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SUBDIFFERENTIAL OF CONVEX FUNCTIONS

Everywhere X is a Banach space. A set-valued operator T : X ⇒ X∗,
or graph T ⊂ X ×X∗, is monotone provided

〈y∗ − x∗, y − x〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ T,

and maximal monotone provided it is monotone and not properly
contained in another monotone operator.

The subdifferential ∂f : X ⇒ X∗ of a convex f : X → ]−∞,+∞] is

∂f(x) :=
{
x∗ ∈ X∗ : 〈x∗, y − x〉+ f(x) ≤ f(y), ∀y ∈ X

}
,

and the duality operator J : X ⇒ X∗ is

J(x) :=
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2

}
.

It is easily verified that J(x) = ∂j(x) where j(x) = (1/2)‖x‖2.

Theorem (Rockafellar, 1970) Let X be a Banach space. The sub-

differential ∂f of a proper convex lower semicontinuous function

f : X → ]−∞,+∞] is maximal monotone.
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PROOF WHEN X = H IS HILBERT (taken from Brezis, 1973)

By Hahn-Banach, f ≥ `+ α for some ` ∈ X∗ and α ∈ R, and j + ` is

coercive (j(x) + `(x) = (1/2)‖x‖2 + `(x)→ +∞ as ‖x‖ → +∞), so

f + j is coercive.

Hence f + j attains its minimum at some x̄ ∈ H, so 0 ∈ ∂(f + j)(x̄).

Since ∂j = ∇j = I (identity on H), we readily get 0 ∈ (∂f + I)(x̄),

so 0 ∈ R(∂f + I). We conclude that

X∗ = R(∂f + I).

This is easily seen to imply that ∂f is maximal monotone.

(This is the elementary part in Minty’s characterization of maximal

monotonicity (1962).)
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PROOF IN THE GENERAL BANACH CASE: STEP 1

Claim:

0 ∈ R(∂f + J). (1)

First, f ≥ `+α for some ` ∈ X∗ and α ∈ R, and j+` bounded below,

so f + j is bounded below.

Next, let ε > 0 arbitrary and let yε ∈ dom f such that

(f + j)(yε) ≤ (f + j)(y) + ε2, ∀y ∈ X.

By Brøndsted-Rockafellar approximation theorem (1965),

∃x∗ε ∈ X∗ with ‖x∗ε‖ ≤ ε and zε ∈ X such that x∗ε ∈ ∂(f + j)(zε).

By Rockafellar’s sum rule (1966), x∗ε ∈ ∂f(zε) + J(zε).

Conclusion: ∃x∗ε ∈ R(∂f + J) with ‖x∗ε‖ ≤ ε, proving the claim.
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PROOF: STEP 2

Let (x, x∗) ∈ X ×X∗ such that

〈y∗ − x∗, y − x〉 ≥ 0, ∀(y, y∗) ∈ ∂f. (2)

Applying (1) to f(x+ .)− x∗, we get

x∗ ∈ R(∂f(x+ .) + J).

Thus, there are (x∗n) ⊂ X∗ with x∗n → x∗ and (hn) ⊂ X such that
x∗n ∈ ∂f(x+ hn) + J(hn). Let (y∗n) ⊂ X∗ such that

y∗n ∈ ∂f(x+ hn) and x∗n − y∗n ∈ J(hn).

By definition of J, we have

〈x∗n − y∗n, hn〉 = ‖x∗n − y∗n‖2 = ‖hn‖2. (3)

From (2) and y∗n ∈ ∂f(x+ hn), we get 〈x∗ − y∗n, x+ hn − x〉 ≤ 0, so

‖hn‖2 = 〈x∗n−x∗, hn〉+〈x∗−y∗n, x+hn−x〉 ≤ 〈x∗n−x∗, hn〉 ≤ ‖x∗n−x∗‖‖hn‖.

Hence, hn → 0, so, by (3), ‖x∗n−y∗n‖ → 0, therefore y∗n → x∗. Since ∂f
has closed graph and y∗n ∈ ∂f(x+ hn), we conclude that x∗ ∈ ∂f(x).
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OTHER PROOFS OF MAXIMALITY OF ∂f FOR CONVEX f

1/ f everywhere finite and continuous:
• Minty (1964), Phelps (1989), using mean value theorem and link
between subderivative and subdifferential

2/ f lsc, X Hilbert:
• Moreau (1965), via prox functions and duality theory,
• Brezis (1973), showing directly that ∂f + I is onto

3/ f lsc, X Banach: all proofs use a variational principle and an-
other tool
• Rockafellar (1970): continuity of (f + j)∗ in X∗ and link between
(∂f)−1 and ∂f∗ in X∗∗ ×X∗,
• Taylor (1973) and Borwein (1982): subderivative mean value in-
equality and link between subderivative and subdifferential,
• Zagrodny (1988?), Simons (1991), Luc (1993), etc: subdifferen-
tial mean value inequality,
• Thibault (1999): limiting convex subdifferential calculus,
• Marques Alves-Svaiter (2008), Simons (2009): conjugate func-
tions and Fenchel duality formula or subdifferential sum rule.
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BEYOND THE CONVEX CASE: MAIN TOOLS

Let be given a ’subdifferential’ ∂ that associates a subset ∂f(x) ⊂ X∗
to each x ∈ X and each function f on X so that ∂f(x) coincides
with the convex subdifferential when f is convex.

