# Facility Location with Capacitated and Length-Bounded Tree Connections



Jannik Matuschke

Benjamin Müller

Andreas Bley

Workshop on Algorithms and Dynamics for Games and Optimization Playa Blanca, October 17, 2013



# Motivation

#### Design of Optical Access Networks

- determine sites for central offices with access hardware
- connect clients to central offices using optical fibres



# Motivation

## Design of Optical Access Networks

- determine sites for central offices with access hardware
- connect clients to central offices using optical fibres

#### **Fiber Trees**



## Splitting

- single fiber at central office
- split into tree by splitters
- shared by many clients

## **Technological constraints**

- clients share capacity of fiber
- limited signal strength

7I 🚯

## Introduction

- Problem Definition
- Related Work
- Lower Bounds
- 2 Approximation Algorithm
  - Framework
  - Special Cases



EE.

- **input:** graph G = (V, E), facilities  $\mathcal{F} \subseteq V$ , clients  $\mathcal{C} \subseteq V$ 
  - client  $v \in C$ : demand d(v)
  - facility  $w \in \mathcal{F}$ : opening cost  $\phi(w)$
  - edge  $e \in E$ : length  $\ell(e)$ , cost c(e)
  - tree capacity U, length bound L
- ► task: Find facilities F ⊆ F and trees T of minimum cost s.t.
  - every  $T \in T$  is rooted at  $w_T \in F$ ,
  - every  $v \in C$  is served by  $T_v \in T$ ,

$$\sum_{v:T_v=T} d(v) \leq U,$$

• 
$$\sum_{e\in T[v,w_T]} \ell(e) \leq L.$$



EE.

- **input:** graph G = (V, E), facilities  $\mathcal{F} \subseteq V$ , clients  $\mathcal{C} \subseteq V$ 
  - client  $v \in C$ : demand d(v)
  - facility  $w \in \mathcal{F}$ : opening cost  $\phi(w)$
  - edge  $e \in E$ : length  $\ell(e)$ , cost c(e)
  - tree capacity U, length bound L
- ► task: Find facilities F ⊆ F and trees T of minimum cost s.t.
  - every  $T \in T$  is rooted at  $w_T \in F$ ,
  - every  $v \in C$  is served by  $T_v \in T$ ,

$$\sum_{v:T_v=T} d(v) \leq U,$$

• 
$$\sum_{e\in T[v,w_T]} \ell(e) \leq L.$$



- **input:** graph G = (V, E), facilities  $\mathcal{F} \subseteq V$ , clients  $\mathcal{C} \subseteq V$ 
  - client  $v \in C$ : demand d(v)
  - facility  $w \in \mathcal{F}$ : opening cost  $\phi(w)$
  - edge  $e \in E$ : length  $\ell(e)$ , cost c(e)
  - tree capacity U, length bound L
- ► task: Find facilities F ⊆ F and trees T of minimum cost s.t.
  - every  $T \in T$  is rooted at  $w_T \in F$ ,
  - every  $v \in C$  is served by  $T_v \in T$ ,

$$\sum_{v:T_v=T} d(v) \leq U,$$

• 
$$\sum_{e\in T[v,w_T]} \ell(e) \leq L.$$



- **input:** graph G = (V, E), facilities  $\mathcal{F} \subseteq V$ , clients  $\mathcal{C} \subseteq V$ 
  - client  $v \in C$ : demand d(v)
  - facility  $w \in \mathcal{F}$ : opening cost  $\phi(w)$
  - edge  $e \in E$ : length  $\ell(e)$ , cost c(e)
  - tree capacity U, length bound L
- ► task: Find facilities F ⊆ F and trees T of minimum cost s.t.
  - every  $T \in T$  is rooted at  $w_T \in F$ ,
  - every  $v \in C$  is served by  $T_v \in T$ ,

