
The multi armed-bandit problem
(with covariates if we have time)

Vianney Perchet & Philippe Rigollet

LPMA ORFE
Université Paris – Diderot Princeton University

Algorithms and Dynamics for Games and Optimization

October, 14-18th 2013

Introduction

Introduction

Boring and useless definitions:

Bandits: Optimization of a noisy function.

– Observations: f (x) + εx where εx is random variable
– Statistics: lack of information (exploration)
– Optimization: maximize f (·) (exploitation)
– Games: cumulative loss/payoff/reward

Covariates: Some additional side observations gathered

Start "easy": f is maximized over a finite set

Concrete, simple and understandable examples follow.

Introduction

Some real world examples

Introduction

Some real world examples

Introduction

Some real world examples

Introduction

Simplified decision problem of Google

Different firms go to Google and offer
if you put my ad after the keywords "Flat Rental Paris", every
time a customer clicks on it, I’ll give you bi ’s euros

A given ad i has some exogenous but unknown probability of
being clicked pi .

Displaying ad i gives in expectation pi .bi to Google.

Objective of Google... maximize cumulated payoff as fast as
possible.

Difficulties: The expected revenue of an ad i is unknown; pi
cannot be estimated if ad i is not displayed.

Take risk and display new ads (to compute new and maybe
high pi) or be safe and display the best estimated ad ?

Introduction

Simplified decision problem of Google

Different firms go to Google and offer
if you put my ad after the keywords "Flat Rental Paris", every
time a customer clicks on it, I’ll give you bi ’s euros

A given ad i has some exogenous but unknown probability of
being clicked pi .

Displaying ad i gives in expectation pi .bi to Google.

Objective of Google... maximize cumulated payoff as fast as
possible.

Difficulties: The expected revenue of an ad i is unknown; pi
cannot be estimated if ad i is not displayed.

Take risk and display new ads (to compute new and maybe
high pi) or be safe and display the best estimated ad ?

Static case Framework Static Case Successive Elimination (SE)

Static bandit – No queries

Structure of a specific instance

Decision set: {1, . . . ,K} (the set of "arms" ... ads).

Expected payoff of arm k : f k ∈ [0,1]. Best ad ?, f ?.

Problem difficulty: ∆k = f ? − f k , ∆min = min∆k>0 ∆k

Repeated decision problem. At stage t ∈ N,

Choose kt ∈ {1, . . . ,K}, receive Yt ∈ [0,1] i.i.d. expectation f kt

Observe only the payoff Yt (and not f kt) and move to stage t + 1

Objectives: maximize cumulative expected payoff or

Minimize regret: RT = T .f ? −
∑T

t=1 f kt =
∑T

t=1 ∆kt

Choose the quickest possible the best decision with noise.

Static case Framework Static Case Successive Elimination (SE)

Static Case: UCB

Lower bound for K=2: RT ≥ 2
log(T ∆2

min)
∆min

with ∆min = min f ? − f k

Famous algo: Upper Confidence Bound (and its variants)

– Draw each arm 1, ..,K once and observe Y 1
1 , ..,Y

K
K (Round 1)

– After stage t , compute the following:

tk =] {τ ≤ t ; kτ = k} the number of times arm k was drawn;

Ȳ k
t =

1
tk

∑
τ≤t ; kτ=k

Y k
τ an estimate of f k

– Draw the arm kt+1 = arg maxk Ȳ k
t +

√
2 log(t)

tk

Using UCB, E[RT] ≤ 8
∑

k
log(T)

∆k
≤ 8K log(T)

∆min

Static case Framework Static Case Successive Elimination (SE)

Static Case: UCB

Lower bound for K=2: RT ≥ 2
log(T ∆2

min)
∆min

with ∆min = min f ? − f k

Famous algo: Upper Confidence Bound (and its variants)

– Draw each arm 1, ..,K once and observe Y 1
1 , ..,Y

K
K (Round 1)

