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Introduction

Introduction

Boring and useless definitions:

@ Bandits: Optimization of a noisy function.

Observations: f(x) + ex where &y is random variable
Statistics: lack of information (exploration)
Optimization: maximize f(-) (exploitation)

— Games: cumulative loss/payoff/reward

@ Covariates: Some additional side observations gathered

@ Start "easy': f is maximized over a finite set

Concrete, simple and understandable examples follow.
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Goggle

Some real world examples

flat rental paris

Web Images Maps Shopping Plus ~ Outils de recherche

Environ 7 470 000 résultats (0,31 secondes)

Annonces relatives a flat rental paris ®

Paris Holiday Apartments - HouseTrip.com

‘www.housetrip.com/Paris-Apartments ~

% %% 8 376 avis pour housetrip.com

Studios, 1-12 Bedroom Serviced Apts in Paris TV, & More From $44/n!

327 230 personnes sont abonnées 2 la page HouseTrip.com sur Google+
Make Money with HouseTrip Book with Peace of Mind
List Your Property Free Experience a HouseTrip

Short Term Rentals Paris - FlexiLocation.com
www flexilocation.com/ ~
Selected fully fumished apartments You only pay the rental price

Paris Short Term Rentals - 700 Stylish Apartments & Lofis
www.feelparis.com/ ~
In the Heart of Paris. Book Now!

Flat Rental Paris - Home
www.flatrentalparis.com/ ~

Flat Rental Paris offers a wide range of fumished apartments in Paris. For a vacation
rental in Paris, for a business trip or for a short or long term stay |, this ...
page Google+ - Soyez le premier & donner volre avis

=\ 20 Pua Saint.Saivanr 760D Darie

QUET . “Tealer (@)

g
Sentier (M) ct
Hotel Bellan

?
Sabasmopol @
& M

FLAT RENTAL PARIS

Etes-vous le propriétaire de létablissement 7 Sig

Annonces ®

Paris Serviced Apartments
www.ratedapartments.com/Paris ~
Find a great serviced apartment in
Paris with our experts!

Your apartment in Paris
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Some real world examples

GOUS[E Nightlife Tongoy

Web  [# Show options._.

Did you mean: Nightiife Cominetti Sorin

Environ 35 600 résuiltats (0,41 secondes)

Conseil : des résultats en frangais. Vous pouvez indiquer votre
langue de recherche sur la page Préférences.

Tongoy - Wikipedia, the free encyclopedia
en.wikipedia.org/wikiTongoy ~ Traduire cette page

Tongoy is a Chilean coastal town in the commune of Coguimbo in Elqui Province,
Coquimbo Region. It is located 42 km (26 mi) to the south of Chile's second ...

Villa Chena Tongoy - San Bemnardo - Nightlife | Facebook
hitps:/www.facebook.com/pages/Villa...Tongoy/573596072662029 ~

Villa Chena Tongoy, San Bemardo. 0 likes - 0 talking about this - 17 were here. Local
Business.

Voyages Et Transport Tongoy - Foursquare
https:/fir.foursquare.com/explore?q...near=Tongoy ~

Recommandations de Foursquare pour Voyages Et Transport dans Tongoy. Lieux
comme ... Sinon, essale :food, nightlife, coffee, shops, ars, outdoors. Afficher :.

Restaurants Tongoy : lire les avis sur des restaurants - Tongoy. Chili ...
www.tripadvisor.fr » .. s Chili » Coquimbo Region » Tongoy =

Note Restaurants - cuisine Fruits de mer/Poisson & Tongey, Coquimbo ... Restaurants
Tongoy ... Belambra Clubs- Arena Bianca & Propriano, Corse.
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Some real world examples

Livres anglais et &

Recherche détailée

+ J bandit

Nos rubriques Nouveautés Meileures ventes Bonnes affaires L

Livres anglais et étrangers > Relié » Plus de 50 EUR

Résultats 1-12 sur48

Bandits in the Roman Empire: Myth and Reality de Thomas Grunewald et John Drinkwater (Relié - 22 avril 2004)
Acheter neuf: EUR 79,18

6 neufs & partirde EUR 79,18 2 d'occasion & partir de EUR 71,26

Plus que 2 ex. Commandez vite !

