Electricity market: analytical approach (...to problem of producer)

Didier Aussel, Pascale Bendotti, Miroslav Pištěk

University of Perpignan, EDF R&D, France Academy of Sciences, Czech Republic

Algorithms and Dynamics for Games and Optimization 2013 Playa Blanca, Chile

18 October

Electricity market: analytical approach (...to problem of producer)

Didier Aussel, Pascale Bendotti, Miroslav Pištěk

University of Perpignan, EDF R&D, France Academy of Sciences, Czech Republic

Algorithms and Dynamics for Games and Optimization 2013 Playa Blanca, Chile (FIRST TIME HERE.-)

18 October

Modeling of Electricity Markets	Problem of ISO	Problem of Producer i	Conclusion
000000	000000	000000	

Outline

Modeling of Electricity Markets

Basic Overview, Notation Aim of Study (Generalized) Nash Equilibrium Problem

Problem of ISO

Formulation of ISO Problem Analytic Solution to ISO Problem

Problem of Producer i

Assumptions The Best Response of Producer *i*

Conclusion

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion

Basic Overview, Notation

Modern Electric Grid

UPVD, CTU

Basic Overview, Notation

Modern Electric Grid ... is very complex to handle

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion
Basic Overview, Notation			

Modeling of Electricity Markets

- electricity market consists of
 - i) generators/consumers respect their own interests in competition with others
 - ii) market operator (ISO) who maintain energy generation and load balance, and protect public welfare
- the ISO has to consider:
 - i) the market power or participants
 - ii) quantities of generated/consumed electricity
 - iii) electricity dispatch with respect to transmission capacities

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion
Basic Overview, Notation			

Modeling of Electricity Markets

- electricity market consists of
 - i) generators/consumers respect their own interests in competition with others
 - ii) market operator (ISO) who maintain energy generation and load balance, and protect public welfare
- the ISO has to consider:
 - i) the market power or participants
 - ii) quantities of generated/consumed electricity
 - iii) electricity dispatch with respect to transmission capacities
- since 1990s, Nash equilibrium problem is the most popular way of modeling spot electricity markets

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion
Basic Overview, Notation			

Notation

Let

- D > 0 be the overall energy demand of all consumers
- $\blacktriangleright~\mathcal{N}$ be the set of producers
- ▶ $q_i \ge 0$ be the production of *i*-th producer, $i \in N$
- $A_i q_i + B_i q_i^2$ the true production cost of *i*-th producer

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion
Basic Overview, Notation			

Notation

Let

- ► *D* > 0 be the overall energy demand of all consumers
- \mathcal{N} be the set of producers
- $q_i \ge 0$ be the production of *i*-th producer, $i \in \mathcal{N}$
- $A_i q_i + B_i q_i^2$ the true production cost of *i*-th producer

Similarly, we assume that producer $i \in \mathcal{N}$ provides to the ISO a quadratic bid function

$$a_i q_i + b_i q_i^2$$

given by non-negative parameters a_i , $b_i \ge 0$.

Modeling of Electricity Markets	Problem of ISO 000000	Problem of Producer <i>i</i> 000000	Conclusion
Basic Overview, Notation			

Why Quadratic Cost/Bid Functions?

- $A_i q_i + B_i q_i^2$ reflects the increasing marginal cost of production
- ► a_iq_i + b_iq_i² provides a reasonable approximation to "boxes functions" usualy used in real-world markets

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion
Basic Overview, Notation			

Why Quadratic Cost/Bid Functions?

- $A_i q_i + B_i q_i^2$ reflects the increasing marginal cost of production
- ► a_iq_i + b_iq_i² provides a reasonable approximation to "boxes functions" usualy used in real-world markets

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion
Aim of Study			

Aim of Study

Consider a particular producer $i \in \mathcal{N}$.