– After stage t , compute the following:

tk =] {τ ≤ t ; kτ = k} the number of times arm k was drawn;

Ȳ k
t =

1
tk

∑
τ≤t ; kτ=k

Y k
τ an estimate of f k

– Draw the arm kt+1 = arg maxk Ȳ k
t +

√
2 log(t)

tk

Using UCB, E[RT] ≤ 8
∑

k
log(T)

∆k
≤ 8K log(T)

∆min

Static case Framework Static Case Successive Elimination (SE)

Remarks on UCB

Lower bound for K=2: RT ≥ 2
log(T ∆2

min)
∆min

, ∆min = min∆k>0 ∆k

UCB algo:

– Draw each arm 1, ..,K once and observe Y 1
1 , ..,Y

K
K (Round 1)

– Draw the arm kt+1 = arg maxk Ȳ k
t +

√
2 log(t)

tk

UCB Upper bound: E[RT] ≤ 8
∑

k
log(T)

∆k
≤ 8K log(T)

∆min

Remarks:

– Proof based on Hoeffding inequality;

– Not intuitive: clearly suboptimal arms keep being drawn

– MOSS, a variant of UCB, achieves E[RT] ≤ 2K log(T ∆2
min/K)

∆min

– Neither log(T) or K log(T ∆2
min/K) sufficient with covariates.

Static case Framework Static Case Successive Elimination (SE)

Successive Elimination (SE)

Simple policy based on the intuition:
Determine the suboptimal arms, and do not play them.

Time is divided in rounds n ∈ N:

– after round n: eliminate arms (with great proba.) suboptimal

i.e., arm k s.t. Ȳ k
n +
√

2 log(T/n)
n ≤ Ȳ k ′

n −
√

2 log(T/n)
n

– at round n + 1: draw each remaining arm once.

Easy to describe, to understand (but not to analyse for K > 2...), intuitive.

Simple confidence term (but requires knowledge of T).

(SE) is a variant of Even-Dar et al. (’06) Auer and Ortner (’10)

Static case Framework Static Case Successive Elimination (SE)

Regret of successive elimination

Theorem [P. and Rigollet (’13)]
Played on K arms, the (SE) policy satisfies

E[RT] ≤ 2min

{∑
k

log(T ∆2
k)

∆k
,
√

TK log(K)

}

UCB:
∑

k
log(T)

∆k
, MOSS: K log(T ∆2

min/K)
∆min

E[RT] =
∑

k ∆k .E[nk] with nk the number of draws of arm k

Exact bound:

E[RT] ≤ min

{
646

∑
k

1
∆k

log
(

max
[

T ∆2
k

18
,e
])

,166
√

TK log(K)

}

Static case Framework Static Case Successive Elimination (SE)

Regret of successive elimination

Theorem [P. and Rigollet (’13)]
Played on K arms, the (SE) policy satisfies

E[RT] ≤ 2min

{∑
k

log(T ∆2
k)

∆k
,
√

TK log(K)

}

UCB:
∑

k
log(T)

∆k
, MOSS: K log(T ∆2

min/K)
∆min

E[RT] =
∑

k ∆k .E[nk] with nk the number of draws of arm k

Exact bound:

E[RT] ≤ min

{
646

∑
k

1
∆k

log
(

max
[

T ∆2
k

18
,e
])

,166
√

TK log(K)

}

Static case Framework Static Case Successive Elimination (SE)

Successive Elimination: Example

f 1

f 2

Two arms

A round: a draw of both arms

Static case Framework Static Case Successive Elimination (SE)

Successive Elimination: Example

f 1

f 2

Two arms

Round 1:

Ȳ 1
1

Ȳ 2
1

√
2 log(T/1)

1

no elimination

A round: a draw of both arms

Static case Framework Static Case Successive Elimination (SE)

Successive Elimination: Example

f 1

f 2

Two arms

Round 1:

