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Motivation

Design of Optical Access Networks
I determine sites for central offices with access hardware
I connect clients to central offices using optical fibres

Fiber Trees
Splitting

I single fiber at central office
I split into tree by splitters
I shared by many clients

Technological constraints
I clients share capacity of fiber
I limited signal strength
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Problem Definition

≤ L

≤ U

UFL-CLT
I input: graph G = (V ,E),

facilities F ⊆ V , clients C ⊆ V
I client v ∈ C: demand d(v)
I facility w ∈ F : opening cost φ(w)
I edge e ∈ E : length `(e), cost c(e)
I tree capacity U, length bound L

I task: Find facilities F ⊆ F
and trees T of minimum cost s.t.

I every T ∈ T is rooted at wT ∈ F ,
I every v ∈ C is served by Tv ∈ T ,
I
∑

v :Tv=T d(v) ≤ U,
I
∑

e∈T [v ,wT ]
`(e) ≤ L.
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Related Problems

(α, β)-Approximation Algorithm
I approximates length bound by a factor of α
I approximates cost of optimal length-bounded solution by β

I Shallow-Light Trees
I (O(log n),O(log n))-approximation for SL Steiner Tree

[Marathe et al. 1998]
I (α,1 + 2

1−α )-Light Approximate Shortest Path Tree (` = c)
[Khuller et al. 1995]

I (1,O(log n))-approximation for k -hop Spanning Tree (` ≡ 1)
[Althaus et al. 2005]

I Capacitated Cable Facility Location
I no length bound, splittable demands
I ρUFL + ρST-approximation [Ravi & Sinha 2006]
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Tree Lower Bound

Construct graph G ′:
rc = φw

` = 0

I add root vertex r
I connect r to all facilities with
φ-cost and 0-length edges

I let S be a min-cost SLST in G ′

rooted at r spanning C with depth
at most L

Lemma
c(S) ≤ OPT
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UFL Lower Bound

Construct UFL instance:

I C, F , φ as before
I c̃(v ,w) = d(v)

U min{c(P) : P is a v -w-path, `(P) ≤ L}

I let F be an optimal solution to this UFL instance

Lemma
φ(F ) +

∑
v∈C c̃(v ,F ) ≤ OPT

Proof

∑
v :Tv=T

c̃(v ,w) ≤

( ∑
v :Tv=T

d(v)
U

)
︸ ︷︷ ︸

≤1

c(T )
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Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Algorithm

r

U = 3, d ≡ 1

Algorithm

1 compute (αST, βST)-
approx. SLST T ∗

2 compute βUFL-
approx. UFL
solution F ∗

3 relieve overloaded
subtrees using F ∗

Subprocedure: Relieve Overloaded Subtree

1 find node v with d(T ∗[v ]) > U but
d(T ∗[w ]) ≤ U for all children w of v

2 partition subtrees into groups with demand between U/2 and U

3 find c-closest client-facility pairs

Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections



Analysis

I returned solution (T ,F )

I initial tree T ∗, UFL solution F ∗

c(e)

≥
∑

v
d(v)

U c(e)

> U/2

capacity: ?

d(T ) ≤ U for all T ∈ T

length: ?
cost: ?

c(T ) + φ(F ) ≤ c(T ∗) + φ(F ∗) + 2
∑

v∈C c̃(v ,F ∗)

Theorem
There is an (O(log n),O(log n))-approximation for UFL-CLT.

I use SLST matching augmentation and UFL-greedy
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Approximation Guarantees

length cost

general
O(log n) O(log n)

3 + ε O(log2 n) (∗)
` = c, metric 3α (1 + 2

α−1)(βST + βαUFL) + 1

` ≡ 1, c metric 1 + ε O(log n)

(∗) quasi-polynomial run-time
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Greedy Cover

Algorithm

1 F = ∅
2 while ∃v ∈ C with `(v ,F ) > 3L

I Fv = {w ∈ F : `(v ,w) ≤ L}
I let w∗ ∈ Fv with φ(w∗) minimum
I F = F ∪ {w∗}

Lemma
If ` is a metric,
then φ(F ) ≤ OPT .
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Length-dependent Costs

I let ` = c be a metric

Light Approximate Shortest-path Tree (LAST) [Khuller et al. 1995]

Given a tree T with root r , compute tree T ′ s.t.
I c(T ′[v , r ]) ≤ αSP(v) (SP(v) = length of shortest r -v -path)
I c(T ′) ≤ (1 + 2

α−1)c(T ).

Idea
I ignore length bound for SLST and UFL
I compute greedy cover
I apply LAST algorithm
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Length-dependent Costs
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length bound approximation
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Approximation Factor
I length: 3α · L
I cost: ((1 + 2

α−1)(βST + βαUFL) + 1)OPT
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Hop Constraints

I let ` ≡ 1, c be a metric

Approximation for Hop-constrained Trees
I spanning tree: (1,O(log n)) [Althaus et al. 2005]

I Steiner tree: (1,O(log n)) for fixed L [Kortsarz & Peleg 1999]

Modified Relieve Procedure
I when relieving subtree rooted at v ,

connect facility directly to v
! no increase in depth of tree

≤ L − 1

I (1 + ε, O(log n))-approximation
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Conclusion

I facility location + capacitated trees + length bound
I flexible approximation framework combining several lower

bounds

Open questions
? capacitated facilities
? uncertain demands
? (O(1),O(1))-approximation for shallow-light Steiner tree

Thank you!
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