Then, knowing the overall demand D > 0 and bid vectors $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N}_+$ provided by other producers, we search for the best response $(a_i, b_i) \in \mathbb{R}^2_+$ of producer *i* in order to maximize his profit

$$\pi_i(a, b) = a_i q_i + b_i q_i^2 - (A_i q_i + B_i q_i^2)$$

Modeling of Electricity Markets	Problem of ISO 000000	Problem of Producer <i>i</i>	Conclusion
Aim of Study			

Aim of Study

Consider a particular producer $i \in \mathcal{N}$.

Then, knowing the overall demand D > 0 and bid vectors $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N}_+$ provided by other producers, we search for the best response $(a_i, b_i) \in \mathbb{R}^2_+$ of producer *i* in order to maximize his profit

$$\pi_i(\mathbf{a}, \mathbf{b}) = \mathbf{a}_i q_i + \mathbf{b}_i q_i^2 - (\mathbf{A}_i q_i + \mathbf{B}_i q_i^2)$$

We realized that we can not avoid linear bids $b_i = 0$.

Modeling of Electricity Markets	Problem of ISO	Problem of Producer i	Conclusion
(Generalized) Nash Equilibrium Problem			

Generalized Nash Equilibrium Problem

Peculiarity of electricity markets is their bi-level structure:

$$\begin{array}{ll} P_i(a_{-i},b_{-i}) & \max_{a_i,b_i} \max_{q_i} & a_iq_i + b_iq_i^2 - (A_iq_i + B_iq_i^2) \\ & \text{such that} & \begin{cases} a_i,b_i \geq 0 \\ (q_j)_{j \in \mathcal{N}} \in \mathcal{Q}(a,b) \end{cases} \end{array}$$

where set-valued mapping Q(a, b) denotes solution set of

Modeling of Electricity Markets	Problem of ISO	Problem of Producer i	Conclusion
(Generalized) Nash Equilibrium Problem			

Generalized Nash Equilibrium Problem

Peculiarity of electricity markets is their bi-level structure:

$$\begin{array}{ll} P_i(a_{-i},b_{-i}) & \max_{a_i,b_i} \min_{q_i} & a_i q_i + b_i q_i^2 - (A_i q_i + B_i q_i^2) \\ & \text{such that} & \begin{cases} a_i,b_i \geq 0 \\ (q_j)_{j \in \mathcal{N}} \in \mathcal{Q}(a,b) \end{cases} \end{array}$$

where set-valued mapping Q(a, b) denotes solution set of

$$ISO(a, b) \qquad Q(a, b) = \underset{q}{\operatorname{argmin}} \quad \sum_{i \in \mathcal{N}} (a_i q_i + b_i q_i^2)$$
such that
$$\begin{cases} q_i \ge 0 , \ \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} q_i = D \end{cases}$$

Modeling of Electricity Markets ○○○○○○●	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
(Generalized) Nash Equilibrium Problem			

Reduction to Nash Equilibrium Problem

Whenever ISO(a,b) has an unique solution, $Q(a, b) = \{q(a, b)\}$, the problem $P_i(a_{-i}, b_{-i})$ may be restated as

$$\max_{a_i,b_i \ge 0} \left[a_i q_i(a,b) + b_i q_i(a,b)^2 - (A_i q_i(a,b) + B_i q_i(a,b)^2) \right]$$

with ISO(a,b) implicitly considered.

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
○○○○○○●	000000	000000	
(Generalized) Nash Equilibrium Problem			

Reduction to Nash Equilibrium Problem

Whenever ISO(a,b) has an unique solution, $Q(a, b) = \{q(a, b)\}$, the problem $P_i(a_{-i}, b_{-i})$ may be restated as

$$\max_{a_i,b_i \ge 0} \left[a_i q_i(a,b) + b_i q_i(a,b)^2 - (A_i q_i(a,b) + B_i q_i(a,b)^2) \right]$$

with ISO(a,b) implicitly considered.

However, this approach is only formal if we do not have a formula for q(a, b).