Livraison gratuite possible (voir fiche produit)

Multi-armed Bandit Allocation Indices de John C. Gittins, Richard Weber et Kevin Glazebrook (Relié - 11 mars 2011)
Acheter neuf: EUR 75,18

10 neufs & partir de EUR 65,45 1 doccasion & partir de EUR 52,25

Recevez votre article le mercredi 21 septembre, i vous commandez dans les 6 heures et choisissez Ia livraison en 1 jour ouvre.

Plus que 1 ex. Commandez vite |

Livraison gratuite possible (voir fiche produit).

Bandit Territories: British Outlaw Traditions de Helen Phillips (Relié - 25 septembre 2008)
Acheter neuf: EUR 85,76

4 neufs & partirde EUR 82,77 1 d'occasion & partir de EUR 91,58

Plus que 3 ex. Commandez vite |

Livraison gratuite possible (voir fiche produit).

Bandits at Sea: A Pirates Reader de C.R. Pennell (Relié - 31 aolt 2000)
Acheter neuf: EUR 53,33
3neufs a partirde EUR 53,33 1 d'occasion & partir de EUR 87,66
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Simplified decision problem of Google

@ Different firms go to Google and offer

if you put my ad after the keywords "Flat Rental Paris", every
time a customer clicks on it, I'll give you b;’s euros

@ A given ad /i has some exogenous but unknown probability of
being clicked p;.

@ Displaying ad i gives in expectation p;.b; to Google.

@ Objective of Google... maximize cumulated payoff as fast as
possible.



Introduction

Simplified decision problem of Google

@ Different firms go to Google and offer

if you put my ad after the keywords "Flat Rental Paris", every
time a customer clicks on it, I'll give you b;’s euros

@ A given ad /i has some exogenous but unknown probability of
being clicked p;.

@ Displaying ad i gives in expectation p;.b; to Google.
@ Objective of Google... maximize cumulated payoff as fast as
possible.

Difficulties: The expected revenue of an ad i is unknown; p;
cannot be estimated if ad / is not displayed.

Take risk and display new ads (to compute new and maybe
high p;) or be safe and display the best estimated ad ?



Static case
Static bandit — No queries

Structure of a specific instance
@ Decision set: {1,...,K} (the setof "arms" ... ads).
@ Expected payoff of arm k: % € [0, 1]. Best ad *, f*.

@ Problem difficulty: Ay = f* — K, Apin = mina, -0 Ak

Repeated decision problem. At stage t € IN,
@ Choose k; € {1,...,K}, receive Y; € [0, 1] i.i.d. expectation

@ Observe only the payoff Y; (and not %) and move to stage t + 1

Objectives: maximize cumulative expected payoff or
Minimize regret: Rt = T.f* — ZL fke = ZL Ay,

Choose the quickest possible the best decision with noise.



Static case
Static Case: UCB

|
Lower bound for K=2: Ry > DM with Apin = min f* — ¥

mln

Famous algo: Upper Confidence Bound (and its variants)

Using UCB, E[Rr] < 8%, 2 T) e SKICEr(nP




Static case
Static Case: UCB

|
Lower bound for K=2: Ry > DM with Apin = min f* — ¥

mm

Famous algo: Upper Confidence Bound (and its variants)

— Draw each arm 1, .., K once and observe Y11,.., Y,’(( (Round 1)
— After stage t, compute the following:
@ fk =f#{r <t k- = k} the number of times arm k was drawn;

o YVf= tl > Yfan estimate of 1
k <tk —k

2log(1)

— Draw the arm k; .y = arg max Yﬁk + t

Using UCB, E[Rr] < 8", "X T) = SKICEr(n.n)



Static case
Remarks on UCB

@ Lower bound for K=2: Ry > DW Amin = Mina, >0 Ax
@ UCB algo:
— Draw each arm 1, .., K once and observe Y{, .., Y£ (Round 1)

2log(t)

— Draw the arm k1 = arg maxx Y{ + %

@ UCB Upper bound: E[Rr] <8, 41 < gk'ogtl)

Remarks:
— Proof based on Hoeffding inequality;
— Not intuitive: clearly suboptimal arms keep being drawn

— MOSS, a variant of UCB, achieves E[Ry] < DK %0 2uu/K)

Amin

— Neither log(T) or Klog(T A2, /K) sufficient with covariates.