$$\sum_{v:T_v=T} d(v) \leq U,$$

• 
$$\sum_{e\in T[v,w_T]} \ell(e) \leq L.$$



- ▶ input: graph G = (V, E), facilities  $\mathcal{F} \subseteq V$ , clients  $\mathcal{C} \subseteq V$ 
  - client  $v \in C$ : demand d(v)
  - facility  $w \in \mathcal{F}$ : opening cost  $\phi(w)$
  - edge  $e \in E$ : length  $\ell(e)$ , cost c(e)
  - tree capacity U, length bound L
- ► task: Find facilities F ⊆ F and trees T of minimum cost s.t.
  - every  $T \in T$  is rooted at  $w_T \in F$ ,
  - every  $v \in C$  is served by  $T_v \in T$ ,

$$\sum_{v:T_v=T} d(v) \leq U,$$

• 
$$\sum_{e\in T[v,w_T]} \ell(e) \leq L.$$

## $(\alpha, \beta)$ -Approximation Algorithm

- approximates length bound by a factor of a
- approximates cost of optimal length-bounded solution by  $\beta$
- Shallow-Light Trees
  - (O(log n), O(log n))-approximation for SL Steiner Tree [Marathe et al. 1998]
  - $(\alpha, 1 + \frac{2}{1-\alpha})$ -Light Approximate Shortest Path Tree  $(\ell = c)$ [Khuller et al. 1995]
  - (1, O(log n))-approximation for k-hop Spanning Tree (ℓ ≡ 1)
    [Althaus et al. 2005]
- Capacitated Cable Facility Location
  - no length bound, splittable demands
  - ρ<sub>UFL</sub> + ρ<sub>ST</sub>-approximation [Ravi & Sinha 2006]

**Construct graph** *G*':





Andreas Bley, Jannik Matuschke, Benjamin Müller FL with Capacitated and Length-Bounded Tree Connections

#### **Construct graph** G':



- add root vertex r
- connect r to all facilities with φ-cost and 0-length edges



#### **Construct graph** G':



- add root vertex r
- connect r to all facilities with φ-cost and 0-length edges
- let S be a min-cost SLST in G' rooted at r spanning C with depth at most L



#### **Construct graph** G':



- add root vertex r
- connect r to all facilities with φ-cost and 0-length edges
- let S be a min-cost SLST in G' rooted at r spanning C with depth at most L

#### Lemma

$$c(S) \leq OPT$$

## **Construct UFL instance:**

•  $C, F, \phi$  as before

• 
$$\tilde{c}(v, w) = \frac{d(v)}{U} \min\{c(P) : P \text{ is a } v - w - path, \ell(P) \le L\}$$



## **Construct UFL instance:**

- $C, F, \phi$  as before
- $\tilde{c}(v, w) = \frac{d(v)}{U} \min\{c(P) : P \text{ is a } v w path, \ell(P) \le L\}$
- let F be an optimal solution to this UFL instance



## **Construct UFL instance:**

- $C, F, \phi$  as before
- $\tilde{c}(v, w) = \frac{d(v)}{U} \min\{c(P) : P \text{ is a } v \text{-} w \text{-} path, \ell(P) \leq L\}$
- let F be an optimal solution to this UFL instance

#### Lemma

$$\phi(F) + \sum_{v \in \mathcal{C}} \tilde{c}(v, F) \leq OPT$$

## **Construct UFL instance:**

- $C, F, \phi$  as before
- $\tilde{c}(v, w) = \frac{d(v)}{U} \min\{c(P) : P \text{ is a } v \text{-} w \text{-} path, \ell(P) \leq L\}$
- let F be an optimal solution to this UFL instance

#### Lemma

$$\phi(F) + \sum_{v \in \mathcal{C}} \tilde{c}(v, F) \leq OPT$$

# Proof



FL with Capacitated and Length-Bounded Tree Connections

## **Construct UFL instance:**

- $C, F, \phi$  as before
- $\tilde{c}(v, w) = \frac{d(v)}{U} \min\{c(P) : P \text{ is a } v w path, \ell(P) \le L\}$
- let F be an optimal solution to this UFL instance

#### Lemma

$$\phi(F) + \sum_{v \in \mathcal{C}} \tilde{c}(v, F) \leq OPT$$

#### Proof

$$\sum_{v:T_v=T} \tilde{c}(v,w) \leq \underbrace{\left(\sum_{v:T_v=T} \frac{d(v)}{U}\right)}_{\leq 1} c(T)$$

