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Motivation

Boosting methods are learning methods for combining weak
models into accurate and predictive models

Add one new weak model per iteration

The weight on each weak model is typically small

We consider boosting methods in two modeling contexts:

Binary (confidence-rated) Classification

(Regularized/sparse) Linear Regression

Boosting methods are typically tuned to perform implicit
regularization
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Review of Subgradient Descent and Frank-Wolfe Methods

1 Subgradient Descent method

2 Frank-Wolfe method (also known as Conditional Gradient
method)
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Subgradient Descent

Our problem of interest is:

f ∗ := min
x

f (x)

s.t. x ∈ Rn

where f (x) is convex but not differentiable. Then f (x) has subgradients.
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Subgradient Descent, continued

f ∗ := min
x

f (x)

s.t. x ∈ Rn

f (·) is a (non-smooth) Lipschitz continuous convex function with
Lipschitz value Lf :

|f (x)− f (y)| ≤ Lf ‖x − y‖ for any x , y

‖ · ‖ is prescribed norm on Rn
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Subgradient Descent, continued

f ∗ := min
x

f (x)

s.t. x ∈ Rn

Subgradient Descent method for minimizing f (x) on Rn

Initialize at x1 ∈ Rn, k ← 1 .

At iteration k :

1 Compute a subgradient gk of f (xk) .

2 Choose step-size αk .

3 Set xk+1 ← xk − αkgk .
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Computational Guarantees for SD

Computational Guarantees for Subgradient Descent

For each k ≥ 0 and for any x ∈ P, the following inequality holds:

min
i∈{0,...,k}

f (x i )− f (x) ≤
‖x − x0‖2

2 + L2
f

∑k
i=0 α

2
i

2
∑k

i=0 αi
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Frank-Wolfe Method (Conditional Gradient method)

Here the problem of interest is:

f ∗ := min
x

f (x)

s.t. x ∈ P

P is compact and convex

f (x) is differentiable and ∇f (·) is Lipschitz on P:

‖∇f (x)−∇f (y)‖∗ ≤ L∇‖x − y‖ for all x , y ∈ P

it is “very easy” to do linear optimization on P for any c :

x̃ ← arg min
x∈P

{cT x}
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Frank-Wolfe Method, continued

f ∗ := min
x

f (x)

s.t. x ∈ P

Frank-Wolfe Method for minimizing f (x) on P

Initialize at x0 ∈ P, k ← 0 .

At iteration k :

1 Compute ∇f (xk) .

2 Compute x̃k ← arg min
x∈P
{∇f (xk)T x} .

3 Set xk+1 ← xk + ᾱk(x̃k − xk), where ᾱk ∈ [0, 1] .
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Computational Guarantees for Frank-Wolfe Method

Here is one (simplified) computational guarantee:

A Computational Guarantee for Frank-Wolfe Method

If the step-size sequence {ᾱk} is chosen as ᾱk = 2
k+2 , k ≥ 0, then

for all k ≥ 1 it holds that:

f (xk)− f ∗ ≤ C

k + 3

where C = 2 · L∇ · diam(P)2 .



11

Motivation Review of SD and FW(CG) Binary Classification and Boosting Linear Regression and Boosting

Binary Classification

Binary Classification
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Binary Classification

The set-up of the general binary classification boosting problem
consists of:

Data/training examples (x1, y1), . . . , (xm, ym) where each
xi ∈ X and each yi ∈ [−1,+1]

A set of base classifiers H = {h1, . . . , hn} where each
hj : X → [−1,+1]

Assume that H is closed under negation (hj ∈ H ⇒ −hj ∈ H)

We would like to construct a nonnegative combination of weak
classifiers

Hλ = λ1h1 + · · ·+ λnhn

that performs significantly better than any individual classifier in
H.
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Binary Classification Feature Matrix

Define the feature matrix A ∈ Rm×n by Aij = yihj(xi )

We seek λ ≥ 0 for which:

Aλ > 0 or perhaps Aλ >≈ 0

In application/academic context:

m is large-scale

n is huge-scale, too large for many computational tasks

we wish only to work with very sparse λ, namely ‖λ‖0 is small

we have access to a weak learner W(·) that, for any
distribution w on the examples (w ≥ 0, eTw = 1), returns
the base classifier j∗ ∈ {1, . . . , n} that does best on the
weighted example determined by w :

j∗ ∈ arg max
j=1,...,n

wTAj
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Binary Classification Aspirations

We seek λ ≥ 0 for which:

Aλ > 0 or perhaps Aλ >≈ 0

In the high-dimensional regime with n� 0, m� 0 and often
n�� 0, we seek:

Good predictive performance (on out-of-sample examples)

Good performance on the training data (Aiλ > 0 for “most”
i = 1, . . . ,m)

Sparsity of the coefficients (‖λ‖0 is small)

Regularization of the coefficients (‖λ‖1 is small)
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Two Objective Functions for Boosting

We seek λ ≥ 0 for which:

Aλ > 0 or perhaps Aλ >≈ 0

Two objective functions are often considered in this context:

when the data are separable, maximize the margin:
p(λ) := min

i∈{1,...,m}
(Aλ)i

when the data are non-separable, minimize exponential loss
Lexp(λ) := 1

m

∑m
i=1 exp (−(Aλ)i )

(≡ the log-exponential loss L(λ) := log(Lexp(λ)))

It is known that a high margin implies good generalization
properties [Schapire 97]. On the other hand, the exponential loss
upper bounds the empirical probability of misclassification.
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Margin Maximization Problem

The margin is p(λ) := min
i∈{1,...,m}

(Aλ)i

p(λ) is positively homogeneous, so we normalize the variables λ

Let ∆n := {λ ∈ Rn : eTλ = 1, λ ≥ 0}

The problem of maximizing the margin over all normalized variables is:

(PM): ρ∗ = max
λ∈∆n

p(λ)

Recall that we have access to a weak learner W(·) that, for any
distribution w on the examples (w ≥ 0, eTw = 1), returns the base
classifier j∗ ∈ {1, . . . , n} that does best on the weighted example
determined by w :

j∗ ∈ arg max
j=1,...,n

wTAj
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AdaBoost Algorithm

AdaBoost Algorithm

Initialize at w0 = (1/m, . . . , 1/m), λ0 = 0, k = 0

At iteration k ≥ 0:

Compute jk ∈ W(wk)

Choose step-size αk ≥ 0 and set:
λk+1 ← λk + αke

jk λ̄k+1 ← λk+1

eTλk+1

wk+1
i ← wk

i exp(−αkAijk ) i = 1, . . . ,m, and re-normalize
wk+1 so that eTwk+1 = 1

AdaBoost has the following sparsity/regularization properties:

‖λk‖0 ≤ k and ‖λk‖1 ≤
k−1∑
i=0

αi
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Optimization Perspectives on AdaBoost

What has been known about AdaBoost in the context of
optimization:

AdaBoost has been interpreted as a coordinate descent
method to minimize the exponential loss [Mason et al.,
Mukherjee et al., etc.]

A related method, the Hedge Algorithm, has been interpreted
as dual averaging [Baes and Bürgisser]

Rudin et al. in fact show that AdaBoost can fail to maximize
the margin, but this is under the particular popular

“optimized” step-size αk := 1
2 ln

(
1+rk
1−rk

)
Lots of other work as well...
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Complexity of AdaBoost: General Case

Recall L(λ) := log
(

1
m

∑m
i=1 exp (−(Aλ)i )

)
and ρ∗ is the maximum

(normalized) margin

Complexity of AdaBoost

For all k ≥ 1, the sequence of variables λk and λ̄k produced by AdaBoost
satisfy:

min
i∈{0,...,k−1}

‖∇L(λi )‖∞ − p(λ̄k) ≤
ln(m) + 1

2

∑k−1
i=0 α

2
i∑k−1

i=0 αi

.

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a

constant step-size αi :=
√

2 ln(m)
k for all i = 0, . . . , k − 1, then we have:

min
i∈{0,...,k−1}

‖∇L(λi )‖∞ − p(λ̄k) ≤
√

2 ln(m)

k
.
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Complexity of AdaBoost: Separable Case

If the data is separable, then ρ∗ > 0 and the margin is informative

Complexity of AdaBoost: Separable Case

For all k ≥ 1, the sequence λ̄k produced by AdaBoost satisfies:

p(λ̄k) ≥ ρ∗ −
ln(m) + 1

2

∑k−1
i=0 α

2
i∑k−1

i=0 αi

.

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a

constant step-size αi :=
√

2 ln(m)
k for all i = 0, . . . , k − 1, then we

have:

p(λ̄k) ≥ ρ∗ −
√

2 ln(m)

k
.
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Complexity of AdaBoost: Non-separable Case

If the data is not separable, then ρ∗ = 0 and the log-exponential
loss function is informative

Complexity of AdaBoost: Non-separable Case

If the data is not separable, then for all k ≥ 1, the sequence λk

produced by AdaBoost satisfies:

min
i∈{0,...,k−1}

‖∇L(λi )‖∞ ≤
ln(m) + 1

2

∑k−1
i=0 α

2
i∑k−1

i=0 αi

.