Static case (Successive Elimination (SE))

Successive Elimination (SE)

Simple policy based on the intuition:
Determine the suboptimal arms, and do not play them.

Time is divided in rounds n € IN:

after round n: eliminate arms (with great proba.) suboptimal

i.e., arm k s.t. Yi4,/21290/0) < yk'_, [oloa(T/n)

at round n + 1: draw each remaining arm once.

Easy to describe, to understand (out not to analyse for k > 2..), intuitive.

Simple confidence term (but requires knowledge of T).
(SE) is a variant of Even-Dar et al. ('06) Auer and Ortner (*10)



Static case (Successive Elimination (SE))

Regret of successive elimination

Theorem [P. and Rigollet (’13)]
Played on K arms, the (SE) policy satisfies

E[R7] < Omin {Z 'Og(Ami), \/TKIog(K)}
k

k

@ UCB: Y, %47, MOSS: K (T 20/K)
@ E[R7] = >, Ax.E[nk] with nx the number of draws of arm k

@ Exact bound:



Static case (Successive Elimination (SE))

Regret of successive elimination

Theorem [P. and Rigollet (’13)]
Played on K arms, the (SE) policy satisfies

E[R7] < Omin {Z 'Og(ATAi), TKIog(K)}
K k

@ UCB: Y, %47, MOSS: K (T 20/K)
@ E[R7] = >, Ax.E[nk] with nx the number of draws of arm k

@ Exact bound:

E[Rr] < min {6462Iog (maXﬁA8 D 166\/W}



Static case (Successive Elimination (SE))

Successive Elimination: Example

Two arms

A round: a draw of both arms
T




Static case (Successive Elimination (SE))

Successive Elimination: Example

Two arms
m
A round: a draw of both arms
14
f Y11
.......................... h
log(T /1
209(1/ ) {
o W V2
Round 1: no elimination X 1
i)




Static case (Successive Elimination (SE))

Successive Elimination: Example

Two arms

_ T, /ola(1/2)
A round: a draw of both armsygt 2
11

i1}

+ Y2
e 2
Round 1: no elimination

Round 2: no elimination 1




Static case (Successive Elimination (SE))

Successive Elimination: Example

Two arms

™ /nlog(T/3
A round: a draw of both arms } 2409(3/ !
Y;

f1-x-
Az
Round 1: no elimination

Round 2: no elimination
Round 3: elimination




Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

7222800 _ gy o7




Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

2Iog(T/n) 2Iog(T/n)
n n

2+ <fl -



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

flofP=N,>2 2M
- n



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
Ao ny >0/ lod(TA7)
n A2




Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
Ao ny >0/ lod(TA7)
n A2

What could go wrong:

Arm 1 eliminated before round n.

P(Hngng, Vi v2< 2 2'09(;/”)> <u”_T2



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
f1 _ f2 Ay > 2 2Iog(T/n) n, < 0O Og( )
n A2

What could go wrong:

Arm 1 eliminated before round n, (with proba. < 072)

P(Hngng, vi_v2< 2 2"’91(;/”)) gu”_TZ



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
Ao ny >0/ lod(TA7)
n A2

What could go wrong:

Arm 2 not eliminated at round ..

P <Vn§ n, Y2 - Yl >_-2 2'09(:/”)>



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
Ao ny >0/ lod(TA7)
n A2

What could go wrong:

Arm 2 not eliminated at round ..

v ( v 2, /</>)



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
Ao ny > 2090/n  lod(T43)
n A2

What could go wrong:

Arm 2 not eliminated at round ..

