The multi armed-bandit problem (with covariates if we have time)

Vianney Perchet &

Philippe Rigollet

LPMA Université Paris – Diderot ORFE Princeton University

Algorithms and Dynamics for Games and Optimization

October, 14-18th 2013

Introduction

Introduction

Boring and useless definitions:

- Bandits: Optimization of a noisy function.
 - Observations: $f(x) + \varepsilon_x$ where ε_x is random variable
 - Statistics: lack of information (exploration)
 - **Optimization**: maximize $f(\cdot)$ (exploitation)
 - Games: cumulative loss/payoff/reward
- Covariates: Some additional side observations gathered
- Start "easy": f is maximized over a finite set

Concrete, simple and understandable examples follow.

Some real world examples

30 Puo Saint Sauvour, 75002 Paris

Some real world examples

~ *			
Google	Nightlife Tongoy	(Search

Web Show options...

Did you mean: Nightlife Cominetti Sorin

Environ 35 600 résultats (0,41 secondes)

Conseil : <u>Recherchez des résultats uniquement en français</u>. Vous pouvez indiquer votre langue de recherche sur la page <u>Préférences</u>.

Tongoy - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Tongoy - Traduire cette page Tongoy is a Chilean coastal town in the commune of Coquimbo in Elqui Province, Coquimbo Region. It is located 42 km (26 mi) to the south of Chile's second ...

<u>Villa Chena Tongoy - San Bernardo - Nightlife | Facebook</u> https://www.facebook.com/pages/Villa...**Tongoy**/573596072662029 ▼ Villa Chena Tongoy, San Bernardo. 0 likes · 0 talking about this · 17 were here. Local Business.

<u>Voyages Et Transport Tongoy - Foursquare</u> https://fr.foursquare.com/explore?q...near=Tongoy -Recommandations de Foursquare pour Voyages Et Transport dans Tongoy. Lieux comme ... Sinon, essaie : food, nightlife, coffee, shops, arts, outdoors. Afficher :.

Restaurants Tongoy : lire les avis sur des restaurants - Tongoy, Chili ... www.tripadvisor.fr ... > Chili > Coquimbo Region > Tongoy * Note Restaurants - cuisine Fruits de mer/Poisson à Tongoy, Coquimbo ... Restaurants Tongoy ... Belambra Clube-Arena Bianca à Propriano, Corse.

Some real world examples

Rechercher Livres and	glais et étrang	ers 🗘 bandit				
Recherche détaillé	0	Nos rubriques	Nouveautés	Meilleures ventes	Bonnes affaires	
Livres anglais et é	étrangers ›	Relié⇒ Plus de 50 EU	IR → <u>"bandit"</u>			
1. feuilleter	Bandit Acheter 6 neufs Plus que Livraisc	is in the Roman Emp neuf: EUR 79,18 à partir de EUR 79,18 a 2 ex. Commandez vite ! on gratuite possible (voir f	pire: Myth and Reality d 2 d'occasion à partir de EUR Iche produit).	e Thomas Grunewald et John I 71,26	Drinkwater (Relié - 22 avril	l 2004)
2. feuilleteri Michael Marchieleteri Statistical Statistics Statis	Multi-a Acheter 10 neufs Receve: Plus que Livraiso	armed Bandit Alloca ineuf: EUR 75,18 à partir de EUR 65,45 z votre article le mercredi 1 ex. Commandez vite ! n gratuite possible (voir f	tion Indices de John C, <u>1 d'occasion</u> à partir de EUI 21 septembre, si vous comn iche produit).	Gittins, Richard Weber et Kevin R 52,25 aandez dans les 6 heures et choisist	Glazebrook (Relié - 11 m.	ars 2011
3. Bandin Griefer	Bandit Acheter 4 neufs Plus que Livraisc	Territories: British neuf: EUR 85,76 à partir de EUR 82,77 a 3 ex. Commandez vite ! on gratuite possible (voir f	Outlaw Traditions de H <u>1 d'occasion</u> à partir de EUR iche produit).	elen Phillips (Relié - 25 septem 91,59	ibre 2008)	
4. Bandits	Bandit Acheter	ts at Sea: A Pirates F neuf: EUR 53,33 à partir de EUR 53,33	Reader de C.R. Pennell (Relié - 31 août 2000) 97,86		

Simplified decision problem of Google

- Different firms go to Google and offer if you put my ad after the keywords "Flat Rental Paris", every time a customer clicks on it, I'll give you *b*_i's euros
- A given ad *i* has some exogenous but unknown probability of being clicked *p_i*.
- Displaying ad *i* gives in expectation $p_i.b_i$ to Google.
- Objective of Google... maximize cumulated payoff as fast as possible.

