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The Learning Problem

We are given:
X input and Y output spaces, Y ⊂ Y, Y Banach space. (X ,Y ) is
a random variable with value in X × Y and distribution P.
(Xi ,Yi )i∈N is a sequence of i.i.d. random variables taking value in
X × Y with common distribution P and Zn = (Xi ,Yi )1≤i≤n is the
n-truncated sequence.
xi , yi denote corresponding realizations of the random variables
Xi ,Yi . A realizations zn = (xi , yi )1≤i≤n of the random variable Zn
is called a training set.
a convex loss function ` : X × Y × Y→ [0,+∞[ (least square,
p-loss, Hinge loss, logistic loss, Huber’s loss, etc.;).
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The Learning Problem

The goal is to find a function f : X → Y, minimizing the risk
R(f ) = EP`(X ,Y , f (X )), that is

R(f ) =

∫
X×Y

`(x , y , f (x)) dP(x , y)

over the space of all measurable functionsM(X ,Y).

Without any
knowledge of P, but using only training sets zn.
We are looking for a map (learning algorithm)

z ∈
⋃

n∈N
(X × Y)n → fz ∈M(X ,Y)

such that the estimators fZn asymptotically minimize the risk,
meaning that R(fZn )→ inf R(M(X ,Y)) in probability P.
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A Learning Algorithm
Regularized Empirical Risk Minimization

We define the empirical distribution and risk

Pn =
1
n

n∑
i=1

δzi , Rn(f , zn) =
1
n

n∑
i=1

`(xi , yi , f (xi ))

The problem
min

f∈M(X ,Y)
Rn(f , zn) (1)

is ill-posed (overfitting). The solution: one takes a (sufficiently large)
Hilbert space H ↪→M(X ,Y) with embedding A : H →M(X ,Y),
consider the restriction of (1) to H and regularize

min
u∈H

Rn(Au, zn) + λ‖u‖2
H (λ > 0)
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A Learning Algorithm
Regularized Empirical Risk Minimization

un,λ(zn) ∈ argmin
u∈H

Rn(Au, zn) + λ‖u‖2
H, (zn ∈ (X × Y)n )(λ > 0)

The issue of consistency: choose λn → 0 such that the risk of the
estimators Aun,λn (Zn) converges (in probability) to the minimal risk as
the number of samples goes to infinity.

P
[

R
(
A un,λn (Zn)

)
− inf R(M(X ,Y)) > δ

]
→ 0 (∀ δ > 0)
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Our Contribution

Constrained Risk Minimization.

min
f∈C

R(f )

where C ⊂ M(X ,Y) is a pointwise constraint.
The General Variational Learning scheme:

un,λ(zn) ∈ ελ−argmin
u∈F

Rn(Au, zn) + λ J(u), (λ > 0)

Consistency: A un,λn (Zn)→ inf R(C) in (outer) probability.
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Our Contribution

We prove consistency and rates of the empirical risk minimization
algorithm in the following extended scenario:
X constraint sets C ⊂ M(X ,Y) (pointwise defined);
X Banach spaces F ↪→M(X ,Y) (instead of Hilbert spaces);
X general regularizers J : F → [0,+∞], totally convex on bounded

sets (instead of the square of the norm), even with extended
values;

X inexactness in the computation of minimizers.
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Case studies:
K a countable set. Consistency holds for

un,λ(zn) ∈ ελ − argmin
u∈`r (K)

Rn(Au, zn) + λ
(
‖u‖r

r + H(u)
)

with 1 < r < +∞ and H : `r (K)→ [0,+∞] proper, convex l.s.c.
Nonparametric regression in Lp, 1 < p < +∞,

un,λ(zn) ∈ ελ − argmin
u∈F

1
n

n∑
i=1

‖(Au)(xi )− yi
∥∥p

Y + λ J(u)
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Geometry of Banach spaces

Definition

The Banach space B is said to be of (Rademacher) type q ∈ [1,2] if
∃Tq > 0, so that for every (ui )1≤i≤n ∈ Bn and n ∈ N(∫ 1

0

∥∥∥ n∑
i=1

ri (t)ui

∥∥∥q
dt
)1/q

≤ Tq

( n∑
i=1

‖ui‖q
)1/q

The rn’s are the Rademacher functions, i.e. rn : [0,1]→ {0,1},
rn(t) = sign(sin(2nπt)) for every t ∈ [0,1] and n ∈ N.