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a

constant step-size αi :=
√

2 ln(m)
k for all i = 0, . . . , k − 1, then we

have:

min
i∈{0,...,k−1}

‖∇L(λi )‖∞ ≤
√

2 ln(m)

k
.
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What drives these results?

observation that AdaBoost corresponds to the Mirror Descent
method [N-Y, B-M-T, B-T] of non-differentiable convex
optimization, using the “entropy prox function” applied to the
dual of the maximum margin problem

application of Mirror Descent convergence theory for various
step-size sequences

development of some new algorithmic properties of the Mirror
Descent method in general
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What about Regularized Log-Exponential Loss
Minimization?

Log-exponential loss function is:

L(λ) := log

(
1

m

m∑
i=1

exp (−(Aλ)i )

)

In the non-separable case, AdaBoost guarantees ‖∇L(λi )‖∞ ↘ 0

Let us consider directly tackling L(λ) in the regularized setting:

L∗δ = minλ L(λ)

s.t. ‖λ‖1 ≤ δ
λ ≥ 0
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FW Method for Log-Exponential Loss Minimization

L∗δ = minλ L(λ)

s.t. ‖λ‖1 ≤ δ
λ ≥ 0

Consider using the FW method. At iteration k the method needs
to:

compute ∇L(λk)

solve min
λ:‖λ‖1≤δ,λ≥0

∇L(λk)Tλ

update λk+1

We cannot necessarily do first two steps . . . . But we do have
access to a weak learner W(·): for w ∈ ∆m, W(w) computes:

j∗ ∈ arg max
j=1,...,n

wTAj
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Log-Exponential Loss Minimization, continued

Instead, work with log-exponential loss function in conjugate
(adjoint) form. Let e(w) :=

∑m
i=1 wi ln(wi ) + ln(m) be the entropy

function.

Proposition

L(λk) = max
w∈∆m

{
−wTAλk − e(w)

}
∇L(λk) = −ATwk where

wk
i =

exp(−(Aλk)i )∑m
l=1 exp(−(Aλk)l)

i = 1, . . . ,m

Weak learner can be used to solve the linear optimization
subproblem using wk :

jk ∈ W(wk)⇐⇒ δejk ∈ arg min
λ:‖λ‖1≤δ,λ≥0

∇L(λk)Tλ
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FW-Boost Algorithm Description

FW-Boost Algorithm

Initialize at λ0 = 0, w0 = (1/m, . . . , 1/m), k = 0

At iteration k ≥ 0:

Compute:

jk ∈ W(wk)

Choose ᾱk ∈ [0, 1] and set:
λk+1 ← (1− ᾱk)λkjk + ᾱkδe

jk

wk+1
i ← (wk

i )1−ᾱk exp(−ᾱkδAi jk ) i = 1, . . . ,m
Re-normalize wk+1 so that eTwk+1 = 1

Note that FW-Boost has the sparsity property that ‖λk‖0 ≤ k
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Complexity of FW-Boost

Complexity of FW-Boost

With the step-size rule ᾱk := 2
k+2 , for all k ≥ 1 the following

inequalities hold:

(i) L(λk)− L∗δ ≤ 8δ2

k+3

(ii) p(λ̄k) ≥ ρ∗ −
(

8δ
k+3 + ln(m)

δ

)
(iii) ‖λk‖1 ≤ δ
(iv) ‖λk‖0 ≤ k
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Binary Classification Boosting Summary

AdaBoost is interpretable as an instance of the Mirror Descent
method applied to the dual of the maximum margin problem

Computational complexity guarantees for AdaBoost for
maximizing the margin, minimizing the log-exponential loss in
AdaBoost

New properties of the Mirror Descent method

Frank-Wolfe method to minimize the log-exponential loss is
seen to be a slight modification of AdaBoost, with associated
computational complexity guarantees in the separable and
non-separable cases
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Linear Regression

Linear Regression
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Linear Regression

Consider the linear regression model

y = Xβ + e

y ∈ Rn is given response data

X ∈ Rn×p is the given model matrix

β ∈ Rp are the coefficients

e ∈ Rn is noise



31

Motivation Review of SD and FW(CG) Binary Classification and Boosting Linear Regression and Boosting

Linear Regression and Boosting

Linear regression model:

y = Xβ + e

In the setting of boosting:

the column Xj represents the data of the j th weak model

βj is the regression coefficient for the j th weak model
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Linear Regression Aspirations

Linear regression model:

y = Xβ + e

In the high-dimensional regime with p � 0, n� 0 and often
p > n, we seek:

Good predictive performance (on out-of-sample data)