Simplified decision problem of Google

- Different firms go to Google and offer if you put my ad after the keywords "Flat Rental Paris", every time a customer clicks on it, I'll give you *b*_i's euros
- A given ad *i* has some exogenous but unknown probability of being clicked *p_i*.
- Displaying ad *i* gives in expectation *p_i*.*b_i* to Google.
- Objective of Google... maximize cumulated payoff as fast as possible.

Difficulties: The expected revenue of an ad *i* is unknown; p_i cannot be estimated if ad *i* is not displayed.

Take risk and display new ads (to compute new and maybe high p_i) or be safe and display the best estimated ad ?

Static bandit – No queries

Structure of a specific instance

- Decision set: $\{1, \ldots, K\}$ (the set of "arms" ... ads).
- Expected payoff of arm k: $f^k \in [0, 1]$. Best ad \star , f^{\star} .
- Problem difficulty: $\Delta_k = f^* f^k$, $\Delta_{\min} = \min_{\Delta_k > 0} \Delta_k$

Repeated decision problem. At stage $t \in \mathbb{N}$,

- Choose $k_t \in \{1, \dots, K\}$, receive $Y_t \in [0, 1]$ i.i.d. expectation f^{k_t}
- Observe only the payoff Y_t (and not f^{k_t}) and move to stage t + 1

Objectives: maximize cumulative expected payoff or Minimize regret: $R_T = T.f^* - \sum_{t=1}^T f^{k_t} = \sum_{t=1}^T \Delta_{k_t}$

Choose the quickest possible the best decision with noise.

Static Case: UCB

Lower bound for K=2: $R_T \ge \Box \frac{\log(T \Delta_{\min}^2)}{\Delta_{\min}}$ with $\Delta_{\min} = \min f^* - f^k$

Famous algo: Upper Confidence Bound (and its variants)

Static Case: UCB

Lower bound for K=2: $R_T \ge \Box \frac{\log(T \Delta_{\min}^2)}{\Delta_{\min}}$ with $\Delta_{\min} = \min f^* - f^k$

Famous algo: Upper Confidence Bound (and its variants)

- Draw each arm 1,.., K once and observe $Y_1^1, .., Y_K^K$ (Round 1)
- After stage t, compute the following:

t_k = ♯ {τ ≤ t; k_τ = k} the number of times arm k was drawn;
 Y
^k_t = 1/t_k ∑_{τ≤t; k_τ=k} Y^k_τ an estimate of t^k

- Draw the arm $k_{t+1} = \arg \max_k \bar{Y}_t^k + \sqrt{\frac{2\log(t)}{t_k}}$

Using UCB,
$$\mathbb{E}[R_T] \leq 8 \sum_k \frac{\log(T)}{\Delta_k} \leq 8K \frac{\log(T)}{\Delta_{\min}}$$

Remarks on UCB

- Lower bound for K=2: $R_T \ge \Box \frac{\log(T\Delta_{\min}^2)}{\Delta_{\min}}$, $\Delta_{\min} = \min_{\Delta_k > 0} \Delta_k$
- UCB algo:

- Draw each arm 1, ..., K once and observe $Y_1^1, ..., Y_K^K$ (Round 1)

- Draw the arm $k_{t+1} = \arg \max_k \bar{Y}_t^k + \sqrt{\frac{2 \log(t)}{t_k}}$
- UCB Upper bound: $\mathbb{E}[R_T] \leq 8 \sum_k \frac{\log(T)}{\Delta_k} \leq 8K \frac{\log(T)}{\Delta_{\min}}$

Remarks:

- Proof based on Hoeffding inequality;
- Not intuitive: clearly suboptimal arms keep being drawn
- MOSS, a variant of UCB, achieves $\mathbb{E}[R_T] \leq \Box K \frac{\log(T\Delta_{\min}^2/K)}{\Delta_{\min}}$
- Neither log(*T*) or $K \log(T\Delta_{\min}^2/K)$ sufficient with covariates.