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
○○○○○○●	000000	000000	
(Generalized) Nash Equilibrium Problem			

Reduction to Nash Equilibrium Problem

Whenever ISO(a,b) has an unique solution, $Q(a, b) = \{q(a, b)\}$, the problem $P_i(a_{-i}, b_{-i})$ may be restated as

$$\max_{a_i,b_i \ge 0} \left[a_i q_i(a,b) + b_i q_i(a,b)^2 - (A_i q_i(a,b) + B_i q_i(a,b)^2) \right]$$

with ISO(a,b) implicitly considered.

However, this approach is only formal if we do not have a formula for q(a, b).

Moreover, uniqueness of ISO(a,b) is also unavoidable when it comes to real-world markets.

Uniqueness of ISO(a,b) Problem

There are at least three ways for obtaining uniqueness of ISO(a,b):

• to assume $b_i > 0$ (Hu and Ralph, 2007)

Uniqueness of ISO(a,b) Problem

There are at least three ways for obtaining uniqueness of ISO(a,b):

- to assume $b_i > 0$ (Hu and Ralph, 2007)
- ▶ to consider thermal losses (Outrata et al., 2010; Aussel et al., 2012)

Uniqueness of ISO(a,b) Problem

There are at least three ways for obtaining uniqueness of ISO(a,b):

- to assume $b_i > 0$ (Hu and Ralph, 2007)
- ▶ to consider thermal losses (Outrata et al., 2010; Aussel et al., 2012)
- ▶ to assume equity property (Aussel and Pištěk, 2013)

Equity property assumption reads:

(H) $(\forall i, j \in \mathcal{N}) ((a_i, b_i) = (a_j, b_j) \Longrightarrow q_i = q_j),$

i.e., the ISO does not make any difference among producers.

Formulation of ISO Problem

Knowing overall demand D > 0 and bid vectors $(a, b) \in \mathbb{R}^{2N}_+$ provided by producers, the ISO computes $q \in \mathbb{R}^N_+$ in order to minimize the total generation cost.

$$\min_{q} \sum_{i \in \mathcal{N}} (a_{i}q_{i} + b_{i}q_{i}^{2})$$

s.t.
$$\begin{cases} q_{i} \geq 0, \ \forall i \in \mathcal{N} \\ b_{i} > 0, \ \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} q_{i} = D \end{cases}$$

This problem has a unique solution.

Formulation of ISO Problem

Knowing overall demand D > 0 and bid vectors $(a, b) \in \mathbb{R}^{2N}_+$ provided by producers, the ISO computes $q \in \mathbb{R}^N_+$ in order to minimize the total generation cost.

$$\min_{q} \sum_{i \in \mathcal{N}} (a_{i}q_{i} + b_{i}q_{i}^{2})$$
s.t.
$$\begin{cases} q_{i} \geq 0, \ \forall i \in \mathcal{N} \\ (a_{i}, b_{i}) = (a_{j}, b_{j}) \Longrightarrow q_{i} = q_{j}, \ \forall i, j \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} q_{i} = D \end{cases}$$
(H)

This problem also has a unique solution!

Modeling of Electricity Markets	Problem of ISO ○●○○○○	Problem of Producer <i>i</i>	Conclusion
Formulation of ISO Problem			

More Notation, Critical Parameters of ISO

To analyse problem ISO(a,b) further, we introduce

$$\mathcal{N}_{a}(\lambda) = \{i \in \mathcal{N} | a_{i} < \lambda \in \mathbb{R}_{+}\} \subset \mathcal{N}$$
$$F(a, b, \lambda) = \sum_{i \in \mathcal{N}_{a}(\lambda)} \frac{\lambda - a_{i}}{2b_{i}}$$

Modeling of Electricity Markets	Problem of ISO ○●○○○○	Problem of Producer <i>i</i>	Conclusion
Formulation of ISO Problem			

More Notation, Critical Parameters of ISO

To analyse problem ISO(a,b) further, we introduce

$$\mathcal{N}_{a}(\lambda) = \{i \in \mathcal{N} | a_{i} < \lambda \in \mathbb{R}_{+}\} \subset \mathcal{N}$$
$$F(a, b, \lambda) = \sum_{i \in \mathcal{N}_{a}(\lambda)} \frac{\lambda - a_{i}}{2b_{i}}$$

Since we allow $b_i = 0$, we need to introduce several more variables

$$\begin{aligned} \lambda^{c}(a,b) &= \min_{i \in \mathcal{N}, b_{i}=0} a_{i} \\ D^{c}(a,b) &= F(a,b,\lambda^{c}(a,b)) \\ \mathcal{N}^{c}(a,b) &= \{i \in \mathcal{N} \mid a_{i} = \lambda^{c}(a,b), b_{i} = 0\} \end{aligned}$$

Their meaning will be clarified soon.

