁡⁡⁡(B7) 
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where r denotes one of the R draws from the Bayesian estimation,  𝑉𝑓𝑓
(𝑟)

 corresponds to the 

variance of component f baselines and  𝑐𝑜𝑟𝑟(𝛽𝑖𝑓, 𝛽𝑖𝑓′)
(𝑟)

 corresponds to the correlation 

between the baselines of components f and f’, as estimated in draw r of the HMC procedure.  

 



   
 

9 
 

Web Appendix C: Estimation Results 

Table A3. Parameter estimates for the random and common coefficients of the SUR 

model: posterior means, posterior standard deviations, 95% posterior probability intervals.*  

     mean sd  2.5% 97.5% 

Random 

coefficients  

Orientation Intercept 0.72 0.01 0.70 0.75 

 Orientation Learning -0.07 0.01 -0.09 -0.06 

 Wrong 

Target 

Intercept 0.29 0.01 0.27 0.31 

 Wrong 

Target 

Learning -0.02 0.01 -0.03 0.00 

 Duration Intercept 5.75 0.01 5.73 5.78 

 Duration Learning -0.02 0.01 -0.04 -0.01 

 Repetition Intercept 0.70 0.02 0.67 0.74 

 Repetition Learning -0.13 0.01 -0.15 -0.11 

Common 

coefficients  

Orientation Complexity -0.06 0.01 -0.08 -0.04 

 Wrong 

Target  

Complexity -0.27 0.01 -0.29 -0.25 

 Duration Complexity 0.01 0.01 -0.01 0.02 

 Repetition  Complexity -0.12 0.01 -0.14 -0.09 

* Posterior standard deviations (sd) and 95% intervals (2.5% and 97.5%) are measures of 

parameter estimate uncertainty.  

 

Table A4. Standard deviation of intercepts and learning coefficients across participants: 

posterior means, posterior standard deviations, 95% posterior probability intervals.* 

  StdDev sd 2.5% 97.5% 

Intercepts Orientation 0.18 0.01 0.16 0.20 

 Wrong target 
0.13 0.01 0.11 0.16 

 Duration 
0.17 0.01 0.15 0.19 

 Repetition 
0.22 0.02 0.19 0.25 

Learning Orientation 0.05 0.01 0.04 0.07 

 Wrong target 
0.03 0.01 0.00 0.05 

 Duration 
0.04 0.01 0.01 0.05 

 Repetition 
0.05 0.02 0.01 0.07 

* Posterior standard deviations (sd) and 95% intervals (2.5% and 97.5%) are measures of 

parameter estimate uncertainty.  
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Web Appendix D: Model Comparison 

Our analysis relies on a joint model of the four components and it allows respondents 

to be heterogeneous in their mean effort allocated to each component and in their learning 

curves. One could alternatively model each component independently or assume that all 

respondents are homogeneous. However, each of these model simplifications severely 

damages the ability of our formulation to explain the attentional data. Specifically, we 

estimated two variations of our main model: i) Independent-Heterogeneous: each component 

is modeled independently (i.e., eliminating the SUR error structure), but respondents are 

heterogeneous; and ii) Joint-Homogeneous: all respondents are assumed to be homogeneous 

while the components are allowed to be correlated with each other. We then computed the log 

marginal likelihood of each model (see Table A5), which was then used to calculate Bayes 

factors. Each Bayes factor compares the fit of our model (i.e., Joint-Heterogeneous) to each 

of these two alternative formulations. The Bayes factor, a standard tool for model selection in 

Bayesian Analysis (Kass & Raftery, 1995), compares the evidence in favor of a model 

against an alternative formulation, given the observed data.  

In terms of the first alternative model, the logarithm of the Bayes factor comparing 

our model against the Independent-Heterogeneous is equal to 1418-724=694, providing very 

strong evidence in favor of the joint modeling of the four components. Similarly, comparing 

our model to one assuming all respondents are homogeneous, we obtain an even greater 

logarithm of the Bayes Factor (2,361), once again providing very strong support for our 

heterogeneous formulation. Consequently, both tests justify the specification of a joint model 

of the four components and the use of a heterogeneous formulation. In addition, one can also 

compare the models in terms of prediction. We computed the mean absolute deviation 

(MAD) for the main model and its two variations discussed above (also displayed in Table 
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A5). Overall, we find that the main model provides a substantial improvement in terms of in-

sample fit.  

