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Introduction

Introduction

Boring and useless definitions:

Bandits: Optimization of a noisy function.

– Observations: f (x) + εx where εx is random variable
– Statistics: lack of information (exploration)
– Optimization: maximize f (·) (exploitation)
– Games: cumulative loss/payoff/reward

Covariates: Some additional side observations gathered

Start "easy": f is maximized over a finite set

Concrete, simple and understandable examples follow.
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Introduction

Simplified decision problem of Google

Different firms go to Google and offer
if you put my ad after the keywords "Flat Rental Paris", every
time a customer clicks on it, I’ll give you bi ’s euros

A given ad i has some exogenous but unknown probability of
being clicked pi .

Displaying ad i gives in expectation pi .bi to Google.

Objective of Google... maximize cumulated payoff as fast as
possible.

Difficulties: The expected revenue of an ad i is unknown; pi
cannot be estimated if ad i is not displayed.

Take risk and display new ads (to compute new and maybe
high pi ) or be safe and display the best estimated ad ?
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Static case Framework Static Case Successive Elimination (SE)

Static bandit – No queries

Structure of a specific instance

Decision set: {1, . . . ,K} (the set of "arms" ... ads).

Expected payoff of arm k : f k ∈ [0,1]. Best ad ?, f ?.

Problem difficulty: ∆k = f ? − f k , ∆min = min∆k>0 ∆k

Repeated decision problem. At stage t ∈ N,

Choose kt ∈ {1, . . . ,K}, receive Yt ∈ [0,1] i.i.d. expectation f kt

Observe only the payoff Yt (and not f kt ) and move to stage t + 1

Objectives: maximize cumulative expected payoff or

Minimize regret: RT = T .f ? −
∑T

t=1 f kt =
∑T

t=1 ∆kt

Choose the quickest possible the best decision with noise.
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Static Case: UCB

Lower bound for K=2: RT ≥ 2
log(T ∆2

min)
∆min

with ∆min = min f ? − f k

Famous algo: Upper Confidence Bound (and its variants)

– Draw each arm 1, ..,K once and observe Y 1
1 , ..,Y

K
K (Round 1)

– After stage t , compute the following:

tk = ] {τ ≤ t ; kτ = k} the number of times arm k was drawn;

Ȳ k
t =

1
tk

∑
τ≤t ; kτ=k

Y k
τ an estimate of f k

– Draw the arm kt+1 = arg maxk Ȳ k
t +

√
2 log(t)

tk

Using UCB, E[RT ] ≤ 8
∑

k
log(T )

∆k
≤ 8K log(T )

∆min
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Remarks on UCB

Lower bound for K=2: RT ≥ 2
log(T ∆2

min)
∆min

, ∆min = min∆k>0 ∆k

UCB algo:

– Draw each arm 1, ..,K once and observe Y 1
1 , ..,Y

K
K (Round 1)

– Draw the arm kt+1 = arg maxk Ȳ k
t +

√
2 log(t)

tk

UCB Upper bound: E[RT ] ≤ 8
∑

k
log(T )

∆k
≤ 8K log(T )

∆min

Remarks:

– Proof based on Hoeffding inequality;

– Not intuitive: clearly suboptimal arms keep being drawn

– MOSS, a variant of UCB, achieves E[RT ] ≤ 2K log(T ∆2
min/K )

∆min

– Neither log(T ) or K log(T ∆2
min/K ) sufficient with covariates.
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Successive Elimination (SE)

Simple policy based on the intuition:
Determine the suboptimal arms, and do not play them.

Time is divided in rounds n ∈ N:

– after round n: eliminate arms (with great proba.) suboptimal

i.e., arm k s.t. Ȳ k
n +
√

2 log(T/n)
n ≤ Ȳ k ′

n −
√

2 log(T/n)
n

– at round n + 1: draw each remaining arm once.

Easy to describe, to understand (but not to analyse for K > 2...), intuitive.

Simple confidence term (but requires knowledge of T ).

(SE) is a variant of Even-Dar et al. (’06) Auer and Ortner (’10)
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Regret of successive elimination

Theorem [P. and Rigollet (’13)]
Played on K arms, the (SE) policy satisfies

E[RT ] ≤ 2min

{∑
k

log(T ∆2
k )

∆k
,
√

TK log(K )

}

UCB:
∑

k
log(T )

∆k
, MOSS: K log(T ∆2

min/K )
∆min

E[RT ] =
∑

k ∆k .E[nk ] with nk the number of draws of arm k

Exact bound:

E[RT ] ≤ min

{
646

∑
k

1
∆k

log
(

max
[

T ∆2
k

18
,e
])

,166
√

TK log(K )