Definition
B is said to have modulus of convexity (smoothness) of power type
q ∈ [1,+∞[ if ∃ cq > 0 (resp. bq > 0) such that δB(ε) ≥ cqε

q

∀ ε ∈]0,2] (resp. ρB(τ) ≤ bqτ
q ∀ τ > 0).
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Geometry of Banach spaces

One can prove (Lindenstrauss-Tzafriri ’79 or Beauzamy ’85):

if 1 < p < +∞, then Lp has modulus of convexity of power type
max{p,2} and modulus of smoothness of power type min{p,2}.
the power type of the modulus of convexity of a Banach space is
necessarily ≥ 2, and that of smoothness is ≤ 2
modulus of smoothness of power type q =⇒ type q.
the notion of (Redamacher) type is weaker than that of uniform
smoothness of power type, in particular it does not implies
reflexivity.
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A concentration inequality in Banach spaces

Let (Ω,A,P) be a probability space, (B, ‖·‖) a separable Banach
space of type q, 1 < q ≤ 2 and type-q constant Tq . Let (ξi )1≤i≤n,
ξi : Ω→ B be independent random variables.

Proposition (Ledoux-Talagrand)

If (ξi )1≤i≤n have zero mean, then

EP

∥∥∥∥ n∑
i=1

ξi

∥∥∥∥q

≤ (2Tq)q
n∑

i=1

EP‖ξi‖q
,

Theorem (Hoeffding type inequality)

If ‖ξi (ω)‖ ≤ B P-a.s. for all i = 1, . . . ,n, then, for all τ > 0

P
[ ∥∥∥∥1

n

n∑
i=1

(ξi − EPξi )

∥∥∥∥ ≥ 4B
(

Tq

n1−1/q +

√
τ

2n
+

τ

3n

)]
≤ e−τ .
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Totally convex functions

Total convexity at u0 ∈ dom J:

(∀u ∈ dom J) J(u)− J(u0) ≥ J ′(u0,u − u0) + ψ(u0; ‖u − u0‖F) .

ψ(u0, ·) : R+ → R+, ψ(u0,0) = 0 and ψ(u0, t) > 0 if t > 0
Total convexity on bounded sets:

(∀ ρ > 0)(∀ t > 0) ψρ(t) = inf
‖u0‖F≤ρ

ψ(u0; t) > 0

ψ̂ρ(t) := ψρ(t)/t is increasing, limt→0 ψ̂ρ(t) = 0.

(ψ̂ρ)\(s) = sup{ψ̂ρ ≤ s} the greatest quasi-inverse of ψ̂ρ is
increasing and dom(ψ̂ρ)\ = [0,+∞[.
ψ0 is the modulus of total convexity at zero.
total convexity on bounded sets ⇐⇒ uniform convexity on
bounded sets (Zalinescu).
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Totally convex functions

Example: Let r ∈]1,+∞[ and F be a uniformly convex Banach space
with modulus of convexity of power type q ∈ [2,+∞[ and set
J = ‖·‖r

F. Then for every ρ > 0 and t > 0

ψρ(t) ≥


Kr cq

2r t r if r ≥ q

r
q

Kr cq

2q
tq

(ρ+ t)q−r if r < q ,

For r > 1, `r (K) is uniformly convex with modulus of convexity of
power type q = max{2, r}. Hence ‖·‖r

r is uniformly convex if
r ≥ 2, and only totally convex on bounded sets if 1 < r < 2.
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Reproducing Kernel Banach spaces

Definition

A Banach space of functionsW ⊂ YX such that the evaluation
functionals evx :W → Y are (linear) continuous for all x ∈ X .

A way to generate RKBS’.

Proposition

Let F a Banach space and A : F → YX a linear operator continuous
for the topology of the point-wise convergence. Then Im A can be
endowed with a norm which make it a RKBS and A a partial isometry.

The associated feature map γ : X → L(Y∗,F∗)

(∀u ∈ F)(∀ x ∈ X ) (Au)(x) = γ(x)∗u

γ is measurable if and only if Im A ⊂M(X ,Y).
S. Salzo Consistency of General Variational Learning Schemes
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Reproducing Kernel Banach spaces

Example 1: Let Y = R (scalar case) and F strictly convex and
smooth. Then there exists a map Φ : X → F such that
j2(Φ(x)) = γ(x)∗ for every x ∈ X . Therefore for each u ∈ F and x ∈ X

(Au)(x) = 〈u, γ(x)∗〉F,F∗ = 〈u, j2(Φ(x))〉F,F∗ .