Table A5. Model Comparison in terms of MAD and Log Marginal Likelihood. 

      MAD   

Model SUR Hetero. ln O ln W ln D ln R LogML 

Main  y y 0.12 0.14 0.12 0.18 1418.0 

Sur model n y 0.15 0.16 0.13 0.21 724.0 

No participant heterogeneity y n 0.17 0.17 0.18 0.25 -943.1 

 

Web Appendix E: Requirements for a similar multiplicative decomposition for other 

choice tasks.  

Multiplicative decompositions similar to this study have to meet certain requirements. 

First, the repeated task needs to be defined using rules accessed in a separate area. Second, 

the information on the alternatives needs to be placed in separate cells so that it is possible to 

track the access to each piece of information. Third, each cell needs to be categorized as 

either relevant or irrelevant for determining the best alternative. This classification enables an 

assessment of efficient processing as a function of the proportion of needed cells accessed in 

a task and allows both Repetition and Duration to be defined with respect to needed cells.  

There are many ways these requirements can be satisfied, as illustrated by the 

following examples. The rules can specify the order of the attributes as in a lexicographic 

rule, or in the case of a conjunctive rule it could specify the acceptable values for each 

attribute. A fixed elimination-by-aspects could be tested by specifying the features that must 

be acceptable across hierarchically ordered features. It is also possible to have the grid remain 

constant across tasks, but change the rules. Then orientation depends on how often the new 

rules or altered attribute labels need to be accessed.  

For compensatory rules, the application of our multiplicative model requires some 

modifications. On the one hand, since all cells are relevant for the decision maker, the wrong 

target metric becomes constant and hence the estimation of a joint model should exclude that 
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component. On the other hand, one could consider a more general classification of cells into 

needed and not needed. In particular, it may be possible to assess the value of each cell, given 

the information learned so far. That measure could be reasonably estimated as a function of 

the importance of each attribute combined with the current expected value of each alternative, 

thus requiring a non-multiplicative structure. This assessment could be used to classify cells 

into those that are more and less crucial for identifying the best option.    

Finally, if one were to consider instead a non-multiplicative model of attention, direct 

and net effects of components must be measured in different ways. The direct effect can be 

estimated through a multiple regression with total attention as the dependent variable and 

using all components as explanatory variables in order to partial out the effects of component 

interactions. The net effect is then reflected in a simple regression of each component on the 

dependent variable. 
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Web Appendix F: Confidence intervals for Figures 3-7.  

The following table provides the values of the observations in Figures 3-7 with their 

respective asymptotic 95% confidence intervals. 

Table A6. Means and confidence intervals for the values in Figures 3-7.

 
 

task mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5%

1 2.38 2.24 2.52 1.43 1.35 1.51 0.33 0.31 0.35 3.01 2.77 3.28 29.2 26.5 32.3

2 2.22 2.11 2.35 1.33 1.26 1.40 0.34 0.32 0.36 2.84 2.63 3.08 24.8 22.9 26.8

3 2.20 2.06 2.34 1.38 1.29 1.48 0.32 0.30 0.34 2.72 2.52 2.92 22.8 20.9 25.0

4 2.09 1.97 2.21 1.42 1.32 1.53 0.33 0.31 0.35 2.49 2.33 2.67 21.2 19.5 23.1

5 2.13 2.00 2.26 1.32 1.23 1.41 0.32 0.31 0.34 2.43 2.25 2.63 19.2 17.5 21.0

6 2.00 1.88 2.12 1.37 1.28 1.47 0.32 0.30 0.34 2.48 2.31 2.65 18.7 16.9 20.6

7 2.31 2.18 2.45 1.29 1.23 1.36 0.31 0.29 0.33 2.31 2.15 2.49 18.5 17.0 20.2

8 2.01 1.89 2.13 1.40 1.31 1.50 0.32 0.31 0.34 2.19 2.06 2.33 17.4 16.2 18.7

9 1.93 1.81 2.05 1.31 1.24 1.39 0.32 0.30 0.34 2.35 2.21 2.49 16.5 15.2 17.8

10 1.93 1.82 2.04 1.30 1.24 1.37 0.32 0.31 0.34 2.33 2.15 2.52 16.5 15.2 18.0

11 1.92 1.80 2.04 1.41 1.31 1.52 0.33 0.31 0.35 2.02 1.88 2.17 15.7 14.3 17.2

12 1.87 1.76 1.99 1.34 1.26 1.43 0.31 0.30 0.33 2.18 2.03 2.34 14.9 13.8 16.2

task mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5%

1 2.23 2.08 2.39 1.31 1.24 1.39 0.33 0.31 0.35 2.43 2.26 2.62 20.5 18.9 22.1

2 2.19 2.03 2.36 1.40 1.29 1.51 0.32 0.30 0.34 2.23 2.05 2.42 18.8 17.2 20.5

3 2.07 1.94 2.21 1.33 1.23 1.43 0.33 0.31 0.35 2.19 2.03 2.37 17.0 15.6 18.6

4 2.11 1.98 2.25 1.34 1.27 1.42 0.32 0.30 0.34 2.10 1.93 2.28 16.6 15.2 18.1

5 2.05 1.91 2.20 1.39 1.27 1.52 0.31 0.29 0.33 2.13 1.98 2.28 16.2 15.0 17.5

6 1.99 1.85 2.14 1.34 1.26 1.43 0.31 0.29 0.33 2.05 1.90 2.22 14.9 13.7 16.2

7 2.26 2.07 2.48 1.26 1.18 1.36 0.31 0.29 0.33 2.00 1.83 2.19 15.3 13.9 16.9

8 1.97 1.85 2.09 1.36 1.27 1.46 0.32 0.30 0.33 2.00 1.85 2.16 14.7 13.4 16.0

9 1.97 1.85 2.10 1.36 1.27 1.44 0.32 0.30 0.34 2.01 1.88 2.15 15.0 13.8 16.3

10 1.93 1.79 2.09 1.32 1.20 1.44 0.32 0.30 0.34 1.86 1.71 2.03 13.3 12.3 14.3

11 1.89 1.76 2.04 1.39 1.29 1.50 0.30 0.28 0.32 1.96 1.81 2.12 13.4 12.4 14.6

12 1.92 1.77 2.08 1.40 1.30 1.50 0.30 0.29 0.32 1.89 1.76 2.04 13.4 12.3 14.6

task mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5%

1 2.33 2.16 2.53 1.56 1.38 1.77 0.32 0.30 0.34 2.33 2.13 2.55 23.3 21.5 25.3

2 2.16 2.03 2.29 1.28 1.20 1.36 0.32 0.30 0.35 2.41 2.21 2.63 18.7 17.0 20.5

3 2.13 2.01 2.25 1.28 1.21 1.34 0.32 0.30 0.34 2.34 2.14 2.56 17.7 16.2 19.3

4 2.08 1.95 2.22 1.27 1.21 1.34 0.32 0.30 0.34 2.31 2.14 2.49 17.1 15.9 18.3

5 2.01 1.89 2.15 1.27 1.22 1.33 0.30 0.28 0.32 2.25 2.09 2.43 15.2 13.9 16.5

6 2.03 1.91 2.16 1.27 1.21 1.34 0.31 0.29 0.32 2.15 2.01 2.30 14.8 13.7 15.9

7 2.16 2.02 2.31 1.31 1.22 1.41 0.29 0.28 0.31 1.77 1.67 1.89 12.8 12.0 13.7

8 2.07 1.94 2.21 1.26 1.20 1.32 0.29 0.28 0.31 1.93 1.81 2.06 12.8 12.1 13.7

9 1.93 1.80 2.06 1.31 1.24 1.38 0.29 0.28 0.31 2.03 1.90 2.18 13.1 12.1 14.1

10 1.92 1.80 2.04 1.35 1.24 1.46 0.30 0.29 0.32 1.86 1.74 2.00 12.7 11.9 13.4

11 1.96 1.82 2.11 1.25 1.18 1.32 0.30 0.29 0.32 1.93 1.81 2.05 12.5 11.7 13.3

12 1.88 1.76 2.01 1.27 1.20 1.36 0.30 0.28 0.32 1.95 1.81 2.11 12.2 11.2 13.2

Condition 3

O adj W adj D adj R adj Total adj

Condition 2

Condition 1
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