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
Formulation of ISO Problem			

Market Marginal Price

The previous observation justifies the following definition

$$\lambda(a, b, D) = \begin{cases} \lambda \in \mathbb{R}_+ \text{ s.t. } F(a, b, \lambda) = D \text{ if } D \in]0, D^c(a, b)[\\ \lambda^c(a, b) \text{ if } D \ge D^c(a, b) \end{cases}$$
(1)

For any $(a, b) \in \mathbb{R}^{2N}_+$ function $\lambda(a, b, D)$ is continuous and piece-wise linear in D.

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
Formulation of ISO Problem			

Market Marginal Price

The previous observation justifies the following definition

$$\lambda(a, b, D) = \begin{cases} \lambda \in \mathbb{R}_+ \text{ s.t. } F(a, b, \lambda) = D \text{ if } D \in]0, D^c(a, b)[\\ \lambda^c(a, b) \text{ if } D \ge D^c(a, b) \end{cases}$$
(1)

For any $(a, b) \in \mathbb{R}^{2N}_+$ function $\lambda(a, b, D)$ is continuous and piece-wise linear in D.

We denote $m^{\pm}(a, b, D) := \partial_D^{\pm} \lambda(a, b, D)$.

Modeling of Electricity Markets	Problem of ISO ○○○●○○	Problem of Producer <i>i</i>	Conclusion
E 1.11 (100 B 11			

Formulation of ISO Problem

UPVD, CTU

Modeling of Electricity Markets	Problem of ISO 0000€0	Problem of Producer <i>i</i>	Conclusion
Example in a CICO, David Law			

Formulation of ISO Problem

UPVD, CTU

Modeling of Electricity Markets	Problem of ISO ○○○○●	Problem of Producer <i>i</i> 000000	Conclusion
Analytic Solution to ISO Problem			

Analytic Solution to ISO(a,b) Problem

Theorem

Let D > 0 and $(a, b) \in \mathbb{R}^{2N}_+$, then ISO(a, b) admits a unique solution obeying the equity property (H) with q(a, b) given by

$$q_{i}(a, b) = \begin{cases} \frac{\lambda(a, b, D) - a_{i}}{2b_{i}} & \text{if } a_{i} < \lambda(a, b, D) \\ \frac{D - D^{c}(a, b)}{N^{c}(a, b)} & \text{if } a_{i} = \lambda(a, b, D), b_{i} = 0 \\ 0 & \text{if } a_{i} > \lambda(a, b, D), \text{ or } a_{i} = \lambda(a, b, D), b_{i} > 0 \end{cases}$$

Modeling of Electricity Markets	Problem of ISO ○○○○●	Problem of Producer <i>i</i> 000000	Conclusion
Analytic Solution to ISO Problem			

Analytic Solution to ISO(a,b) Problem

Theorem

Let D > 0 and $(a, b) \in \mathbb{R}^{2N}_+$, then ISO(a, b) admits a unique solution obeying the equity property (H) with q(a, b) given by

$$q_{i}(a, b) = \begin{cases} \frac{\lambda(a, b, D) - a_{i}}{2b_{i}} & \text{if } a_{i} < \lambda(a, b, D) \\ \frac{D - D^{c}(a, b)}{N^{c}(a, b)} & \text{if } a_{i} = \lambda(a, b, D), b_{i} = 0 \\ 0 & \text{if } a_{i} > \lambda(a, b, D), \text{ or } a_{i} = \lambda(a, b, D), b_{i} > 0 \end{cases}$$