We can define

K : X × X → R K (x , x ′) = 〈Φ(x), j2(Φ(x ′))〉F,F∗

and it holds K (x , ·) = AΦ(x) ∈ W = Im A. The function K is the kernel
associated to the feature map γ (or equivalently Φ) and satisfies

(i) K (x , x) = ‖Φ(x)‖2
F = ‖γ(x)‖2

F ≥ 0.
(ii) |K (x , x ′)|2 ≤ K (x , x)K (x ′, x ′).
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Example 2: Let K be a countable set, r , r ′ ∈ [1,+∞] with
1/r + 1/r ′ = 1 and (ϕk )k∈K a dictionary of functions ϕk : X → Y.
Assume that for every x ∈ X , (‖ϕk (x)‖Y)k∈K ∈ `r ′(K). Then, the
following linear operator is well-defined

A : `r (K)→ YX (Aβ)(x) =
∑
k∈K

βkϕk (x) .

Then

W = Im A =

{
f ∈ YX

∣∣∣ (∃β ∈ `r (K)
)
(∀ x ∈ X ) f (x) =

∑
k∈K

βkϕk (x)

}
and

‖f‖W = inf
{
‖β‖r

∣∣∣ (∃β ∈ `r (K)
)
(∀ x ∈ X ) f (x) =

∑
k∈K

βkϕk (x)

}
.

S. Salzo Consistency of General Variational Learning Schemes



Introduction
Consistency of Learning schemes

Conclusion

The strategy of the proof
Variational Regularization
Representer and Stability Theorems
Consistency Theorems
Nonparametric regression in Lp

General assumptions.

` is convex and locally Lipschitz continuous, that is

|`(x , y ,w)− `(x , y ,w ′)| ≤ |`|ρ,1‖w − w ′‖Y

for every ρ > 0 and (w ,w ′) ∈ Y2, ‖w‖Y, ‖w ′‖Y ≤ ρ.
F is a separable Banach space, and F∗ is of (Rademacher) type
q ′ > 1 (necessarily q ′ ≤ 2);
the feature map γ : X → L(Y∗,F∗) is measurable and bounded;
C =

{
f ∈M(X ,Y) | (∀ x ∈ X )(f (x) ∈ C(x))

}
, with C(x) ⊂ Y

nonempty closed convex for every x ∈ X (pointwise constraint).
J : F → [0,+∞] is a l.s.c. function, totally convex on bounded
sets with modulus of total convexity on the ball BF(ρ) denoted by
ψρ and J(0) = 0.
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A key decomposition

If domJ = A−1(C) and C ∩ Im A is dense in C ∩ Lp(X ,PX ; Y), then
inf I(dom J) = inf R(C).
An auxiliary (non-stochastic) regularized risk minimization
problem is introduced:

uλ ∈ argmin
u∈F

R(Au) + λJ(u) (λ > 0)

If we set I = R ◦ A and In(·, zn) = Rn(·, zn) ◦ A, then

I(un,λ(Zn))−inf I(dom J) = I(un,λ(Zn))− I(uλ)︸ ︷︷ ︸
sample error

+ I(uλ)− inf I(dom J)︸ ︷︷ ︸
approximation error

The behavior of both errors is studied separately.
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The study of the approximation error (weak case)

We consider uλ ∈ ε(λ)- argminF(I + λJ), for all λ > 0.

Proposition
1 If limλ→0 ε(λ) = 0, then limλ→0 I(uλ) = inf I(dom J).
2 If J is totally convex and {0} = argmin J ∩ dom I, then

(∀λ ∈ ]0,+∞[) ‖uλ‖F ≤ ψ
\
0

(
I(0)− inf I(dom J) + ε(λ)

λ

)
.
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The study of the approximation error (strong case)

We consider uλ ∈ ε(λ)- argminF(I + λJ), for all λ > 0.

Proposition (Attouch ’96)

If ε(λ)/λ→ 0, J is coercive and S = argmindom J I 6= ∅, then (uλ)λ>0
is bounded. Moreover

1 if λn → 0 and uλn ⇀ u† for some u† ∈ F, then
u† ∈ argminu∈S J(u)

2 limλ→0 J(uλ) = inf J(S)

3 limλ→0
1
λ

(
I(uλ)− inf I(dom J)

)
= 0 .