P (V2 -V}, > -25,)



Static case (Successive Elimination (SE))

Sketch of proof with K =2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(TA2
Ao ny >0/ lod(TA7)
n A2

What could go wrong:

Arm 2 not eliminated at round n,. (with proba. < 0%)

P (IV), - V2] - Az < —0;) < exp (~0m) <072



Static case (Successive Elimination (SE))

Sketch of proof with K = 2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

log(T A2
Ao py >0/ 5lo9(TA7)
n A2

What could go wrong:

Number of draws of arm 2 (each incurs a regret of Ay):
T if something wrong (w.p. 07%2), n, otherwise (w.p. < 1):

log(TA3)

E[RT] < |:n2 + Dn—; T:| Ao < OnoAs <O ,



Dynamic Framework
General Model

Covariates: X; € X = [0, 1], i.i.d., law x (equivalent to) )

@ Examples: request received by Amazon or Google
@ X; observed before taking a decision at time t € IN

@ Equivalence: two unknown constants cA(A) < u(A) < CA\(A)



Dynamic Framework
General Model

Decisions: k; € £ = {1, .., K}; construction of a policy =

@ Examples: Choice of the ad to be displayed
@ Decision k; taken after the observation of X; at time t € IN

@ Objectives: Find the best decision given the request



Dynamic Framework
General Model

Payoff: YX € [0,1] ~ vX(Xy), B[YX|X] = fX(X)

@ Examples: proba/reward of click on ad k function of the request
@ Only Y/ is observed before moving to stage  + 1;

@ Optimization: Find the decision k; that maximizes 7%(X;)



Dynamic Framework
General Model

Objective: regret Ry := >, (X0 (X;) — k1 (X;) < o(T)
@ Optimal policy: 7*(X) = argmax f*(X); and =" X)(X) = f*(X)
@ Maximize cumulated payoffs Zt; fk(X;) or minimize regret

@ Find a policy = asymptotic. at least as well as 7* (in average)



Dynamic Framework
Regularity assumptions

@ Smoothness of the pb: Every f* is 3-hélder, with 3 € (0, 1]:

IL>0,Vx,y e X, [[f(x) - f(y)ll < LlIx - y||”

@ Complexity of the pb: (a-margin condition) 36, > 0 and Cy > 0

Px [o < ‘ﬂ (x) — f2(x)‘ < 5} < Cod®, Vo € (0,d)



Dynamic Framework
Regularity assumptions

@ Smoothness of the pb: Every f* is 3-hélder, with 3 € (0, 1]:

IL>0,Vx,y € X, [If(x) — f(y)| < LIx—y]”

@ Complexity of the pb: (a-margin condition) 35, > 0 and Cy > 0

Px {0<

F(x) — fﬁ(x)‘ < 5} < Cod, V5 € (0,5)

where f*(x) = max, f¥(x) s the maximal < and
f4(x) = max {f¥(x) s.t. f*(x) < f*(x)} is the second max.

With K > 2: f* is 8-Hélder but * is not continuous.



Dynamic Framework
Regularity: an easy example (« big)

f1(x)




Dynamic Framework
Regularity: an easy example (« big)

f1(x)

2(x)
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Regularity: an easy example (« big)

f1(x)

2(x)




Dynamic Framework
Regularity: an easy example (« big)

F+(x) f1(x)

2(x)




Dynamic Framework
Regularity: an easy example (« big)

F+(x) f1(x)

2(x)




Dynamic Framework
Regularity: an easy example (« big)

F+(x) f1(x)

2(x)




Dynamic Framework
Regularity: a hard example (o small)

f1(x)




Dynamic Framework
Regularity: a hard example (o small)

f1(x)

2(x)




Dynamic Framework
Regularity: a hard example (o small)

f3(x) f1(X)

2(x)




Dynamic Framework
Regularity: a hard example (o small)

f3(x) f1(X)

*(x 2(x)




Dynamic Framework

Regularity: a hard example (o small)

f*

f3(x) f1(X)

2(x)




Dynamic Framework
Regularity: a hard example (o small)




Dynamic Framework
Conflict between o and 3

360, Co, Px |0 < F(x) — Fi(x) < 5} < Cod®, V6 € (0,d)

— First used by Goldenshluger and Zeevi ('08) — case ' = 0;
It was an assumption on the distribution of X only

— Here: fixed marginal (uniform), measures closeness of functions.

Proposition: Conflict o vs. g

af > d = all arms are either always or never optimal

Smoothness g is known, but complexity « is not known.



Dynamic Framework (Binned Successive Elimination (BSE))

Binned policy
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Binned policy
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Binned policy




Dynamic Framework (Binned Successive Elimination (BSE))

Binned policy

— Consider the uniform partition of [0, 1]9 into 1/M? bins
Bins: hypercube B with side length |B| equal to M.