Ȳ 1
2

Ȳ 2
2

√
2 log(T/2)

2

no elimination
Round 2: no elimination

A round: a draw of both arms

Static case Framework Static Case Successive Elimination (SE)

Successive Elimination: Example

f 1

f 2

Two arms

Round 1:

Ȳ 1
3

Ȳ 2
3

√
2 log(T/3)

3

no elimination
Round 2:

eliminationRound 3:
no elimination

A round: a draw of both arms

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

Ȳ 2
n +

√
2

log(T/n)

n
≤ Ȳ 1

n −
√

2
log(T/n)

n

What could go wrong:

Arm 1 eliminated before round n2

(with proba. ≤ 2
n2
T)

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T), n2 otherwise (w.p. ≤ 1):

E[RT] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 2 +

√
2

log(T/n)

n
≤ f 1 −

√
2

log(T/n)

n

What could go wrong:

Arm 1 eliminated before round n2

(with proba. ≤ 2
n2
T)

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T), n2 otherwise (w.p. ≤ 1):

E[RT] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n

n2 = 2
log(T ∆2

2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2

(with proba. ≤ 2
n2
T)

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T), n2 otherwise (w.p. ≤ 1):

E[RT] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2

(with proba. ≤ 2
n2
T)

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T), n2 otherwise (w.p. ≤ 1):

E[RT] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2

(with proba. ≤ 2
n2
T)

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T), n2 otherwise (w.p. ≤ 1):

E[RT] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2 (with proba. ≤ 2
n2
T)

P

(
∃n ≤ n2, Ȳ 1

n − Ȳ 2
n ≤ −2

√
2

log(T/n)

n

)
≤ 2

n2

T

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2 (with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

(
∀n ≤ n2,Ȳ 2

n − Ȳ 1
n ≥ −2

√
2

log(T/n)

n

)

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2 (with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P

Ȳ 2
n2
− Ȳ 1

n2
≥ −2

√
2

log(T/n2)

n2



Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2 (with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2.

(with proba. ≤ 2
n2
T)

P
(

Ȳ 2
n2
− Ȳ 1

n2
≥ −2∆2

)

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2 (with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2. (with proba. ≤ 2
n2
T)

P
(

[Ȳ 1
n2
− Ȳ 2

n2
]−∆2 ≤ −∆2

)
≤ exp

(
−2n2∆2

2

)
≤ 2

n2

T

Static case Framework Static Case Successive Elimination (SE)

Sketch of proof with K = 2
Basic idea: arm 2 (subopt.) eliminated at the first round n s.t.:

f 1 − f 2 = ∆2 ≥ 2

√
2

log(T/n)

n
n2 ≤ 2

log(T ∆2
2)

∆2
2

What could go wrong:

Arm 1 eliminated before round n2 (with proba. ≤ 2
n2
T)

Arm 2 not eliminated at round n2. (with proba. ≤ 2
n2
T)

Number of draws of arm 2 (each incurs a regret of ∆2):

T if something wrong (w.p. 2n2
T), n2 otherwise (w.p. ≤ 1):

E[RT] ≤
[
n2 + 2

n2

T
T
]

∆2 ≤ 2n2∆2 ≤ 2
log(T ∆2

2)

∆2

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

General Model

Covariates: Xt ∈ X = [0,1]d , i.i.d., law µ (equivalent to) λ

Examples: request received by Amazon or Google

Xt observed before taking a decision at time t ∈ N

Equivalence: two unknown constants cλ(A) ≤ µ(A) ≤ cλ(A)

Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt), E[Y k |X] = f k (X)

Objective: regret RT :=
∑T

t=1 f π
?(Xt)(Xt)− f kt (Xt) ≤ o(T)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

General Model

Covariates: Xt ∈ X = [0,1]d , i.i.d., law µ (equivalent to) λ

Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Examples: Choice of the ad to be displayed

