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where f(t) := inf{b: /o s(§)d¢ > t}

s, Py




For a > 1, a solution S is a-approximate if

cost(S) < a cost(Sopr).




Known Results

@ 4-approx. (for all speeds functions simultaneously)
Epstein et al. 2012 (SICOMP 2012)

@ PTAS for 3, w;f(C;) if f is concave (s non-decreasing).
Stiller & Wiese (ISAAC 2010)

@ >, w;f(C;) strongly NP-hard for piece-wise linear f (s piece-wise
constant).
Héhn & Jacobs (LATIN 2012)

@ O(1)-approx. for min}_; i(C;).
Bansal & Pruhs (FOCS 2010)

® (2 +¢)-approx. for >_; fi(C;).
Shmoys & Cheung (APPROX 2011)
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There exists a PTAS for any given function s, i.e., for any « > 0 there
exists a polynomial algorithm that returns a (1 + ¢)-approximate
solution.
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solution.

Several results for dynamic speed allocation. '
- JVerschae  ADGO,October 16,2013



Unavailable period!
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Unavailable period!

Rounding in the time axis might be problematic! '




1 2 3 4 5

time-schedule
@ W(t) := remaining weight after t
= ZCj>t VV]



[ winet =3 wg,
J

1 2 3 4 5

time-schedule
@ W(t) := remaining weight after t
= ZCj>t VVJ



cr—

Cy—
o
=)
B ow
< Cs -
3
- 3
<
T CY—
= G :

t
1 2 3 4 5

time-schedule
@ W(t) := remaining weight after t
= ZCj>t VV]
@ C/ := remaining weight when j starts.



w
cv— ] /W(t)dt: ZXIC/W
Cy— j
Qo 2
=}
B ow
< Cs -
¢ 3
=
B CY—
4
=g [ 4

1 2 3 4 5

time-schedule
@ W(t) := remaining weight after t
= ZCj>t VVJ
@ C/ := remaining weight when j starts.



w

Cl— ]

CW_ . .

2 idle weight
K 2
=}
8 cv_
< V3
3
= 3
B CY—

° 5

1 2 3 4 5

time-schedule
@ W(t) := remaining weight after t
= ch>t W
@ C/ := remaining weight when j starts.



@ Round w; := (1 + &)k for k € Z.
@ Weight intervals I, = ((1 +¢)“~", (1 +€)Y].

@ F, := collection of possible subsets of jobs to be processed
before (1 + ¢)Y.




Dynamic Program

(exponential time)

Basics
@ Round w; := (1 + &)X for k € Z.
@ Weight intervals I, = ((1 +&)“~", (1 +¢)Y].

@ F, := collection of possible subsets of jobs to be processed
before (1 + ¢)Y.

DP Table
For each uand S € F;:

T(u, S) := (1 + ¢)-approximation of scheduling S'in [0, (1 + £)"]

min{r(u1,s')+ Y x(1+e) S’e]—‘u1,S’CS}.

JjeS\S’
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@ Light jobs: w; < £2S,
~+ greedily order jobs by w;/v;.
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We can construct sets F,, of constant size. '

Sets F, are independent of the speed!




There exists an efficient PTAS for minimizing ; w;C; on a machine
with variable speed.

There exists an efficient PTAS for minimizing _; w;f(C;) for any
non-decreasing f on a unit speed machine.




@ Available set of speeds S C R,.

@ Speed s € § = power = s% (o = 2, 3 usually).
@ Total energy available E.

@ Obj: min; w;C;.




If S = R, then the optimal value is
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Results

Theorem (Indep. by Vazquez '12 and Carrasco et al. '11)
If S = R, then the optimal value is

a—1

n @
min : v w
permutation ; (/) (Z 7T(’<))

k=>j

Corollary
The optimal sequence is independent of the energy budget E.
Corollary

The optimum can be achieved by minimizing >_; w;f(C;) for f(t) := =
on a unit speed machine.
= PTAS (Wiese & Stiller 2010 and our previous result).
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Complexity Open!
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@ If|S| = 2 then the problem is NP-hard.
@ There exists a PTAS if S is part of the input.




@ If|S| = 2 then the problem is NP-hard.
@ There exists a PTAS if S is part of the input.

Similar ideas as previous PTAS for given speeds.