— Each bin is an independent problem; exact value of X; discarded

— Average reward of bin B: f§ = % (P(B) ~ M)

Follow on each bin your favorite static policy.

Reduction to 1/M? static bandits pb. with expected reward (f3, .., fX).

see Rigollet and Zeevi ('10)



Dynamic Framework

Binned Successive Elimination (BSE)

(Binned Successive Elimination (BSE))

R



Dynamic Framework (Binned Successive Elimination (BSE))

Binned Successive Elimination (BSE)

Theorem [P. and Rigollet ("11)]

B(1+a)
2p+d

f0 < a <1, E[RA(BSE)] <OT (%) with the choice

1
of parameter M ~ (%(K)) 2p+d
For K = 2, matches lower bound: minimax optimal w.r.t. T.

@ Same bound can be obtained in the full info. setting (Audibert
and Tsybakov, '07)

@ No log(T): difficulty of nonparametric estimation washes away
the effects of exploration/exploitation.

@ o < 1: cannot attain fast rates



Dynamic Framework (Binned Successive Elimination (BSE))

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

Hard bins (Ag < MP):

Ry < MP.P (Hard) T < M°.P (0<f — < MB) T < TMPU+e)

* — fidP
with Ag = sup f*(x) — fi(x :fBi
8= SR 0= ")



Dynamic Framework (Binned Successive Elimination (BSE))

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

)

B(l+a
Hard bins (Ag < M?): Ry < TMP(1+o) < T <%(K>) 26+

Ry < MP.P (Hard) T < MPP (0 < f* — f* < MP) T < TM?(1+e)

* — fidP
with Ag = sup *(x) — fi(x :fBi
8= g 0= ")



Dynamic Framework (Binned Successive Elimination (BSE))

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

Easy bins ( Ag#M?):

log ((TM9)A32)
Rp <O
oo e%s; A
y

f~ — fidp
with Ag = sup *(x) — fi(x ngi
b A 1)



Dynamic Framework (Binned Successive Elimination (BSE))

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

Easy bins ( Ag > MP):

log ((TM9)A3)
Rp < O
oo e%s; Asp
y

Order the Agas Ay < Ap < ... < Ay,-s then

vee{1,., M9, El\/ldglP(0<f*—fﬁ<Ag> < AP



Dynamic Framework (Binned Successive Elimination (BSED

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

Easy bins ( Ag > MP):

M- d d\2/a
log ((TM )(eM9)?/ )

Ap <O Z (eMd) /e
¢=Mas—d

Order the Agas Ay < Ap < ... < Ay-s then

vee {1, M), MU <P (0< - <) < A7



Dynamic Framework (Binned Successive Elimination (BSE))

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

B(1+a)

Easy bins ( Ag > MP): Ry < OTMP(U+e) < OT (M>m

M- d d\2/a
log ((TM )(EM?) / )

Rp <O Z (¢Md) /e
¢=Mas—d

< TMB(1+0¢)

because (for a < 1):

M log ((TMO)(eMP)2/2)  log (TM25+9)

g_,\%:ﬁd (gMd)1/a - MA+B(1—a)

< TM,B(1+oz)




Dynamic Framework (Binned Successive Elimination (BSE))

Sketch for K =2
Decomposition of regret: E[R7(BSE)] = Ru + Re

@ For a > 1 additional terms: I£[R7] multiplied by log(T).

@ We always pay the number of bins (that should be large enough
for non-smooth functions)

@ Problem is: too many bins. Solution: Online/adaptive
construction of the bins.



Dynamic Framework Adaptively BSE (ABSE)

Suboptimality of (BSE) for oo > 1

L T




Dynamic Framework

Suboptimality of (BSE) for oo > 1

A0

f2(x)

éf3(X)

Adaptively BSE (ABSE)



Dynamic Framework Adaptively BSE (ABSE)

Adaptative BSE (ABSE)

Basic idea: Given a bin of size |B| (for K = 2):

If } — 2 > 0O|B|® then f' > 2 on B.