Decision kt taken after the observation of Xt at time t ∈ N

Objectives: Find the best decision given the request

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt), E[Y k |X] = f k (X)

Objective: regret RT :=
∑T

t=1 f π
?(Xt)(Xt)− f kt (Xt) ≤ o(T)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

General Model

Covariates: Xt ∈ X = [0,1]d , i.i.d., law µ (equivalent to) λ

Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt), E[Y k |X] = f k (X)

Examples: proba/reward of click on ad k function of the request

Only Y kt
t is observed before moving to stage t + 1;

Optimization: Find the decision kt that maximizes f k (Xt)

Objective: regret RT :=
∑T

t=1 f π
?(Xt)(Xt)− f kt (Xt) ≤ o(T)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

General Model

Covariates: Xt ∈ X = [0,1]d , i.i.d., law µ (equivalent to) λ

Decisions: kt ∈ K = {1, ..,K}; construction of a policy π

Payoff: Y k
t ∈ [0,1] ∼ νk (Xt), E[Y k |X] = f k (X)

Objective: regret RT :=
∑T

t=1 f π
?(Xt)(Xt)− f kt (Xt) ≤ o(T)

Optimal policy: π?(X) = arg max f k (X); and fπ
?(X)(X) = f ?(X)

Maximize cumulated payoffs
∑T

t=1 f kt (Xt) or minimize regret

Find a policy π asymptotic. at least as well as π? (in average)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity assumptions

1 Smoothness of the pb: Every f k is β-hölder, with β ∈ (0,1]:

∃L > 0, ∀ x , y ∈ X , ‖f (x)− f (y)‖ ≤ L‖x − y‖β

2 Complexity of the pb: (α-margin condition) ∃δ0 > 0 and C0 > 0

PX

[
0 <

∣∣∣f 1(x)− f 2(x)
∣∣∣ < δ

]
≤ C0δ

α, ∀δ ∈ (0, δ0)

where f ?(x) = maxk f k (x) is the maximal f k and
f](x) = max

{
f k (x) s.t . f k (x) < f ?(x)

}
is the second max.

With K > 2: f ? is β-Hölder but f] is not continuous.

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity assumptions

1 Smoothness of the pb: Every f k is β-hölder, with β ∈ (0,1]:

∃L > 0, ∀ x , y ∈ X , ‖f (x)− f (y)‖ ≤ L‖x − y‖β

2 Complexity of the pb: (α-margin condition) ∃δ0 > 0 and C0 > 0

PX

[
0 <

∣∣∣f ?(x)− f](x)
∣∣∣ < δ

]
≤ C0δ

α, ∀δ ∈ (0, δ0)

where f ?(x) = maxk f k (x) is the maximal f k and
f](x) = max

{
f k (x) s.t . f k (x) < f ?(x)

}
is the second max.

With K > 2: f ? is β-Hölder but f] is not continuous.

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: an easy example (α big)

f 1(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: an easy example (α big)

f 1(x)

f 2(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: an easy example (α big)

f 1(x)

f 2(x)

f 3(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: an easy example (α big)

f 1(x)

f 2(x)

f 3(x)

f ?(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: an easy example (α big)

f 1(x)

f 2(x)

f 3(x)

f ?(x)

f](x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: an easy example (α big)

f 1(x)

f 2(x)

f 3(x)

f ?(x)

f](x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: a hard example (α small)

f 1(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: a hard example (α small)

f 1(x)

f 2(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: a hard example (α small)

f 1(x)

f 2(x)

f 3(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: a hard example (α small)

f 1(x)

f 2(x)

f 3(x)

f ?(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: a hard example (α small)

f 1(x)

f 2(x)

f 3(x)

f ?(x)
f](x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regularity: a hard example (α small)

f 1(x)

f 2(x)

f 3(x)

f ?(x)
f](x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Conflict between α and β

∃δ0, C0, PX

[
0 < f ?(x)− f](x) < δ

]
≤ C0δ

α, ∀δ ∈ (0, δ0)

– First used by Goldenshluger and Zeevi (’08) – case f 1 = 0;

It was an assumption on the distribution of X only

– Here: fixed marginal (uniform), measures closeness of functions.

