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Resource Augmentation

 Worst-case paradigm: strength and weakness.

Competitive ratio = max

I
ALG(I)/OPT (I)

Jobs: arrive over time

Goal: minimize the total flow-time without knowledge of 
jobs’ processing times.

Non-clairvoyant scheduling 1|rj , pmtn|
X

j

(Cj � rj)

 Resource augmentation model (Kalyanasundaram & Pruhs)

 Algorithms with additional resource vs optimal algorithms.

 s-speed r-competitive algorithms.



Design & Analysis

 Potential function method: most successful but not much insight.

 Dual fitting (Anand et al. ’12)

 Construction of feasible dual variables.

 Keep reasonable ratio ALG/OPT 

 Non-linear primal-dual (Gupta et al. ’12)

 Increase rate of the dual proportional to the primal

 Principled methods Primal 
program

Dual 
program

useful: convex objectives, water-filling algorithms



Lagrangian duality-based scheme
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(x)Lagrangian Dual:

min f0(x) constraints fi(x)  0 81  i  m.Primal:

 Construction of dual variables. 

min
x

L(x,�)  min f0(x) r ·min
x

L(x,�)

 Game between ALG vs ADV

 Difficulty: dual is not in closed form

 well capture the resource augmentation model

 Advantages:
 non-convex programs; non water-filling algorithms

critical

weak duality



Non-clairvoyant scheduling

 EQUI: the machine shares its resource equally to the pending jobs.

Jobs: arrive over time

Goal: minimize the total flow-time without knowledge of 
jobs’ processing times.

Non-clairvoyant scheduling 1|rj , pmtn|
X

j

(Cj � rj)

 Theorem (Edmonds ’00): EQUI is              -speed,    -competitive
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Analysis
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 Variables: Cj : completion time of job j
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EQUI

 Lemma:

      could be explicitly computed.�j
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Results & Conclusion
 Approach

 Energy-aware scheduling for unrelated machines.

 Scheduling to minimize general cost functions of flow-time 
on unrelated machines.

 Applying the approach for other online problems. 

Thank you!