}
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Successive Elimination: Example

f 1

f 2

Two arms

A round: a draw of both arms
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Successive Elimination: Example

f 1

f 2

Two arms

Round 1:

Ȳ 1
3

Ȳ 2
3

√
2 log(T/3)

3

no elimination
Round 2:

eliminationRound 3:
no elimination

A round: a draw of both arms
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Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

Ȳ 2
n +

√
2

log(T/n)

n
≤ Ȳ 1

n −
√

2
log(T/n)

n

What could go wrong:

Arm 1 eliminated before round n2

(with proba. ≤ 2
n2
T )

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T )

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T ), n2 otherwise ( w.p. ≤ 1):

E[RT ] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2
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Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

General Model

Covariates: Xt ∈ X = [0,1]d , i.i.d., law µ (equivalent to) λ

Examples: request received by Amazon or Google

Xt observed before taking a decision at time t ∈ N

Equivalence: two unknown constants cλ(A) ≤ µ(A) ≤ cλ(A)

Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt ), E[Y k |X ] = f k (X )

Objective: regret RT :=
∑T

t=1 f π
?(Xt )(Xt )− f kt (Xt ) ≤ o(T )
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Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt ), E[Y k |X ] = f k (X )

Examples: proba/reward of click on ad k function of the request

Only Y kt
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General Model

Covariates: Xt ∈ X = [0,1]d , i.i.d., law µ (equivalent to) λ

Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt ), E[Y k |X ] = f k (X )

Objective: regret RT :=
∑T

t=1 f π
?(Xt )(Xt )− f kt (Xt ) ≤ o(T )

Optimal policy: π?(X ) = arg max f k (X ); and fπ
?(X)(X ) = f ?(X )

Maximize cumulated payoffs
∑T

t=1 f kt (Xt ) or minimize regret

Find a policy π asymptotic. at least as well as π? (in average)
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Regularity assumptions

1 Smoothness of the pb: Every f k is β-hölder, with β ∈ (0,1]:

∃L > 0, ∀ x , y ∈ X , ‖f (x)− f (y)‖ ≤ L‖x − y‖β

2 Complexity of the pb: (α-margin condition) ∃δ0 > 0 and C0 > 0

PX

[
0 <

∣∣∣f 1(x)− f 2(x)
∣∣∣ < δ

]
≤ C0δ

α, ∀δ ∈ (0, δ0)

where f ?(x) = maxk f k (x) is the maximal f k and
f ](x) = max

{
f k (x) s.t . f k (x) < f ?(x)

}
is the second max.

With K > 2: f ? is β-Hölder but f ] is not continuous.
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Regularity: an easy example (α big)

f 1(x)
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Regularity: a hard example (α small)

f 1(x)
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Conflict between α and β

∃δ0, C0, PX

[
0 < f ?(x)− f ](x) < δ

]
≤ C0δ

α, ∀δ ∈ (0, δ0)

– First used by Goldenshluger and Zeevi (’08) – case f 1 = 0;

It was an assumption on the distribution of X only

– Here: fixed marginal (uniform), measures closeness of functions.

Proposition: Conflict α vs. β

αβ > d =⇒ all arms are either always or never optimal

Smoothness β is known, but complexity α is not known.
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Binned policy

– Consider the uniform partition of [0,1]d into 1/Md bins

Bins: hypercube B with side length |B| equal to M.

– Each bin is an independent problem; exact value of Xt discarded

– Average reward of bin B: f̄ k
B =

∫
B f k (x)dP(x)

P(B) (P(B) ' Md )

Follow on each bin your favorite static policy.

Reduction to 1/Md static bandits pb. with expected reward (f̄ 1
B , .., f̄

K
B ).

see Rigollet and Zeevi (’10)
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Binned Successive Elimination (BSE)

f 1(x)

f 2(x)

f 3(x)

Theorem [P. and Rigollet (’11)]

If 0 < α < 1, E[RT (BSE)] ≤ 2T
(

K log(K )
T

)β(1+α)
2β+d with the choice

of parameter M '
(

K log(K )
T

) 1
2β+d

For K = 2, matches lower bound: minimax optimal w.r.t. T .

Same bound can be obtained in the full info. setting (Audibert
and Tsybakov, ’07)

No log(T ): difficulty of nonparametric estimation washes away
the effects of exploration/exploitation.