4 If J is strictly quasiconvex, then u† is uniquely determined and
uλ ⇀ u† as λ→ 0.

5 If J is totally convex on bounded sets, then uλ → u† as λ→ 0.
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A General Representer Theorem

We consider uλ ∈ argminF(I + λJ), for all λ > 0.

Theorem (Representer)

For all λ > 0, there exists hλ ∈ Lp′(X × Y,P; Y∗) such that

hλ(x , y) ∈ ∂`(x , y ,Auλ(x))

−EP [γhλ] ∈ λ∂J(uλ) ,

where γhλ : X × Y → F∗, (γhλ)(x , y) = γ(x)hλ(x , y).

Moreover, if p = 1, ‖hλ‖∞ ≤ c`; If p =∞ and ` is locally Lipschitz
continuous, we have ‖hλ‖∞ ≤ |`|κρλ,1, where κ = ‖γ‖∞ and ρλ > 0 is
any number such that ρλ > ‖uλ‖.
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uλ = jr ′
(
− EP [γhλ]/(rλ)

)
, J = ‖·‖r

F

where γhλ : X × Y → F∗, (γhλ)(x , y) = γ(x)hλ(x , y).

Moreover, if p = 1, ‖hλ‖∞ ≤ c`; If p =∞ and ` is locally Lipschitz
continuous, we have ‖hλ‖∞ ≤ |`|κρλ,1, where κ = ‖γ‖∞ and ρλ > 0 is
any number such that ρλ > ‖uλ‖.

S. Salzo Consistency of General Variational Learning Schemes



Introduction
Consistency of Learning schemes

Conclusion

The strategy of the proof
Variational Regularization
Representer and Stability Theorems
Consistency Theorems
Nonparametric regression in Lp

A General Representer Theorem

We consider uλ ∈ argminF(I + λJ), for all λ > 0.

Theorem (Representer)

For all λ > 0, there exists hλ ∈ Lp′(X × Y,P; Y∗) such that

hλ(x , y) ∈ ∂`(x , y ,Auλ(x))

uλ = jr ′
(∑n

i=1
γ(xi )αi

)
, αi = −1/(nrλ)h(xi , yi ) ∈ Y∗ .
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A Stability Theorem

We consider uλ ∈ argminF(I + λJ), for all λ > 0.

Theorem (Stability)

Suppose further that J is totally convex with modulus of total
convexity ψ(u, ·) at u.
Then, for every distribution P̃ on X × Y and any ũλ ∈ F with
d(0, ∂(Ĩ + λJ)(ũλ)) ≤ ε, we have

ψ̂(uλ, ‖ũλ − uλ‖F) ≤ 1
λ
‖EP̃ [γhλ]− EP [γhλ]‖

F∗
+
ε

λ
,

where ψ̂(u, t) = ψ(u, t)/t .
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Weak consistency theorem

Theorem (part one)

Suppose `(·, ·,0) is bounded and set `max := ‖`(·, ·,0)‖∞, and
κ = ‖γ‖∞. Let un,λ(zn) ∈ ε1(λ)ε2(λ)-argmin(In(·, zn) + λJ) for each
zn ∈ (X × Y)n. Then, for every τ > 0

P∗
[

I(un,λ(Zn))− inf I(dom J) > η(n, τ, λ)+ I(uλ)− inf I(dom J)
]
≤ e−τ ,

where η(n, τ, λ) is equal to

κ|`|κρλ,1
{
ε1(λ) + (ψ̂ρλ)\

(
κ|`|κρλ,1

λ

(
4Tq ′

n1/q +

√
2τ
n

)
+
ε2(λ)

λ

)}
and ρλ = ψ\0

(
(`max + 1)/λ

)
.
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Weak consistency theorem

Theorem (part two)

Suppose `(·, ·,0) is bounded and set `max := ‖`(·, ·,0)‖∞, and
κ = ‖γ‖∞. Let un,λ(zn) ∈ ε1(λ)ε2(λ)-argmin(In(·, zn) + λJ) for each
zn ∈ (X × Y)n. Moreover if (λn)n∈N, is such that λn → 0 and

Lnε1(λn)→ 0 , ε2(λn) = O
(

Ln

n1/q

)
, Ln(ψ̂ρλn

)\
(

Ln

λnn1/q

)
→ 0 ,

where Ln = |`|κρλn ,1, then

(∀ δ > 0) lim
n→+∞

P∗
[

I(un,λn (Zn))− inf I(dom J) > δ
]