Successive Elimination (SE)

Simple policy based on the intuition: Determine the suboptimal arms, and do not play them.

Time is divided in rounds $n \in \mathbb{N}$:

- after round n: eliminate arms (with great proba.) suboptimal

i.e., arm k s.t. $\bar{Y}_n^k + \sqrt{2\frac{\log(T/n)}{n}} \leq \bar{Y}_n^{k'} - \sqrt{2\frac{\log(T/n)}{n}}$

- at round n + 1: draw each remaining arm once.
- Easy to describe, to understand (but not to analyse for K > 2...), intuitive.
- Simple confidence term (but requires knowledge of *T*).
- (SE) is a variant of Even-Dar et al. ('06) Auer and Ortner ('10)

Regret of successive elimination

Theorem [P. and Rigollet ('13)]

Played on K arms, the (SE) policy satisfies

$$\mathbb{E}[\boldsymbol{R}_{T}] \leq \Box \min\left\{\sum_{k} \frac{\log(T\Delta_{k}^{2})}{\Delta_{k}}, \sqrt{TK\log(K)}\right\}$$

- UCB: $\sum_{k} \frac{\log(T)}{\Delta_{k}}$, MOSS: $K \frac{\log(T\Delta_{\min}^{2}/K)}{\Delta_{\min}}$
- $\mathbb{E}[R_T] = \sum_k \Delta_k . \mathbb{E}[n_k]$ with n_k the number of draws of arm k
- Exact bound:

Regret of successive elimination

Theorem [P. and Rigollet ('13)]

Played on K arms, the (SE) policy satisfies

$$\mathbb{E}[\boldsymbol{R}_{T}] \leq \Box \min\left\{\sum_{k} \frac{\log(T\Delta_{k}^{2})}{\Delta_{k}}, \sqrt{TK\log(K)}\right\}$$

• UCB:
$$\sum_{k} \frac{\log(T)}{\Delta_{k}}$$
, MOSS: $K \frac{\log(T \Delta_{\min}^{2}/K)}{\Delta_{\min}}$

- $\mathbb{E}[R_T] = \sum_k \Delta_k . \mathbb{E}[n_k]$ with n_k the number of draws of arm k
- Exact bound:

$$\mathbb{E}[R_T] \le \min\left\{ 646 \sum_k \frac{1}{\Delta_k} \log\left(\max\left[\frac{T\Delta_k^2}{18}, e\right] \right), 166\sqrt{TK \log(K)} \right\}$$

(Successive Elimination (SE))

Successive Elimination: Example

(Successive Elimination (SE))

Successive Elimination: Example

Successive Elimination (SE)

Successive Elimination: Example

Successive Elimination (SE)

Successive Elimination: Example

Round 2: no elimination

Round 3: elimination

$$\overline{\mathbf{Y}_n^2} + \sqrt{2\frac{\log(T/n)}{n}} \leq \overline{\mathbf{Y}_n^1} - \sqrt{2\frac{\log(T/n)}{n}}$$

$$f^{2} + \sqrt{2\frac{\log(T/n)}{n}} \leq f^{1} - \sqrt{2\frac{\log(T/n)}{n}}$$

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2\frac{\log(T/n)}{n}}$$

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2rac{\log(T/n)}{n}} \qquad n_2 \le \Box rac{\log(T\Delta_2^2)}{\Delta_2^2}$$

 $n_2 \leq \Box \frac{\log(T\Delta_2^2)}{\Delta_2^2}$

Sketch of proof with K = 2

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2\frac{\log(T/n)}{n}}$$

What could go wrong:

Arm 1 eliminated before round n₂

$$\mathbb{P}\left(\exists n \leq n_2, \ \bar{Y}_n^1 - \bar{Y}_n^2 \leq -2\sqrt{2\frac{\log(T/n)}{n}}\right) \leq \Box \frac{n_2}{T}$$

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2rac{\log(T/n)}{n}} \qquad n_2 \le \Box rac{\log(T\Delta_2^2)}{\Delta_2^2}$$

What could go wrong:

Arm 1 eliminated before round n_2 (with proba. $\leq \Box \frac{n_2}{T}$)

$$\mathbb{P}\left(\exists n \leq n_2, \ \bar{Y}_n^1 - \bar{Y}_n^2 \leq -2\sqrt{2\frac{\log(T/n)}{n}}\right) \leq \Box \frac{n_2}{T}$$