Good performance on the training data (residuals r := y−Xβ
are small)

“Shrinkage” in the coefficients (‖β‖1 is small)

Sparsity in the coefficients (‖β‖0 := number of non-zero
coefficients of β is small)
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Traditional Least-Squares Regression

LS : minβ L(β) := 1
2‖y − Xβ‖2

2

L(β) := 1
2‖y − Xβ‖2

2 is the least-squares loss

Let r := y − Xβ, then L(β) = 1
2‖r‖

2
2

L∗ := minβ L(β)

βLS is any solution of LS
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L1-Regularization and LASSO

L1-Penalized Least-Squares optimization problem:

LASSOτ : minβ
1
2‖y − Xβ‖2

2 + τ‖β‖1

LASSO stands for Least Absolute Shrinkage and Selection Operator

Let β∗τ be an optimal solution of LASSOτ

‖β∗τ‖0 ↘ as τ ↗

There is a well-developed theory of sparse L1-regularized solutions
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Constraint Version of LASSO

LASSOτ : minβ
1
2‖y − Xβ‖2

2 + τ‖β‖1

LASSOδ : minβ L(β) := 1
2‖y − Xβ‖2

2

s.t. ‖β‖1 ≤ δ

Both LASSOτ for τ ∈ [0,∞) and LASSOδ for δ ∈ [0,∞) generate
the same solution path, which is simply called the LASSO path



36

Motivation Review of SD and FW(CG) Binary Classification and Boosting Linear Regression and Boosting

Incremental Forward Stagewise Regression Algorithm (FSε)

Incremental Forward Stagewise Regression (FSε) is a simple
boosting algorithm:

Start with β0 ← 0, and hence r0 ← y .

Given βk and rk := y − Xβk , determine the weak model Xj

most correlated with the current residuals rk :

jk ← arg max
j∈{1,...,p}

|(rk)TXj |

Adjust βkjk by ±ε depending on sgn((rk)TXj)
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FSε Algorithm

FSε Algorithm

Initialize at r0 = y, β0 = 0, k = 0, set ε > 0

At iteration k ≥ 0:

Compute:

rk ← y − Xβk

jk ∈ arg max
j∈{1,...,p}

|(rk)TXj |

Set:

βk+1 ← βk + ε sgn((rk)TXjk )e jk

FSε has the following regularization/sparsity properties:

‖βk‖1 ≤ kε and ‖βk‖0 ≤ k .
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Complexity of FSε

Complexity of FSε

With the constant shrinkage factor ε, for any k ≥ 0 there exists
i ≤ k for which:

(i) L(βi )− L∗ ≤ p
2(λmin(X))2

[
‖XβLS‖2

2
ε(k+1) + ε‖X‖2

1,2

]2

(ii) there exists a solution βLS for which

‖βi − βLS‖2 ≤
√
p

(λmin(X))2

[
‖XβLS‖2

2
ε(k+1) + ε‖X‖2

1,2

]
(iii) ‖βi‖1 ≤ kε

(iv) ‖βi‖0 ≤ k

(v) ‖∇L(βi )‖∞ ≤
‖XβLS‖2

2
2ε(k+1) +

ε‖X‖2
1,2

2

Notes: Recall L∗ is the optimal least-squares loss, βLS is an
optimal least-squares solution, therefore ‖XβLS‖2 ≤ ‖y‖2
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Complexity of FSε, continued

Optimized Complexity of FSε

For a given number of iterations k , set ε := ‖XβLS‖2

‖X‖1,2

√
k+1

. Then

there exists i ≤ k for which:

(i) L(βi )− L∗ ≤ 2p
(λmin(X))2

‖X‖2
1,2‖XβLS‖2

2

k+1

(ii) there exists a solution βLS for which

‖βi − βLS‖2 ≤
√

4p
(λmin(X))2

‖X‖1,2‖XβLS‖2√
k+1

(iii) ‖βi‖1 ≤
√
k‖XβLS‖2

‖X‖1,2

(iv) ‖βi‖0 ≤ k

(v) ‖∇L(βi )‖∞ ≤ ‖X‖1,2‖XβLS‖2√
k+1
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A “Smarter” Forward Stagewise Regression Algorithm (FS)

Forward Stagewise regression (FS) chooses ε = εk “optimally”
with respect to L(β) at each iterate:

Start with β0 ← 0, and hence r0 ← y .