The two main tools in the convex situation were:
• Brøndsted-Rockafellar’s approximation theorem (1965)
• Rockafellar’s subdifferential sum rule (1966).

They will be respectively replaced by:

Ekeland Variational Principle (1974). For any lsc function f on X,

x̄ ∈ dom f and ε > 0 such that f(x̄) ≤ inf f(X)+ε, and for any λ > 0,

there is xλ ∈ X s.t. ‖xλ − x̄‖ ≤ λ, f(xλ) ≤ f(x̄), and

x 7→ f(x) + (ε/λ)‖x− xλ‖ has a minimum at xλ.

Subdifferential Separation Principle. For any lsc functions f, ϕ on X

with ϕ convex Lipschitz near x̄ ∈ dom f ∩ domϕ,

f + ϕ has a local minimum at x̄ =⇒ 0 ∈ ∂f(x̄) + ∂ϕ(x̄).
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SUBDIFFERENTIALS SATISFYING THE SEPARATION

PRINCIPLE

The main examples of pairs (X, ∂) for which the Subdifferential

Separation Principle holds are:

• the Clarke subdifferential ∂C in arbitrary Banach spaces,

• the limiting Fréchet subdifferential ∂̂F in Asplund spaces,

• the limiting Hadamard subdifferential ∂̂H in separable spaces,

• the limiting proximal subdifferential ∂̂P in Hilbert spaces.

For more details, see, e.g., Jules-Lassonde (2013, 2013b).
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COMBINING THE TOOLS

Set dom f∗ = {x∗ ∈ X∗ : inf(f − x∗)(X) > −∞}.

Proposition Let X Banach, f : X → ]−∞,+∞] proper lsc, ϕ : X → R
convex loc. Lispchitz. Then, dom (f + ϕ)∗ ⊂ cl (R(∂f + ∂ϕ)).

Proof. Let x∗ ∈ dom (f + ϕ)∗ and let ε > 0. There is x̄ ∈ X s.t.

(f + ϕ− x∗)(x̄) ≤ inf(f + ϕ− x∗)(X) + ε2,

so, by Ekeland’s variational principle, there is xε ∈ X such that
x 7→ f(x)+ϕ(x)+〈−x∗, x〉+ε‖x−xε‖ attains its minimum at xε. Now,
applying the Separation Principle with the convex locally Lipschitz
ψ : x 7→ ϕ(x) + 〈−x∗, x〉+ ε‖x− xε‖ we obtain x∗ε ∈ ∂f(xε) such that
−x∗ε ∈ ∂ψ(xε) = ∂ϕ(xε) − x∗ + εBX∗. So, there is y∗ε ∈ ∂ϕ(xε) such
that ‖x∗ − y∗ε − x∗ε‖ ≤ ε. Thus, for every ε > 0 the ball B(x∗, ε)
contains x∗ε + y∗ε ∈ ∂f(xε) + ∂ϕ(xε) ⊂ R(∂f + ∂ϕ). This means that
x∗ ∈ cl (R(∂f + ∂ϕ)).

The case ϕ = 0 and f = δC with C nonempty closed convex set says that the set

R(∂δC) of functionals in X∗ that attain their supremum on C is dense in the set

dom δ∗C of all those functionals which are bounded above on C (Bishop-Phelps).
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PROX-BOUNDED FUNCTIONS

A function f is called prox-bounded if there exists λ > 0 such that
the function f + λj is bounded below; the infimum λf of the set of
all such λ is called the threshold of prox-boundedness for f :

λf := inf{λ > 0 : inf(f + λj) > −∞}.
Any convex lsc function g is prox-bounded with threshold λg = 0,
the sum f + g of a prox-bounded f and of a convex lsc g is prox-
bounded with λf+g ≤ λf , for every x∗ ∈ X∗, λf+x∗ = λf , and for
every x ∈ X, f(x + .) + λj is bounded below for any λ > λf (see
Rockafellar-Wets book (1998)).

Consequence: if f is prox-bounded, then for every λ > λf ,
∀x ∈ X, dom (f(x+ .) + λj)∗ = X∗.