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2\frac{\log(T/n)}{n}}$$
 $n_2 \le \Box \frac{\log(T\Delta_2^2)}{\Delta_2^2}$

What could go wrong:

Arm 1 **eliminated** before round n_2 (with **proba**. $\leq \Box \frac{n_2}{T}$)

$$\mathbb{P}\left(\forall n \leq n_2, \bar{Y}_n^2 - \bar{Y}_n^1 \geq -2\sqrt{2\frac{\log(T/n)}{n}}\right)$$

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2\frac{\log(T/n)}{n}}$$
 $n_2 \le \Box \frac{\log(T\Delta_2^2)}{\Delta_2^2}$

What could go wrong:

Arm 1 **eliminated** before round n_2 (with **proba**. $\leq \Box \frac{n_2}{T}$)

$$\mathbb{P}\left(\bar{Y}_{n_2}^2 - \bar{Y}_{n_2}^1 \ge -2\sqrt{2\frac{\log(T/n_2)}{n_2}}\right)$$

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2\frac{\log(T/n)}{n}}$$
 $n_2 \le \Box \frac{\log(T\Delta_2^2)}{\Delta_2^2}$

What could go wrong:

Arm 1 **eliminated** before round n_2 (with **proba**. $\leq \Box \frac{n_2}{T}$)

$$\mathbb{P}\left(\bar{Y}_{n_2}^2 - \bar{Y}_{n_2}^1 \ge -2\Delta_2\right)$$

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2rac{\log(T/n)}{n}}$$
 $n_2 \le \Box rac{\log(T\Delta_2^2)}{\Delta_2^2}$

What could go wrong:

Arm 1 eliminated before round n_2 (with proba. $\leq \Box \frac{n_2}{T}$)

Arm 2 not eliminated at round n_2 . (with proba. $\leq \Box \frac{n_2}{T}$)

$$\mathbb{P}\left([\bar{Y}_{n_2}^1 - \bar{Y}_{n_2}^2] - \Delta_2 \le -\Delta_2\right) \le \exp\left(-\Box n_2 \Delta_2^2\right) \le \Box \frac{n_2}{T}$$

Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

$$f^1 - f^2 = \Delta_2 \ge 2\sqrt{2rac{\log(T/n)}{n}} \qquad n_2 \le \Box rac{\log(T\Delta_2^2)}{\Delta_2^2}$$

What could go wrong:

Arm 1 eliminated before round n_2 (with proba. $\leq \Box \frac{n_2}{T}$)

Arm 2 not eliminated at round n_2 . (with proba. $\leq \Box \frac{n_2}{T}$)

Number of draws of arm 2 (each incurs a regret of Δ_2):

T if something wrong (w.p. $\Box \frac{n_2}{T}$), n_2 otherwise (w.p. \leq 1):

$$\mathbb{E}[R_T] \leq \left[n_2 + \Box \frac{n_2}{T}T\right] \Delta_2 \leq \Box n_2 \Delta_2 \leq \Box \frac{\log(T\Delta_2^2)}{\Delta_2}$$

Covariates: $X_t \in \mathcal{X} = [0, 1]^d$, i.i.d., law μ (equivalent to) λ

- Examples: request received by Amazon or Google
- X_t observed before taking a decision at time $t \in \mathbb{N}$
- Equivalence: two unknown constants $\underline{c}\lambda(A) \le \mu(A) \le \overline{c}\lambda(A)$

Decisions: $k_t \in \mathcal{K} = \{1, .., K\}$; construction of a policy π

Payoff: $Y_t^k \in [0, 1] \sim \nu^k(X_t), \mathbb{E}[Y^k | X] = f^k(X)$

Covariates: $X_t \in \mathcal{X} = [0, 1]^d$, i.i.d., law μ (equivalent to) λ

Decisions: $k_t \in \mathcal{K} = \{1, .., K\}$; construction of a policy π

- Examples: Choice of the ad to be displayed
- Decision k_t taken after the observation of X_t at time $t \in \mathbb{N}$
- Objectives: Find the best decision given the request