Andreas Bley, Jannik Matuschke, Benjamin Müller

FL with Capacitated and Length-Bounded Tree Connections



## Algorithm

1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST *T*\*





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST *T*\*
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$



- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*





#### Algorithm

- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*





#### Algorithm

- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*

#### Subprocedure: Relieve Overloaded Subtree

1 find node v with  $d(T^*[v]) > U$  but  $d(T^*[w]) \le U$  for all children w of v



FL with Capacitated and Length-Bounded Tree Connections



- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*

- 1 find node v with  $d(T^*[v]) > U$  but  $d(T^*[w]) \le U$  for all children w of v
- 2 partition subtrees into groups with demand between U/2 and U





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*

- 1 find node v with  $d(T^*[v]) > U$  but  $d(T^*[w]) \le U$  for all children w of v
- 2 partition subtrees into groups with demand between U/2 and U
- 3 find *c*-closest client-facility pairs





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*

- 1 find node v with  $d(T^*[v]) > U$  but  $d(T^*[w]) \le U$  for all children w of v
- 2 partition subtrees into groups with demand between U/2 and U
- 3 find *c*-closest client-facility pairs





- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*

- 1 find node v with  $d(T^*[v]) > U$  but  $d(T^*[w]) \le U$  for all children w of v
- 2 partition subtrees into groups with demand between U/2 and U
- 3 find *c*-closest client-facility pairs





## Algorithm

- 1 compute  $(\alpha_{ST}, \beta_{ST})$ approx. SLST  $T^*$
- 2 compute  $\beta_{\text{UFL}}$ approx. UFL solution  $F^*$
- 3 relieve overloaded subtrees using F\*

- 1 find node v with  $d(T^*[v]) > U$  but  $d(T^*[w]) \le U$  for all children w of v
- 2 partition subtrees into groups with demand between U/2 and U
- 3 find *c*-closest client-facility pairs



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*\*, UFL solution *F*\*

capacity: ? length: ? cost: ?

- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*<sup>\*</sup>, UFL solution *F*<sup>\*</sup>

capacity: relieve length: ? cost: ?

- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*<sup>\*</sup>, UFL solution *F*<sup>\*</sup>

capacity:  $d(T) \le U$ length: ? cost: ? for all  $T \in \mathcal{T}$ 



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree T\*, UFL solution F\*



capacity:  $d(T) \le U$ length:  $\ell(T^*[v, w]) \le \alpha_{ST}L$ cost: ? for all  $T \in \mathcal{T}$ 

- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*\*, UFL solution *F*\*



capacity:  $d(T) \le U$ length:  $\ell(T[v, w]) \le (2\alpha_{ST} + 1)L$ cost: ? for all  $T \in \mathcal{T}$ for all  $T \in \mathcal{T}$ 



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*\*, UFL solution *F*\*

capacity:  $d(T) \le U$ for all  $T \in \mathcal{T}$ length:  $\ell(T[v, w]) \le (2\alpha_{ST} + 1)L$ for all  $T \in \mathcal{T}$ cost:  $c(\mathcal{T}) + \phi(F) \le c(T^*) + \phi(F^*) + 2\sum_{v \in \mathcal{C}} \tilde{c}(v, F^*)$ 



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*\*, UFL solution *F*\*



capacity:  $d(T) \leq U$ for all  $T \in \mathcal{T}$ length:  $\ell(T[v, w]) \leq (2\alpha_{ST} + 1)L$ for all  $T \in \mathcal{T}$ cost:  $c(\mathcal{T}) + \phi(F) \leq c(T^*) + \phi(F^*) + 2\sum_{v \in \mathcal{C}} \tilde{c}(v, F^*)$ 

- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*\*, UFL solution *F*\*



capacity:  $d(T) \leq U$ for all  $T \in \mathcal{T}$ length:  $\ell(T[v, w]) \leq (2\alpha_{ST} + 1)L$ for all  $T \in \mathcal{T}$ cost:  $c(\mathcal{T}) + \phi(F) \leq c(T^*) + \phi(F^*) + 2\sum_{v \in \mathcal{C}} \tilde{c}(v, F^*)$ 