From this and the previous result we get:

Proposition Let X Banach and let f : X → ]−∞,+∞] be lsc and

prox-bounded with threshold λf . Then, for every λ > λf ,

∀x ∈ X, cl (R(∂f(x+ .) + λJ)) = X∗.
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GOING FURTHER: MONOTONE ABSORPTION

Given T : X ⇒ X∗, or T ⊂ X ×X∗, and ε ≥ 0, we let

T ε := { (x, x∗) ∈ X ×X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε, ∀(y, y∗) ∈ T }

be the set of pairs (x, x∗) ε-monotonically related to T .

An operator T is monotone provided T ⊂ T0 and monotone maximal
provided T = T0.

A non necessarily monotone operator T is declared to be monotone
absorbing provided T0 ⊂ T ( norm-closure).

A non necessarily monotone operator T is declared to be widely
monotone absorbing with threshold λT ≥ 0 provided for every λ > λT
one has

∀ε ≥ 0, T ε ⊂
(
T +

√
λ−1εBX ×

√
λεBX∗

)
.

Equivalently: ∀ε ≥ 0, (x, x∗) ∈ T ε ⇒
∃(xn, x∗n) ⊂ T : limn ‖x− xn‖ ≤

√
λ−1ε and limn ‖x∗ − x∗n‖ ≤

√
λε.
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SUFFICIENT CONDITION FOR WIDE MONOTONE
ABSORPTION

Proposition Let T : X ⇒ X∗ and λ > 0. Assume that

∀x ∈ X, cl (R(T (x+ .) + λJ) = X∗. (4)

Then:

∀ε ≥ 0, T ε ⊂ cl
(
T +

√
λ−1εBX ×

√
λεBX∗

)
. (5)

Proof. Let ε ≥ 0 and let (x, x∗) ∈ T ε. Since T (x + .) + λJ has a
dense range, we can find (x∗n) ⊂ X∗ with x∗n → x∗ and (yn) ⊂ X such
that x∗n ∈ T (x+ yn) + λJyn. Let (y∗n) ⊂ X∗ such that

y∗n ∈ T (x+ yn) and x∗n − y∗n ∈ λJyn.

By definition of J, we have

λ−1〈x∗n − y∗n, yn〉 = ‖λ−1(x∗n − y∗n)‖2 = ‖yn‖2. (6)

But x∗ ∈ T εx and y∗n ∈ T (x+ yn), so 〈x∗ − y∗n, yn〉 ≤ ε, hence

λ‖yn‖2 = 〈x∗n−x∗, yn〉+〈x∗−y∗n, yn〉 ≤ 〈x∗n−x∗, yn〉+ε ≤ ‖x∗n−x∗‖‖yn‖+ε.
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Therefore, λ‖yn‖2 − ‖x∗n − x∗‖‖yn‖ − ε ≤ 0, so we must have

‖yn‖ ≤ (‖x∗n − x∗‖+
√
‖x∗n − x∗‖2 + 4ελ)/2λ. (7)

From (7) we derive that lim supn ‖yn‖ ≤
√
λ−1ε, so, by (6),

lim sup
n

‖x∗n − y∗n‖ = lim sup
n

λ‖yn‖ ≤
√
λε.

In conclusion we have (x+ yn, y∗n) ∈ T with

lim sup
n

‖x− (x+ yn)‖ ≤
√
λ−1ε, lim sup

n
‖x∗ − y∗n‖ ≤

√
λε,

and without loss of generality we can replace lim supn by limn.

Open problem: We don’t know whether the converse (5)⇒ (4) is

true.



WIDE MONOTONE ABSORPTION PROPERTY OF

SUBDIFFERENTIALS OF PROX-BOUNDED FUNCTIONS

Combining the last two propositions gives:

Theorem Let X Banach and f : X → ]−∞,+∞] lsc, prox-bounded

with threshold λf ≥ 0. Then:

∀λ > λf , ∀ε ≥ 0, (∂f)ε ⊂ cl
(
∂f +

√
λ−1εBX ×

√
λεBX∗

)
.

Equivalently: for all λ > λf and ε ≥ 0, (x∗, x) ∈ (∂f)ε ⇒
∃((x∗n, xn))n ⊂ ∂f : limn ‖x− xn‖ ≤

√
λ−1ε & limn ‖x∗ − x∗n‖ ≤

√
λε.

In case λf = 0 (in particular for a convex f), the wide monotone ab-

sorption property is equivalent to the so-called maximal monotonic-

ity of Brøndsted-Rockafellar type studied in Simons (1999, 2008)

and others, hence the above theorem extends known results for con-

vex functions to the class of prox-bounded non necessarily convex

functions, with a more direct proof.
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