α < 1: cannot attain fast rates
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Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ):

RH ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

RH ≤ Mβ .P (Hard) T ≤ Mβ .P
(
0 < f ? − f ] < Mβ

)
T ≤ TMβ(1+α)

Easy bins ( ∆B ≮ Mβ):

RE ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

with ∆B = sup
x∈B

f ?(x)− f ](x) '
∫

B f ? − f ]dP
P(B)
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Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

Easy bins ( ∆B≮Mβ):

RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K )
T

)β(1+α)
2β+d

RE ≤ 2
∑

easy

log
(
(TMd )∆2

B
)

∆B

with ∆B = sup
x∈B

f ?(x)− f ](x) '
∫

B f ? − f ]dP
P(B)
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Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

Easy bins ( ∆B ≥ Mβ):

RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K )
T

)β(1+α)
2β+d

RE ≤ 2
∑

easy

log
(
(TMd )∆2

B
)

∆B

Order the ∆B as ∆1 ≤ ∆2 ≤ ... ≤ ∆M−d then

∀` ∈ {1, ..,M−d}, `Md ≤ P
(

0 < f ? − f ] < ∆`

)
≤ ∆α

`
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Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

Easy bins ( ∆B ≥ Mβ):

RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K )
T

)β(1+α)
2β+d
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log
(
(TMd )(`Md )2/α)

(`Md )1/α

Order the ∆B as ∆1 ≤ ∆2 ≤ ... ≤ ∆M−d then
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Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

Easy bins ( ∆B ≥ Mβ): RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K )
T

)β(1+α)
2β+d

RE ≤ 2

M−d∑
`=Mαβ−d

log
(
(TMd )(`Md )2/α)

(`Md )1/α ≤ TMβ(1+α)

because (for α < 1):
M−d∑

`=Mαβ−d

log
(
(TMd )(`Md )2/α)

(`Md )1/α ≤
log
(
TM2β+d)

Md+β(1−α)
≤ TMβ(1+α)
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Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

Easy bins ( ∆B ≮ Mβ): RE ≤ TMβ(1+α) ≤ T
(

K log(K )
T

)β(1+α)
2β+d

For α ≥ 1 additional terms: E[RT ] multiplied by log(T ).

We always pay the number of bins (that should be large enough
for non-smooth functions)

Problem is: too many bins. Solution: Online/adaptive
construction of the bins.
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Suboptimality of (BSE) for α ≥ 1
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f 2(x)
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Adaptative BSE (ABSE)
Basic idea: Given a bin of size |B| (for K = 2):

If f̄ 1
B − f̄ 2

B ≥ 2|B|β then f 1 ≥ f 2 on B.

Adaptively Binned Successive Elimination

Start with B = [0,1] and |B|0 '
(

K log(K )
T

) 1
2β+d

– Draw samples (in rounds) of arms when covariates are in B;

– If Ȳ k
n − Ȳ k ′

n ≥ 2

√
log(T |B|d/n)

n + 2|B|β then eliminate arm k ′;

– Stop after nB rounds and split B in two halves (of size |B|/2) with√
log(T |B|d/nB)

nB
= |B|β and nB ' log(T |B|2β+d )

|B|2β

– Repeat the procedure on two halves (until |B| ≤ |B|0).
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Regret of (ABSE)

Theorem [P. and Rigollet (’11)]
Fix α > 0 and 0 < β ≤ 1 then (ABSE) has a regret bounded as

E[RT (ABSE)] ≤ 2T
(

K log(K )

T

)β(1+α)
2β+d

Minimax optimal (Rigollet and Zeevi, 2010. See also Audibert
and Tsybakov, 2007)

Slivkins (2011, COLT): Zooming (abstract setup, complicated
algorithm); no real purpose nor measure to adaptive policy.
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(ABSE) illustrated

f 2

f 1
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eliminate 2
[1
2 ,1] (1 ≥ 2)
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eliminate 1 or
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(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d )|B|−β

– Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)

– Happens with proba. less than 2 nB
T |B|d

– Number of times covariates in B less than �T |B|d

– Regret each time less than ∆B ≤ |B|β

Non-terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d )|B|−β
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(ABSE) Sketch of proof
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(ABSE) Sketch of proof
• If everything goes right:
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N` =number of bins of size |B| = 2−` (and 2`0 = |B|0):

N`.2−`d ≤ P
(

0 < f ? − f ] < 2−`β
)
≤ 2−`αβ and

E[RT ] ≤
∑

B

nB|B|β ≤
`0∑
`=0

2`(d−αβ) log
(

T 2−`(2β+d)
)

2`β
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Conclusion and Remark

Conclusion
We introduced and analyzed new policies:

Sequential Elimination: an intuitive policy with great potential for
the static case;

Binned SE: its generalization for hard dynamic pb;

Adaptively BSE: again generalized for both easy and hard pb.

– There are all minimax optimal in T ;

– Conjecture: also in K up to the term log(K ).

– They require the knowledge of T (OK) and β (more arguable)

– Analysis more intricate when K > 2: optimal arm can be
eliminated more easily, f ] non continuous

– Future work: adaptive policy w.r.t. β
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