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree T\*, UFL solution F\*



capacity:  $d(T) \le U$ for all  $T \in \mathcal{T}$ length:  $\ell(T[v, w]) \le (2\alpha_{ST} + 1)L$ for all  $T \in \mathcal{T}$ cost:  $c(\mathcal{T}) + \phi(F) \le c(T^*) + \phi(F^*) + 2\sum_{v \in \mathcal{C}} \tilde{c}(v, F^*)$ 



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree T\*, UFL solution F\*



capacity:  $d(T) \le U$ for all  $T \in \mathcal{T}$ length:  $\ell(T[v, w]) \le (2\alpha_{ST} + 1)L$ for all  $T \in \mathcal{T}$ cost:  $c(\mathcal{T}) + \phi(F) \le c(T^*) + \phi(F^*) + 2\sum_{v \in \mathcal{C}} \tilde{c}(v, F^*)$ 



- returned solution  $(\mathcal{T}, F)$
- ▶ initial tree *T*\*, UFL solution *F*\*



capacity:  $d(T) \leq U$ for all  $T \in \mathcal{T}$ length:  $\ell(T[v, w]) \leq (2\alpha_{ST} + 1)L$ for all  $T \in \mathcal{T}$ cost:  $c(\mathcal{T}) + \phi(F) \leq c(T^*) + \phi(F^*) + 2\sum_{v \in \mathcal{C}} \tilde{c}(v, F^*)$ 

#### Theorem

There is an  $(O(\log n), O(\log n))$ -approximation for UFL-CLT.

use SLST matching augmentation and UFL-greedy



FL with Capacitated and Length-Bounded Tree Connections

|                                  | length            | cost                                                             |     |
|----------------------------------|-------------------|------------------------------------------------------------------|-----|
| general                          | O(log n)          | $O(\log n)$                                                      |     |
|                                  | $3 + \varepsilon$ | $O(\log^2 n)$                                                    | (*) |
| $\ell = c$ , metric              | <b>3</b> lpha     | $(1+rac{2}{lpha-1})(eta_{	extsf{ST}}+eta_{	extsf{UFL}}^lpha)+1$ |     |
| $\ell \equiv$ 1, <i>c</i> metric | $1 + \varepsilon$ | $O(\log n)$                                                      |     |

(\*) quasi-polynomial run-time

















## Algorithm

- 1  $F = \emptyset$
- 2 while  $\exists v \in C$  with  $\ell(v, F) > 3L$ 
  - $F_{v} = \{w \in \mathcal{F} : \ell(v, w) \leq L\}$
  - let  $w^* \in F_v$  with  $\phi(w^*)$  minimum
  - $F = F \cup \{w^*\}$



71.63





#### Algorithm

2 while  $\exists v \in C$  with  $\ell(v, F) > 3L$ 

$$F_{\mathbf{v}} = \{ \mathbf{w} \in \mathcal{F} : \ell(\mathbf{v}, \mathbf{w}) \leq L \}$$

- let  $w^* \in F_v$  with  $\phi(w^*)$  minimum
- $F = F \cup \{w^*\}$

#### Lemma

If  $\ell$  is a metric, then  $\phi(F) \leq OPT$ .





## Algorithm

1 
$$F = \emptyset$$

2 while  $\exists v \in C$  with  $\ell(v, F) > 3L$ 

$$F_{\boldsymbol{v}} = \{ \boldsymbol{w} \in \mathcal{F} : \ell(\boldsymbol{v}, \boldsymbol{w}) \leq L \}$$

• let 
$$w^* \in F_v$$
 with  $\phi(w^*)$  minimum

$$\blacktriangleright F = F \cup \{w^*\}$$

#### Lemma

If  $\ell$  is a metric, then  $\phi(F) \leq OPT$ .