Payoff: $Y_t^k \in [0, 1] \sim \nu^k(X_t), \mathbb{E}[Y^k | X] = f^k(X)$

Covariates: $X_t \in \mathcal{X} = [0, 1]^d$, i.i.d., law μ (equivalent to) λ

Decisions: $k_t \in \mathcal{K} = \{1, .., K\}$; construction of a policy π

Payoff: $Y_t^k \in [0, 1] \sim \nu^k(X_t)$, $\mathbb{E}[Y^k | X] = f^k(X)$

- Examples: proba/reward of click on ad k function of the request
- Only $Y_t^{k_t}$ is observed before moving to stage t + 1;
- Optimization: Find the decision k_t that maximizes $f^k(X_t)$

Covariates: $X_t \in \mathcal{X} = [0, 1]^d$, i.i.d., law μ (equivalent to) λ

Decisions: $k_t \in \mathcal{K} = \{1, .., K\}$; construction of a policy π

Payoff: $Y_t^k \in [0, 1] \sim \nu^k(X_t), \mathbb{E}[Y^k | X] = f^k(X)$

- Optimal policy: $\pi^{\star}(X) = \arg \max f^k(X)$; and $f^{\pi^{\star}(X)}(X) = f^{\star}(X)$
- Maximize cumulated payoffs $\sum_{t=1}^{T} f^{k_t}(X_t)$ or minimize regret
- Find a policy π asymptotic. at least as well as π^* (in average)

Regularity assumptions

Smoothness of the pb: Every f^k is β -hölder, with $\beta \in (0, 1]$:

$$\exists L > 0, \forall x, y \in \mathcal{X}, \|f(x) - f(y)\| \le L \|x - y\|^{\beta}$$

2 Complexity of the pb: (α -margin condition) $\exists \delta_0 > 0$ and $C_0 > 0$

$$\mathbb{P}_X\left[0 < \left|f^1(x) - f^2(x)\right| < \delta
ight] \leq C_0 \delta^lpha, \quad orall \delta \in (0, \delta_0)$$

Regularity assumptions

Smoothness of the pb: Every f^k is β -hölder, with $\beta \in (0, 1]$:

$$\exists L > 0, \forall x, y \in \mathcal{X}, \|f(x) - f(y)\| \le L \|x - y\|^{\beta}$$

2 Complexity of the pb: (α -margin condition) $\exists \delta_0 > 0$ and $C_0 > 0$

$$\mathbb{P}_X\left[0 < \left| f^\star(x) - f^\sharp(x) \right| < \delta
ight] \leq C_0 \delta^lpha, \quad orall \delta \in (0, \delta_0)$$

where $f^*(x) = \max_k f^k(x)$ is the maximal f^k and $f^{\sharp}(x) = \max \{f^k(x) \ s.t. \ f^k(x) < f^*(x)\}$ is the second max.

With K > 2: f^* is β -Hölder but f^{\sharp} is not continuous.

Adaptively BSE (ABSE

Regularity: an easy example (α **big)**

Conflict between α and β

$$\exists \delta_0, \ \mathcal{C}_0, \ \mathbb{P}_X \left[0 < f^*(x) - f^{\sharp}(x) < \delta \right] \leq \mathcal{C}_0 \delta^{\alpha}, \quad \forall \delta \in (0, \delta_0)$$

- First used by Goldenshluger and Zeevi ('08) case f¹ = 0;
 It was an assumption on the distribution of X only
- Here: fixed marginal (uniform), measures closeness of functions.

Proposition: Conflict α vs. β

 $\alpha\beta > d \Longrightarrow$ all arms are either always or never optimal

Smoothness β is known, but complexity α is **not** known.

- Consider the uniform partition of $[0, 1]^d$ into $1/M^d$ bins Bins: hypercube *B* with side length |B| equal to *M*.
- Each bin is an independent problem; exact value of X_t discarded
- Average reward of bin B: $\overline{t}_B^k = \frac{\int_B t^k(x) d\mathbb{P}(x)}{\mathbb{P}(B)}$ ($\mathbb{P}(B) \simeq M^d$)

Follow on each bin your favorite static policy.

Reduction to $1/M^d$ static bandits pb. with expected reward $(\bar{f}_B^1, ..., \bar{f}_B^K)$. see Rigollet and Zeevi ('10)

Binned Successive Elimination (BSE)

Binned Successive Elimination (BSE)

Theorem [P. and Rigollet ('11)]

If
$$0 < \alpha < 1$$
, $\mathbb{E}[R_T(BSE)] \le \Box T \left(\frac{K \log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$ with the choice of parameter $M \simeq \left(\frac{K \log(K)}{T}\right)^{\frac{1}{2\beta+d}}$

For K = 2, matches lower bound: minimax optimal w.r.t. *T*.