Adaptively Binned Successive Elimination

1
Start with B = [0,1] and |B|y ~ (M) 25+d

— Draw samples (in rounds) of arms when covariates are in B;

— If Y& — V& >0,/ '9TIBY/N) | 5|B)s then eliminate arm K';
— Stop after ng rounds and split B in two halves (of size |B|/2) with

Iog(TIB\d/nB) _ - |OQ(T‘B|2‘B+d)
POL = |B)P and  ng =~ P9 g

— Repeat the procedure on two halves (until |B| < |B|o).



Dynamic Framework Adaptively BSE (ABSE)

Regret of (ABSE)

Theorem [P. and Rigollet ("11)]

Fix « > 0and 0 < 8 < 1 then (ABSE) has a regret bounded as
Klog(K)\ 25¢
E[Rr(ABSE)] < OT <°;3_()>

@ Minimax optimal (Rigollet and Zeevi, 2010. See also Audibert
and Tsybakov, 2007)

@ Slivkins (2011, COLT): Zooming (abstract setup, complicated
algorithm); no real purpose nor measure to adaptive policy.



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) illustrated

/—;’—

L |\/| ]
0 1/4 1/2 i
0.1 (1~2)
keep 1 2
[0,3] (1~2) [3:1] (122)
p tand 2 eliminate 2
[0,7] (1>2) [0,7] (221)

eliminate 2 eliminate 1



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) illustrated

/—;’—

I |\/l 1
0 1/4 1/2 1
eliminate 1 or 2 0,1 (1~2)
keep 1 2

eliminate 1 or

eliminate 1 or 2 not eliminate 2

[0,3] (1~2) 11 (1>2)
eliminate 1 or /zép*and\2 eliminate 2
not eliminate
[0.3] (1>2) [0,1] (2> 1) eliminate 2 or

eliminate 2 eliminate 1  not eliminate 1



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

Terminal node:

Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)

Happens with proba. less than D%

Number of times covariates in B less than O T|B|¢

Regret each time less than Ag < |B|?



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) Sketch of proof
e If everything goes right:
When a bin B is reach, one has Ag < |B|? (so regret < ng|B|?).
e What could go wrong
Terminal node: Rg < Ong|B|? < log(T|B|?%+9)|B|~5

Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)

Happens with proba. less than D%

Number of times covariates in B less than O T|B|¢

Regret each time less than Ag < |B|?



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

Non-terminal node:
— Eliminate arm 1 or eliminate arm 2 (f2 < 7} < 72 + |B|°)

— Forarm 1, same analysis. For arm 2:

log(T1B|?/n)

In<ng Y - -

c log(T|B|9



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

Non-terminal node:
— Eliminate arm 1 or eliminate arm 2 (f2 < 7} < 72 + |B|°)

— For arm 1, same analysis. For arm 2:

— — / d
EngnB, Y,;—Ys—ABZZ W—HBW—AB



Dynamic Framework Adaptively BSE (ABSE)

(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

Non-terminal node:
— Eliminate arm 1 or eliminate arm 2 (f2 < f} < 72 + |B|°)
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(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

Non-terminal node: Rg < (ng|B|® < log(T|B|?#*9)|B|~*
— Eliminate arm 1 or eliminate arm 2 (f2 < f} < 72 + |B|°)

— For arm 1, same analysis. For arm 2:
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(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

N, =number of bins of size |B| = 2~¢ (and 2% = |B|y):
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(ABSE) Sketch of proof

e If everything goes right:
When a bin B is reach, one has Ag < |B|® (so regret < ng|B|").

e What could go wrong

N, =number of bins of size |B| = 2~¢ (and 2% = |B|y):
N2~ < P (o < ff < 2-”) <o-taf  gng
B(1+a)

E[Rr] < OT (KIo?_(K)>




Conclusion and Remark

Conclusion
We introduced and analyzed new policies:

@ Sequential Elimination: an intuitive policy with great potential for
the static case;

@ Binned SE: its generalization for hard dynamic pb;

@ Adaptively BSE: again generalized for both easy and hard pb.

— There are all minimax optimal in T;
— Conjecture: also in K up to the term log(K).
— They require the knowledge of T (OK) and 8 (more arguable)

— Analysis more intricate when K > 2: optimal arm can be
eliminated more easily, f* non continuous

— Future work: adaptive policy w.r.t. 5
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