Given βk and rk := y − Xβk , determine the weak model Xj

most correlated with the current residuals rk :

jk ← arg max
j∈{1,...,p}

|(rk)TXj |

Adjust βkjk by εk ← arg minε L(βk + εe jk )
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FS Algorithm

FS Algorithm

Initialize at r0 = y, β0 = 0, k = 0, set ε > 0

At iteration k ≥ 0:

Compute:

rk ← y − Xβk

jk ∈ arg max
j∈{1,...,p}

|(rk)TXj |

Set:

εk ← (rk)TXjk/‖Xjk‖2

βk+1 ← βk + εke
jk
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Complexity of FS

Complexity of FS

With the shrinkage factors εk ← (rk)TXjk/‖Xjk‖2, for all k ≥ 0 it
holds that:

(i) L(βk)− L∗ ≤ (yTy − L∗)

(
1− (λmin(X))2

4p‖X‖2
1,2

)k

(ii) there exists a solution βLS for which

‖βk − βLS‖2 ≤
√

2(yT y−L∗)

λmin(X)

(
1− (λmin(X))2

4p‖X‖2
1,2

)k/2

(iii) ‖βk‖1 ≤
√
k‖XβLS‖2

minj{‖Xj‖2}

(iv) ‖βk‖0 ≤ k

(v) mini∈{0,...,k} ‖∇L(βi )‖∞ ≤ ‖X‖1,2‖XβLS‖2√
k+1
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What drives these results?

observation that FSε “looks like” subgradient descent for
some objective function f (·) and some decision variable (·)

indeed, the objective function is f (r) := ‖XT r‖∞

and the variables are the residuals r in the affine space
Pres := {r ∈ Rn : r = y − Xβ for some β ∈ Rp}

application of subgradient descent convergence theory for
various step-size sequences

development of some new theory on algorithmic implications
of positive semi-definite quadratic functions
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What about Explicit Regularized Linear Regression?

Recall LASSOδ:

L∗δ := min
β

L(β) := 1
2‖y − Xβ‖2

2

s.t. ‖β‖1 ≤ δ

FSε guarantees that ‖βk‖0 ≤ k . A method with similar sparsity
properties is the Frank-Wolfe method on the LASSO

At iteration k , the Frank-Wolfe method needs to:

Compute ∇L(βk) = −XT (y − Xβk) = −(rk)TX

Solve min
β:‖β‖1≤δ

∇L(βk)Tβ

Update βk+1
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FW for LASSO, Linear Optimization Subproblem

Linear optimization subproblem is:

min
β
∇L(βk)Tβ

s.t. ‖β‖1 ≤ δ

Extreme points of feasible region are {±δe j : j = 1, . . . , p}

∇L(βk) = −XT (y − Xβk) = −(rk)TX

Therefore:

j∗ ∈ arg max
j∈{1,...,p}

|(rk)TXj | ⇐⇒ δsgn((rk)TXj∗)e j
∗
∈ arg min
β:‖β‖1≤δ

∇L(βk)Tβ

This is the same subproblem that FSε solves, namely find the weak
model Xj∗ that is most correlated with the current residuals rk
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FW Algorithm for LASSO

FW-LASSO Algorithm

Initialize at β0 = 0, k = 0

At iteration k ≥ 0:

Compute:

rk ← y − Xβk

jk ∈ arg max
j∈{1,...,p}

|(rk)TXj |

Choose ᾱk ∈ [0, 1] and set:

βk+1 ← (1− ᾱk)βk + ᾱkδ sgn((rk)TXjk )e jk

Note that FW-LASSO is structurally very similar to FSε
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Properties of FW-LASSO

Note that FW-LASSO shares similar sparsity/regularization
properties as FSε:

‖βk‖0 ≤ k

‖βk‖1 ≤ δ
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Complexity of FW-LASSO

Complexity of FW-LASSO

With the step-size rule ᾱk := 2
k+2 , after k iterations there exists an

i ∈ {1, . . . , k} such that the following hold:

(i) L(βi )− L∗δ ≤ 17.4‖X‖2
1,2δ

2

k

(ii) ‖βk‖1 ≤ δ
(iii) ‖βk‖0 ≤ k

(iv) ‖∇L(βi )‖∞ ≤ 1
2δ‖XβLS‖

2
2 +

17.4‖X‖2
1,2δ

k
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Linear Regression Summary

FSε and FS are interpretable as subgradient descent to
minimize the correlation between the residuals and the
predictors in the space of residuals

Computational complexity guarantees for least-squares loss of
iterates, distance of iterate solutions to optimal least-squares
loss, sparsity and regularization bounds for FSε and FS

New theory of algorithmic implications of positive
semi-definite quadratic functions

Frank-Wolfe method to minimize the explicitly regularized
least-squares loss (LASSOδ) is seen to be a slight modification
of FSε, with associated computational complexity guarantees
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