Proposition: Conflict α vs. β

αβ > d =⇒ all arms are either always or never optimal

Smoothness β is known, but complexity α is not known.

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Binned policy

f 1(x)

f 2(x)

f 3(x)

f ?(x)

f](x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Binned policy

f 1(x)

f 2(x)

f 3(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Binned policy

f 1(x)

f 2(x)

f 3(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Binned policy

– Consider the uniform partition of [0,1]d into 1/Md bins

Bins: hypercube B with side length |B| equal to M.

– Each bin is an independent problem; exact value of Xt discarded

– Average reward of bin B: f̄ k
B =

∫
B f k (x)dP(x)

P(B) (P(B) ' Md)

Follow on each bin your favorite static policy.

Reduction to 1/Md static bandits pb. with expected reward (f̄ 1
B , .., f̄

K
B).

see Rigollet and Zeevi (’10)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Binned Successive Elimination (BSE)

f 1(x)

f 2(x)

f 3(x)

Theorem [P. and Rigollet (’11)]

If 0 < α < 1, E[RT (BSE)] ≤ 2T
(

K log(K)
T

)β(1+α)
2β+d with the choice

of parameter M '
(

K log(K)
T

) 1
2β+d

For K = 2, matches lower bound: minimax optimal w.r.t. T .

Same bound can be obtained in the full info. setting (Audibert
and Tsybakov, ’07)

No log(T): difficulty of nonparametric estimation washes away
the effects of exploration/exploitation.

α < 1: cannot attain fast rates

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Binned Successive Elimination (BSE)

Theorem [P. and Rigollet (’11)]

If 0 < α < 1, E[RT (BSE)] ≤ 2T
(

K log(K)
T

)β(1+α)
2β+d with the choice

of parameter M '
(

K log(K)
T

) 1
2β+d

For K = 2, matches lower bound: minimax optimal w.r.t. T .

Same bound can be obtained in the full info. setting (Audibert
and Tsybakov, ’07)

No log(T): difficulty of nonparametric estimation washes away
the effects of exploration/exploitation.

α < 1: cannot attain fast rates

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ):

RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

RH ≤ Mβ .P (Hard) T ≤ Mβ .P
(
0 < f ? − f] < Mβ

)
T ≤ TMβ(1+α)

Easy bins (∆B ≮ Mβ):

RE ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

with ∆B = sup
x∈B

f ?(x)− f](x) '
∫

B f ? − f]dP
P(B)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

RH ≤ Mβ .P (Hard) T ≤ Mβ .P
(
0 < f ? − f] < Mβ

)
T ≤ TMβ(1+α)

Easy bins (∆B ≮ Mβ):

RE ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

with ∆B = sup
x∈B

f ?(x)− f](x) '
∫

B f ? − f]dP
P(B)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

Easy bins (∆B≮Mβ):

RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K)
T

)β(1+α)
2β+d

RE ≤ 2
∑

easy

log
(
(TMd)∆2

B
)

∆B

with ∆B = sup
x∈B

f ?(x)− f](x) '
∫

B f ? − f]dP
P(B)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

Easy bins (∆B ≥ Mβ):

RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K)
T

)β(1+α)
2β+d

RE ≤ 2
∑

easy

log
(
(TMd)∆2

B
)

∆B

Order the ∆B as ∆1 ≤ ∆2 ≤ ... ≤ ∆M−d then

∀` ∈ {1, ..,M−d}, `Md ≤ P
(

0 < f ? − f] < ∆`

)
≤ ∆α

`

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

Easy bins (∆B ≥ Mβ):

RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K)
T

)β(1+α)
2β+d

RE ≤ 2

M−d∑
`=Mαβ−d

log
(
(TMd)(`Md)2/α)