## Algorithm

71 😣

2 while 
$$\exists v \in C$$
 with  $\ell(v, F) > 3L$ 

• 
$$F_v = \{w \in \mathcal{F} : \ell(v, w) \leq L\}$$

• let 
$$w^* \in F_v$$
 with  $\phi(w^*)$  minimum

• 
$$F = F \cup \{w^*\}$$

#### Lemma

If  $\ell$  is a metric, then  $\phi(F) \leq OPT$ .

• let  $\ell = c$  be a metric



• let  $\ell = c$  be a metric

Light Approximate Shortest-path Tree (LAST)

[Khuller et al. 1995]

Given a tree T with root r, compute tree T' s.t.

•  $c(T'[v, r]) \le \alpha SP(v)$  (SP(v) = length of shortest r-v-path)

• 
$$c(T') \leq (1 + \frac{2}{\alpha - 1})c(T)$$
.

**TI (\$** 

 $\blacktriangleright$  let  $\ell = c$  be a metric

Light Approximate Shortest-path Tree (LAST)

[Khuller et al. 1995]

Given a tree T with root r, compute tree T' s.t.

•  $c(T'[v, r]) \le \alpha SP(v)$  (SP(v) = length of shortest r-v-path)

• 
$$c(T') \leq (1 + \frac{2}{\alpha - 1})c(T).$$

#### Idea

- ignore length bound for SLST and UFL
- compute greedy cover
- apply LAST algorithm



#### Approximation Factor

- length:  $3\alpha \cdot L$
- cost:  $((1 + \frac{2}{\alpha 1})(\beta_{ST} + \beta_{UFL}^{\alpha}) + 1)OPT$

• let  $\ell \equiv 1$ , *c* be a metric

#### Approximation for Hop-constrained Trees

- spanning tree: (1, O(log n))
- Steiner tree: (1, O(log n)) for fixed L

[Althaus et al. 2005]

[Kortsarz & Peleg 1999]



• let  $\ell \equiv 1$ , *c* be a metric

#### Approximation for Hop-constrained Trees

- spanning tree: (1, O(log n))
- Steiner tree: (1, O(log n)) for fixed L

[Althaus et al. 2005]

[Kortsarz & Peleg 1999]

#### Modified Relieve Procedure

- when relieving subtree rooted at v, connect facility directly to v
- ! no increase in depth of tree



• let  $\ell \equiv 1$ , *c* be a metric

#### Approximation for Hop-constrained Trees

- spanning tree: (1, O(log n))
- Steiner tree: (1, O(log n)) for fixed L

[Althaus et al. 2005]

[Kortsarz & Peleg 1999]

#### Modified Relieve Procedure

- when relieving subtree rooted at v, connect facility directly to v
- ! no increase in depth of tree



• let  $\ell \equiv 1$ , *c* be a metric

#### Approximation for Hop-constrained Trees

- spanning tree: (1, O(log n))
- Steiner tree: (1, O(log n)) for fixed L

[Althaus et al. 2005]

[Kortsarz & Peleg 1999]

#### Modified Relieve Procedure

- when relieving subtree rooted at v, connect facility directly to v
- ! no increase in depth of tree





• let  $\ell \equiv 1$ , *c* be a metric

## Approximation for Hop-constrained Trees

- spanning tree: (1, O(log n))
- Steiner tree: (1, O(log n)) for fixed L

[Althaus et al. 2005]

[Kortsarz & Peleg 1999]

#### Modified Relieve Procedure

- when relieving subtree rooted at v, connect facility directly to v
- ! no increase in depth of tree



## • $(1 + \varepsilon, O(\log n))$ -approximation

FL with Capacitated and Length-Bounded Tree Connections

## Conclusion

- facility location + capacitated trees + length bound
- flexible approximation framework combining several lower bounds

## **Open questions**

- ? capacitated facilities
- ? uncertain demands
- ? (O(1), O(1))-approximation for shallow-light Steiner tree

## Conclusion

- facility location + capacitated trees + length bound
- flexible approximation framework combining several lower bounds

## **Open questions**

- ? capacitated facilities
- ? uncertain demands
- ? (O(1), O(1))-approximation for shallow-light Steiner tree

## Thank you!