- Same bound can be obtained in the full info. setting (Audibert and Tsybakov, '07)
- No log(T): difficulty of nonparametric estimation washes away the effects of exploration/exploitation.
- $\alpha < 1$: cannot attain fast rates

Hard bins ($\Delta_B < M^{\beta}$):

 $R_{\mathrm{H}} \leq M^{\beta}.\mathbb{P} (\mathrm{Hard}) T \leq M^{\beta}.\mathbb{P} \left(0 < f^{\star} - f^{\sharp} < M^{\beta}
ight) T \leq TM^{\beta(1+\alpha)}$

Easy bins ($\Delta_B \not< M^{\beta}$):

with
$$\Delta_B = \sup_{x \in B} f^*(x) - f^{\sharp}(x) \simeq \frac{\int_B f^* - f^{\sharp} d\mathbb{P}}{\mathbb{P}(B)}$$

 $\beta(1+\alpha)$

Sketch for K = 2**Decomposition of regret:** $\mathbb{E}[R_T(BSE)] = R_H + R_E$

Hard bins
$$(\Delta_B < M^{\beta})$$
: $R_{\rm H} \le TM^{\beta(1+\alpha)} \le T\left(\frac{K\log(K)}{T}\right)^{\frac{1}{2\beta+d}}$

 $R_{\mathrm{H}} \leq M^{\beta}.\mathbb{P} \left(\mathsf{Hard}\right) T \leq M^{\beta}.\mathbb{P} \left(0 < f^{\star} - f^{\sharp} < M^{\beta}\right) T \leq TM^{\beta(1+\alpha)}$

Easy bins ($\Delta_B \not< M^{\beta}$):

with
$$\Delta_B = \sup_{x \in B} f^*(x) - f^{\sharp}(x) \simeq \frac{\int_B f^* - f^{\sharp} d\mathbb{P}}{\mathbb{P}(B)}$$

Hard bins $(\Delta_B < M^{\beta})$: $R_{\mathrm{H}} \leq TM^{\beta(1+\alpha)} \leq T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$

Easy bins ($\Delta_B \not< M^{\beta}$ **):**

$$\textit{R}_{\mathrm{E}} \leq \Box \sum_{\mbox{easy}} rac{\log \left((\textit{TM}^{d}) \Delta_{B}^{2}
ight)}{\Delta_{B}}$$

with
$$\Delta_B = \sup_{x \in B} f^*(x) - f^{\sharp}(x) \simeq \frac{\int_B f^* - f^{\sharp} d\mathbb{P}}{\mathbb{P}(B)}$$

Hard bins $(\Delta_B < M^{\beta})$: $R_{\rm H} \le TM^{\beta(1+\alpha)} \le T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$

Easy bins ($\Delta_B \ge M^{\beta}$):

$$\textit{R}_{ ext{E}} \leq \Box \sum_{ ext{easy}} rac{\log\left((\textit{TM}^{\textit{d}})\Delta_{\textit{B}}^2
ight)}{\Delta_{\textit{B}}}$$

Order the Δ_B as $\Delta_1 \leq \Delta_2 \leq ... \leq \Delta_{M^{-d}}$ then $\forall \ell \in \{1, ..., M^{-d}\}, \ \ell M^d \leq \mathbb{P}\left(0 < f^* - f^{\sharp} < \Delta_{\ell}\right) \leq \Delta_{\ell}^{\alpha}$

Hard bins $(\Delta_B < M^{\beta})$: $R_{\rm H} \le TM^{\beta(1+\alpha)} \le T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$

Easy bins ($\Delta_B \ge M^{\beta}$ **):**

$$m{R}_{
m E} \leq \Box \sum_{\ell=m{M}^{lphaeta-d}}^{m{M}^{-d}} rac{\log\left((m{T}m{M}^d)(\ellm{M}^d)^{2/lpha}
ight)}{(\ellm{M}^d)^{1/lpha}}$$