(`Md)1/α

Order the ∆B as ∆1 ≤ ∆2 ≤ ... ≤ ∆M−d then

∀` ∈ {1, ..,M−d}, `Md ≤ P
(

0 < f ? − f] < ∆`

)
≤ ∆α

`

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

Easy bins (∆B ≥ Mβ): RE ≤ 2TMβ(1+α) ≤ 2T
(

K log(K)
T

)β(1+α)
2β+d

RE ≤ 2

M−d∑
`=Mαβ−d

log
(
(TMd)(`Md)2/α)

(`Md)1/α ≤ TMβ(1+α)

because (for α < 1):
M−d∑

`=Mαβ−d

log
(
(TMd)(`Md)2/α)

(`Md)1/α ≤
log
(
TM2β+d)

Md+β(1−α)
≤ TMβ(1+α)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Sketch for K = 2
Decomposition of regret: E[RT (BSE)] = RH + RE

Hard bins (∆B < Mβ): RH ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

Easy bins (∆B ≮ Mβ): RE ≤ TMβ(1+α) ≤ T
(

K log(K)
T

)β(1+α)
2β+d

For α ≥ 1 additional terms: E[RT] multiplied by log(T).

We always pay the number of bins (that should be large enough
for non-smooth functions)

Problem is: too many bins. Solution: Online/adaptive
construction of the bins.

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Suboptimality of (BSE) for α ≥ 1

f 1(x)

f 2(x)

f 3(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Suboptimality of (BSE) for α ≥ 1

f 1(x)

f 2(x)

f 3(x)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Adaptative BSE (ABSE)
Basic idea: Given a bin of size |B| (for K = 2):

If f̄ 1
B − f̄ 2

B ≥ 2|B|β then f 1 ≥ f 2 on B.

Adaptively Binned Successive Elimination

Start with B = [0,1] and |B|0 '
(

K log(K)
T

) 1
2β+d

– Draw samples (in rounds) of arms when covariates are in B;

– If Ȳ k
n − Ȳ k ′

n ≥ 2

√
log(T |B|d/n)

n + 2|B|β then eliminate arm k ′;

– Stop after nB rounds and split B in two halves (of size |B|/2) with√
log(T |B|d/nB)

nB
= |B|β and nB ' log(T |B|2β+d)

|B|2β

– Repeat the procedure on two halves (until |B| ≤ |B|0).

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

Regret of (ABSE)

Theorem [P. and Rigollet (’11)]
Fix α > 0 and 0 < β ≤ 1 then (ABSE) has a regret bounded as

E[RT (ABSE)] ≤ 2T
(

K log(K)

T

)β(1+α)
2β+d

Minimax optimal (Rigollet and Zeevi, 2010. See also Audibert
and Tsybakov, 2007)

Slivkins (2011, COLT): Zooming (abstract setup, complicated
algorithm); no real purpose nor measure to adaptive policy.

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) illustrated

f 2

f 1

0 1/4 1/2 1

[0,1] (1 ∼ 2)
keep 1 and 2

[0, 1
2] (1 ∼ 2)

keep 1 and 2

eliminate 2
[0, 1

4] (1 ≥ 2)

eliminate 1
[0, 1

4] (2 ≥ 1)

eliminate 2
[1
2 ,1] (1 ≥ 2)

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) illustrated

f 2

f 1

0 1/4 1/2 1

[0,1] (1 ∼ 2)
keep 1 and 2

[0, 1
2] (1 ∼ 2)

keep 1 and 2

eliminate 2
[0, 1

4] (1 ≥ 2)

eliminate 1
[0, 1

4] (2 ≥ 1)

eliminate 2
[1
2 ,1] (1 ≥ 2)

eliminate 1 or 2

eliminate 1 or 2

eliminate 1 or
not eliminate 2

eliminate 2 or
not eliminate 1

eliminate 1 or
not eliminate 2

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

– Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)