Denoting C(a, b, D) the overall cost of production, it holds

 $\lambda(a, b, D) = \partial_D C(a, b, D).$

Modeling of Electricity Markets	Problem of ISO ○○○○●	Problem of Producer <i>i</i> 000000	Conclusion
Analytic Solution to ISO Problem			

Analytic Solution to ISO(a,b) Problem

Theorem

Let D > 0 and $(a, b) \in \mathbb{R}^{2N}_+$, then ISO(a, b) admits a unique solution obeying the equity property (H) with q(a, b) given by

$$q_{i}(a, b) = \begin{cases} \frac{\lambda(a, b, D) - a_{i}}{2b_{i}} & \text{if } a_{i} < \lambda(a, b, D) \\ \frac{D - D^{c}(a, b)}{N^{c}(a, b)} & \text{if } a_{i} = \lambda(a, b, D), b_{i} = 0 \\ 0 & \text{if } a_{i} > \lambda(a, b, D), \text{ or } a_{i} = \lambda(a, b, D), b_{i} > 0 \end{cases}$$

Denoting C(a, b, D) the overall cost of production, it holds

$$\lambda(a, b, D) = \partial_D C(a, b, D).$$

Moreover, we may compute all limits and directional derivatives!

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
Assumptions			

Problem of Producer *i*, $P_i(a_{-i}, b_{-i})$

Once formula for $q_i(a, b)$ is achieved, for profit $\pi_i(a, b)$ we have

$$\pi_i(a, b) = a_i q_i(a, b) + b_i q_i(a, b)^2 - (A_i q_i(a, b) + B_i q_i(a, b)^2)$$

and thus for fixed $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N-2}_+$ problem $P_i(a_{-i}, b_{-i})$ reads

 $\max_{\mathbf{a}_i, \mathbf{b}_i \geq 0} \pi_i(\mathbf{a}_i, \mathbf{a}_{-i}, \mathbf{b}_i, \mathbf{b}_{-i})$

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
Assumptions			

Theorem

Assume D > 0, and for $i \in \mathcal{N}$ consider $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N-2}_+$ and q(a, b) a unique solution to ISO(a,b). Then, the *i*-th player profit $\pi_i(a, b)$ satisfies one of the following statements:

(a) for $a_i < \lambda(a_{-i}, b_{-i}, D)$ and $b_i > 0$ we have

$$\pi_i(\mathsf{a}, \mathsf{b}) = \frac{\lambda(\mathsf{a}, \mathsf{b}, \mathsf{D}) - \mathsf{a}_i}{4b_i^2} \big[\mathsf{a}_i \mathsf{b}_i - 2\mathsf{A}_i \mathsf{b}_i + \mathsf{a}_i \mathsf{B}_i + \lambda(\mathsf{a}, \mathsf{b}, \mathsf{D})(\mathsf{b}_i - \mathsf{B}_i)\big]$$

(b) for $0 < a_i \leq \lambda(a_{-i}, b_{-i}, D)$ and $b_i = 0$ (and so $a_i = \lambda^c(a, b)$)

$$\pi_i(\mathbf{a}, \mathbf{b}) = (\lambda^c(\mathbf{a}, \mathbf{b}) - A_i) \frac{D - D^c(\mathbf{a}, \mathbf{b})}{N^c(\mathbf{a}, \mathbf{b})} - B_i \left(\frac{D - D^c(\mathbf{a}, \mathbf{b})}{N^c(\mathbf{a}, \mathbf{b})}\right)^2,$$

(c) $\pi_i(a, b) \leq 0$ otherwise

Modeling of Electricit	y Markets	Problem of ISO 000000	Problem of Producer <i>i</i>	Conclusion
Assumptions				
Example:	$\pi_i(a_i, b_i)$			
500) ₁			
400)			
<u>බ</u> 300		_		
. ອ200				
100				
0 20				

15

10

a_i

5

0 0

0.1

0.08

0.06

0.04

b_i

0.02

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
The Best Response of Producer i			