Order the Δ_B as $\Delta_1 \leq \Delta_2 \leq ... \leq \Delta_{M^{-d}}$ then $\forall \ell \in \{1, ..., M^{-d}\}, \ \ell M^d \leq \mathbb{P}\left(0 < f^* - f^{\sharp} < \Delta_{\ell}\right) \leq \Delta_{\ell}^{\alpha}$

Hard bins $(\Delta_B < M^{\beta})$: $R_{\rm H} \le TM^{\beta(1+\alpha)} \le T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$

Easy bins ($\Delta_B \ge M^{\beta}$): $R_{\rm E} \le \Box T M^{\beta(1+\alpha)} \le \Box T \left(\frac{\kappa \log(\kappa)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+\sigma}}$

$$m{R}_{
m E} \leq \Box \sum_{\ell=m{M}^{lphaeta-d}}^{m{M}^{-d}} rac{\log\left((TM^d)(\ell M^d)^{2/lpha}
ight)}{(\ell M^d)^{1/lpha}} \leq TM^{eta(1+lpha)}$$

because (for $\alpha < 1$):

Į

$$\sum_{\ell=M^{\alpha\beta-d}}^{M^{-d}} \frac{\log\left((TM^d)(\ell M^d)^{2/\alpha}\right)}{(\ell M^d)^{1/\alpha}} \leq \frac{\log\left(TM^{2\beta+d}\right)}{M^{d+\beta(1-\alpha)}} \leq TM^{\beta(1+\alpha)}$$

Hard bins $(\Delta_B < M^{\beta})$: $R_{\mathrm{H}} \leq TM^{\beta(1+\alpha)} \leq T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$

Easy bins ($\Delta_B \not< M^{\beta}$): $R_{\rm E} \leq TM^{\beta(1+\alpha)} \leq T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$

- For $\alpha \geq 1$ additional terms: $\mathbb{E}[R_T]$ multiplied by $\log(T)$.
- We always pay the number of bins (that should be large enough for non-smooth functions)
- Problem is: too many bins. Solution: Online/adaptive construction of the bins.

Suboptimality of (BSE) for $\alpha \ge 1$

Suboptimality of (BSE) for $\alpha \ge 1$

Adaptative BSE (ABSE)

Basic idea: Given a bin of size |B| (for K = 2):

If
$$\overline{f}_B^1 - \overline{f}_B^2 \ge \Box |B|^{\beta}$$
 then $f^1 \ge f^2$ on B .

Adaptively Binned Successive Elimination

Start with
$$B = [0, 1]$$
 and $|B|_0 \simeq \left(rac{K \log(K)}{T}
ight)^{rac{1}{2eta + d}}$

- Draw samples (in rounds) of arms when covariates are in *B*;

$$- \text{ If } \bar{Y}_n^k - \bar{Y}_n^{k'} \ge \Box \sqrt{\frac{\log(T|B|^d/n)}{n}} + \Box |B|^\beta \text{ then eliminate arm } k';$$

- Stop after n_B rounds and split B in two halves (of size |B|/2) with

$$\sqrt{rac{\log(T|B|^d/n_B)}{n_B}} = |B|^eta$$
 and $n_B \simeq rac{\log(T|B|^{2eta+d})}{|B|^{2eta}}$

- Repeat the procedure on two halves (until $|B| \le |B|_0$).

Regret of (ABSE)

Theorem [P. and Rigollet ('11)]

Fix $\alpha > 0$ and $0 < \beta \le 1$ then (ABSE) has a regret bounded as

$$\mathbb{E}[\boldsymbol{R}_{\mathcal{T}}(\text{ABSE})] \leq \Box \, \mathcal{T}\left(\frac{\mathcal{K}\log(\mathcal{K})}{\mathcal{T}}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$$

- Minimax optimal (Rigollet and Zeevi, 2010. See also Audibert and Tsybakov, 2007)
- Slivkins (2011, COLT): Zooming (abstract setup, complicated algorithm); no real purpose nor measure to adaptive policy.