– Happens with proba. less than 2 nB
T |B|d

– Number of times covariates in B less than �T |B|d

– Regret each time less than ∆B ≤ |B|β

Non-terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

– Eliminate arm 1 or not eliminate arm 2: Same analysis for (SE)

– Happens with proba. less than 2 nB
T |B|d

– Number of times covariates in B less than �T |B|d

– Regret each time less than ∆B ≤ |B|β

Non-terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Non-terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

– Eliminate arm 1 or eliminate arm 2 (f̄ 2
B ≤ f̄ 1

B ≤ f̄ 2
B + |B|β)

– For arm 1, same analysis. For arm 2:

∃n ≤ nB, Ȳ 1
n −

√
log(T |B|d/n)

n
≥ Ȳ 2

n +

√
log(T |B|d/n)

n
+ |B|β

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Non-terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

– Eliminate arm 1 or eliminate arm 2 (f̄ 2
B ≤ f̄ 1

B ≤ f̄ 2
B + |B|β)

– For arm 1, same analysis. For arm 2:

∃n ≤ nB, Ȳ 1
n − Ȳ 2

n −∆B ≥ 2

√
log(T |B|d/n)

n
+|B|β −∆B

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Non-terminal node:

RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

– Eliminate arm 1 or eliminate arm 2 (f̄ 2
B ≤ f̄ 1

B ≤ f̄ 2
B + |B|β)

– For arm 1, same analysis. For arm 2:

P

(
∃n ≤ nB, Ȳ 1

n − Ȳ 2
n −∆B ≥ 2

√
log(T |B|d/n)

n

)
≤ nB

T |B|d

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Non-terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

– Eliminate arm 1 or eliminate arm 2 (f̄ 2
B ≤ f̄ 1

B ≤ f̄ 2
B + |B|β)

– For arm 1, same analysis. For arm 2:

P

(
∃n ≤ nB, Ȳ 1

n − Ȳ 2
n −∆B ≥ 2

√
log(T |B|d/n)

n

)
≤ nB

T |B|d

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Non-terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

N` =number of bins of size |B| = 2−` (and 2`0 = |B|0):

N`.2−`d ≤ P
(

0 < f ? − f] < 2−`β
)
≤ 2−`αβ and

E[RT] ≤
∑

B

nB|B|β ≤
`0∑
`=0

2`(d−αβ) log
(

T 2−`(2β+d)
)

2`β

Dynamic Framework Framework Binned Successive Elimination (BSE) Adaptively BSE (ABSE)

(ABSE) Sketch of proof
• If everything goes right:
When a bin B is reach, one has ∆B ≤ |B|β (so regret ≤ nB|B|β).

•What could go wrong

Terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

Non-terminal node: RB ≤ �nB|B|β ≤ log(T |B|2β+d)|B|−β

N` =number of bins of size |B| = 2−` (and 2`0 = |B|0):

N`.2−`d ≤ P
(

0 < f ? − f] < 2−`β
)
≤ 2−`αβ and

E[RT] ≤ 2T
(

K log(K)

T

)β(1+α)
2β+d

Conclusion and Remark

Conclusion
We introduced and analyzed new policies:

Sequential Elimination: an intuitive policy with great potential for
the static case;

Binned SE: its generalization for hard dynamic pb;

Adaptively BSE: again generalized for both easy and hard pb.

– There are all minimax optimal in T ;

– Conjecture: also in K up to the term log(K).

– They require the knowledge of T (OK) and β (more arguable)

– Analysis more intricate when K > 2: optimal arm can be
eliminated more easily, f] non continuous

– Future work: adaptive policy w.r.t. β

	Static case
	Framework
	Static Case
	Successive Elimination (SE)

	Dynamic Framework
	Framework
	Binned Successive Elimination (BSE)
	Adaptively BSE (ABSE)