Partial Directional Derivatives of $\pi_i(a, b)$

Now, we may calculate partial directional derivatives:

$$\begin{aligned} \partial_{a_i}^{\pm} \pi_i(a, b, D) &= \frac{1}{4b_i^3} \times \left[(\lambda(a, b, D) - A_i)(m^{\pm}(a, b, D)b_i - 2b_i^2) \\ &- (\lambda(a, b, D) - a_i)(m^{\pm}(a, b, D)B_i - 2b_iB_i - 2b_i^2) \right] \\ \partial_{b_i}^{\pm} \pi_i(a, b, D) &= \frac{\lambda(a, b, D) - a_i}{4b_i^4} \times \left[(\lambda(a, b, D) - A_i)(m^{\pm}(a, b, D)b_i - 2b_i^2) \\ &- (\lambda(a, b, D) - a_i)(m^{\pm}(a, b, D)B_i - 2b_iB_i - b_i^2) \right] \end{aligned}$$

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i>	Conclusion
The Best Response of Producer <i>i</i>			

The Best Response of Producer $i \in \mathcal{N}$

Theorem

Let $(a, b) \in \mathbb{R}^{2N}_+$ and D > 0. If (a_i, b_i) is the *i*-th producer's best response such that $\pi_i(a, b) > 0$, then $b_i = 0$.

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> ○○○○●○	Conclusion
The Best Response of Producer i			

The Best Response of Producer $i \in \mathcal{N}$

Theorem

Let $(a, b) \in \mathbb{R}^{2N}_+$ and D > 0. If (a_i, b_i) is the *i*-th producer's best response such that $\pi_i(a, b) > 0$, then $b_i = 0$.

Theorem

Let $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N-2}_+$ such that $\mathcal{N}^c(a_{-i}, b_{-i}) = \emptyset$, $D > F(a_{-i}, b_{-i}, A_i)$ and $b_i = 0$. Then, the best response $(a_i, 0)$ of producer $i \in \mathcal{N}$ yielding $\pi_i(a, b) > 0$ is a unique solution to

$$G^+(a_{-i}, b_{-i}, a_i) \ge D \ge G^-(a_{-i}, b_{-i}, a_i)$$

with

$$G^{\pm}(a_{-i}, b_{-i}, \lambda) = \frac{\lambda - A_i}{2B_i + m^{\pm}(a_{-i}, b_{-i}, F(a_{-i}, b_{-i}, \lambda))} + F(a_{-i}, b_{-i}, \lambda).$$

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> ○○○○○●	Conclusion

The Best Response of Producer i

Example: $\pi_i(a, b)$ with $b_i = 0$ and $\mathcal{N}^c(a_{-i}, b_{-i}) = \emptyset$

UPVD, CTU

Modeling of Electricity Markets	Problem of ISO	Problem of Producer <i>i</i> 000000	Conclusion

Main Achievements

- we found the analytic solution q(a, b) of ISO problem, including linear bids b_i = 0 and assuming a newly introduced equity property
- we shown that the best response of producer *i* is a linear bid, a_i > 0 and b_i = 0
- we derived implicit formula for optimal a_i under quite general conditions, we shown existence and uniqueness of such bid

Further Extensions

There are several possible extensions of the proposed model/technique

- ► to characterize all Nash Equilibria of the proposed model
- to consider transmission network
- to add production bounds $q_i \leq \overline{q}_i$

Thank you for your attention.

Selected References

- X. Hu and D. Ralph, Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices, Operations Research 55 (2007), 809-827.
- D. Aussel, M. Cervinka and M. Marechal, Day-ahead electricity market with production bounds, (2012), 24 pp.
- D. Aussel, R. Correa and P. Marechal Spot electricity market with transmission losses, J. Indust. Manag. Optim. (2012), 18 pages.
- R. Henrion, J.V. Outrata and T. Surowiec, Analysis of M-stationary points to an EPEC modeling Oligopolistic Competition in an Electricity Spot Market, ESAIM: COCV 18 (2012) 295-317