(ABSE) illustrated

(ABSE) illustrated

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node:

- Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)
- Happens with proba. less than $\Box \frac{n_B}{T|B|^d}$
- Number of times covariates in *B* less than $\Box T|B|^d$
- Regret each time less than $\Delta_B \leq |B|^{\beta}$

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

- Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)
- Happens with proba. less than $\Box \frac{n_B}{T|B|^d}$
- Number of times covariates in *B* less than $\Box T |B|^d$
- Regret each time less than $\Delta_B \leq |B|^{\beta}$

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

- Eliminate arm 1 or eliminate arm 2 ($\bar{f}_B^2 \leq \bar{f}_B^1 \leq \bar{f}_B^2 + |B|^{\beta}$)
- For arm 1, same analysis. For arm 2:

$$\exists n \leq n_B, \ \bar{Y}_n^1 - \sqrt{\frac{\log(T|B|^d/n)}{n}} \geq \bar{Y}_n^2 + \sqrt{\frac{\log(T|B|^d/n)}{n}} + |B|^{\beta}$$

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

- Eliminate arm 1 or eliminate arm 2 ($\bar{f}_B^2 \leq \bar{f}_B^1 \leq \bar{f}_B^2 + |B|^{\beta}$)
- For arm 1, same analysis. For arm 2:

$$\exists n \leq n_B, \ \bar{Y}_n^1 - \bar{Y}_n^2 - \Delta_B \geq 2\sqrt{\frac{\log(T|B|^d/n)}{n}} + |B|^\beta - \Delta_B$$

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

- Eliminate arm 1 or eliminate arm 2 ($\bar{f}_B^2 \le \bar{f}_B^1 \le \bar{f}_B^2 + |B|^{\beta}$)
- For arm 1, same analysis. For arm 2:

$$\mathbb{P}\left(\exists \ n \leq n_B, \ \bar{Y}_n^1 - \bar{Y}_n^2 - \Delta_B \geq 2\sqrt{\frac{\log(T|B|^d/n)}{n}}\right) \leq \frac{n_B}{T|B|^d}$$
(Adaptively BSE (ABSE)

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

Non-terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

- Eliminate arm 1 or eliminate arm 2 ($\bar{f}_B^2 \le \bar{f}_B^1 \le \bar{f}_B^2 + |B|^{\beta}$)
- For arm 1, same analysis. For arm 2:

$$\mathbb{P}\left(\exists \ n \leq n_B, \ \bar{Y}_n^1 - \bar{Y}_n^2 - \Delta_B \geq 2\sqrt{\frac{\log(T|B|^d/n)}{n}}\right) \leq \frac{n_B}{T|B|^d}$$

(Adaptively BSE (ABSE)

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

Non-terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

 N_{ℓ} =number of bins of size $|B| = 2^{-\ell}$ (and $2^{\ell_0} = |B|_0$):

$$N_{\ell}.2^{-\ell d} \leq \mathbb{P}\left(0 < f^{\star} - f^{\sharp} < 2^{-\ell \beta}
ight) \leq 2^{-\ell lpha eta}$$
 and

$$\mathbb{E}[R_T] \leq \sum_B n_B |B|^{\beta} \leq \sum_{\ell=0}^{\ell_0} 2^{\ell(d-\alpha\beta)} \log\left(T2^{-\ell(2\beta+d)}\right) 2^{\ell\beta}$$

(Adaptively BSE (ABSE)

(ABSE) Sketch of proof

• If everything goes right:

When a bin *B* is reach, one has $\Delta_B \leq |B|^{\beta}$ (so regret $\leq n_B|B|^{\beta}$).

What could go wrong

Terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

Non-terminal node: $R_B \leq \Box n_B |B|^{\beta} \leq \log(T|B|^{2\beta+d})|B|^{-\beta}$

 N_{ℓ} =number of bins of size $|B| = 2^{-\ell}$ (and $2^{\ell_0} = |B|_0$):

$$N_{\ell}.2^{-\ell d} \leq \mathbb{P}\left(0 < f^{\star} - f^{\sharp} < 2^{-\ell eta}
ight) \leq 2^{-\ell lpha eta}$$
 and

$$\mathbb{E}[R_T] \leq \Box T \left(\frac{K \log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$$

Conclusion

We introduced and analyzed new policies:

- Sequential Elimination: an intuitive policy with great potential for the static case;
- Binned SE: its generalization for hard dynamic pb;
- Adaptively BSE: again generalized for both easy and hard pb.
- There are all minimax optimal in T;
- Conjecture: also in K up to the term log(K).
- They require the knowledge of T (OK) and β (more arguable)
- Analysis more intricate when K > 2: optimal arm can be eliminated more easily, f[♯] non continuous
- Future work: adaptive policy w.r.t. β