= 0 .
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Weak consistency theorem

Sketch of the Proof.
using the Ekeland’s variational principle, ∃vn,λ ∈ F such that

‖un,λ(zn)− vn,λ‖F ≤ ε1(λ), d(0, ∂(In(·, zn)+λJ))(vn,λ) ≤ ε2(λ)

using the Representer and Stability Theorems with P̃ the
empirical distribution

‖vn,λ − uλ‖F ≤ (ψ̂ρλ)\
(1
λ

∥∥EP [γhλ]−1
n

n∑
i=1

γ(xi )hλ(xi , yi )
∥∥
F∗

+
ε2(λ)

λ

)
.

using Hoeffding’s inequality with ξi = γ(Xi )hλ(Xi ,Yi ) : Ω→ F∗

P
[∥∥∥EP [γhλ]− 1

n

n∑
i=1

γ(Xi )hλ(Xi ,Yi )
∥∥∥
F∗
≤ κ|`|κρλδ(n, τ)

]
≥ 1−e−τ
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Strong consistency theorem

Theorem (part one)

We additionally assume argmindom J I 6= ∅. Then (uλ)λ>0 is bounded,
and

P∗
[
‖un,λ(Zn)− u†‖

F
> η(n, τ, λ) + ‖uλ − u†‖F

]
≤ e−τ

P∗
[

I(un,λ(Zn))− inf I(dom J) > κ|`|κρλη(n, τ, λ) + λ
]
≤ e−τ ,

where

η(n, τ, λ) = ε1(λ) + (ψ̂ρ)\
(
κ|`|κρ,1
λ

(
4Tq ′

n1/q +

√
2τ
n

)
+
ε2(λ)

λ

)
and ρ = supλ>0 ‖uλ‖F, ρλ = ψ\0

(
(`max + 1)/λ

)
.
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Strong consistency theorem

Theorem (part two)

We additionally assume argmindom J I 6= ∅. Moreover if λn → 0 and

λnn1/q → +∞, ε1(λn)→ 0,
ε2(λn)

λn
→ 0

then
(∀δ > 0) lim

n→+∞
P∗
[
‖un,λn (Zn)− u†‖

F
> δ

]
= 0

Finally if n1/qλn/ log n→ +∞, then

lim
n→+∞

un,λn (Zn) = u† P− a.s.
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The regression function

R(f ) = E‖Y − f (X )‖p
Y =

∫
X×Y

‖y − f (x)‖p
Y dP(x , y) (1 < p < +∞) .

Definition

A function f C∗ ∈M(X ,Y), is called the p-regression function on C if
f C∗ ∈ C and R(f C∗ ) = inf R(C).

Proposition

The regression function f C∗ exists and for every f ∈ C ∩ Lp(X ,PX ; Y)

R(f )− inf R(C) ≤ Cp‖f − f C∗ ‖
min{2,p}
p

(
inf R(C) + ‖f − f C∗ ‖p

)max{2,p}−2
,

‖f C∗ − f‖max{2,p}
p ≤ Dp

(
R(f )− inf R(C)

)
R(f )

2−min{2,p}
p .
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Further generalization

Theorem (Xu-Roach ’91)

Let B be Banach space and p ∈]1,+∞[. If B is uniformly convex, then

(∀u ∈ B)(∀ ξ ∈ Jp(u))(∀ v ∈ B) ‖u + v‖p − ‖u‖p ≥ p〈ξ, v〉+ σp(u, v)

where

σp(u, v) = pKp

∫ 1

0

(‖u + tv‖ ∨ ‖u‖)p

t
δB

(
t‖v‖

2‖u + tv‖ ∨ ‖u‖

)
dt .

and Kp > 0 is a constant.

We want to obtain an analogous theorem for the case Φ(‖·‖), with
Φ(t) =

∫ t
0 φ(s)ds. This would allow to do nonparametric regression in

Orlicz spaces.
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We present a General Variational Learning algorithm which
constitutes an extension of the regularized ERM under several
aspects:
X constraints (pointwise positiveness, boundedness);
X general loss functions;
X general regularization functions (totally convex on bounded sets);
X Banach Spaces setting;

We proved weak and strong consistency theorems;
We deal with nonparametric regression in Lp spaces;
The framework is shown to cover the significant case of ‖·‖r

r
regularization, with 1 < r ≤ 2.
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