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Motivation
°

Motivation

Boosting methods are learning methods for combining weak
models into accurate and predictive models

@ Add one new weak model per iteration

@ The weight on each weak model is typically small

We consider boosting methods in two modeling contexts:
@ Binary (confidence-rated) Classification

o (Regularized/sparse) Linear Regression

Boosting methods are typically tuned to perform implicit
regularization



Review of SD and FW(CG)
©0000000

Review of Subgradient Descent and Frank-Wolfe Methods

@ Subgradient Descent method

@ Frank-Wolfe method (also known as Conditional Gradient
method)
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Subgradient Descent

Our problem of interest is:

f* = min f(x) J

X

st. x€eR"

where f(x) is convex but not differentiable. Then f(x) has subgradients.
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Subgradient Descent, continued

f(-) is a (non-smooth) Lipschitz continuous convex function with
Lipschitz value Ly:

[F() = fW < Lellx =yl forany x,y

Il - || is prescribed norm on R”"
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Subgradient Descent, continued

st. xeR”

f* = min f(x) J

Subgradient Descent method for minimizing f(x) on R”

Initialize at x; € R”, k< 1.

At iteration k :
@ Compute a subgradient gk of (xk) .

@ Choose step-size ay .

© Set Xp11 ¢ Xk — kg -
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Computational Guarantees for SD

Computational Guarantees for Subgradient Descent

For each k > 0 and for any x € P, the following inequality holds:

Ix = x°|3 + L2 32K o

min  f(x') — f(x) <
i€{0,....k} (x') (x) 225.(:004,'
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Frank-Wolfe Method (Conditional Gradient method)

Here the problem of interest is:

st. xeP

f* == min f(x) J

@ P is compact and convex
e f(x) is differentiable and Vf(-) is Lipschitz on P:

IVF(x) = VE(y)lls < Lyllx —y|| forall x,y € P
@ it is “very easy” to do linear optimization on P for any c :

X+ arg milr; {cTx}
xe
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st. xeP

f* = min f(x) J

Frank-Wolfe Method for minimizing f(x) on P
Initialize at xo € P, k + 0.

At iteration k :
@ Compute V£(xk) .
@ Compute % < arg mig{Vf(xk)Tx} :
PSS

@ Set xx11 < xk + ax(Xk — xx), where ay € [0,1] .
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Computational Guarantees for Frank-Wolfe Method

Here is one (simplified) computational guarantee:

A Computational Guarantee for Frank-Wolfe Method

If the step-size sequence {ay} is chosen as &y = k%rz k > 0, then
for all kK > 1 it holds that:

C
< =
o) =" < 13

where C =2 - Ly - diam(P)? .
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Binary Classification

Binary Classification
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Binary Classification

The set-up of the general binary classification boosting problem

consists of:
e Data/training examples (x1,y1), ..., (Xm, ¥m) Where each
x; € X and each y; € [-1,+1]
o A set of base classifiers H = {hi,..., h,} where each

hj - X — [—1,+1]
@ Assume that # is closed under negation (h; € H = —h; € H)

We would like to construct a nonnegative combination of weak
classifiers
Hy = Aihy + -+ Aphy

that performs significantly better than any individual classifier in
H.
12
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Binary Classification Feature Matrix

Define the feature matrix A € R™*" by Aj; = y;hj(x;)
We seek A > 0 for which:

AX>0 or perhaps A\ >~ 0 ]

In application/academic context:
@ mis large-scale
@ nis huge-scale, too large for many computational tasks
@ we wish only to work with very sparse A\, namely ||A]|o is small

@ we have access to a weak learner W(+) that, for any
distribution w on the examples (w >0, e’ w = 1), returns
the base classifier j* € {1,..., n} that does best on the
weighted example determined by w:

-k T
J© € argmaxw A;
J:17""n 13
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Binary Classification Aspirations

We seek A > 0 for which:

AN >0 or perhaps A\ >~ 0 ]

In the high-dimensional regime with n > 0, m > 0 and often
n>> 0, we seek:

e Good predictive performance (on out-of-sample examples)

e Good performance on the training data (A;A > 0 for “most”
i=1,...,m)

Sparsity of the coefficients (|| \||o is small)

Regularization of the coefficients (|| A||1 is small)

14
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Two Objective Functions for Boosting

We seek A > 0 for which:

AX >0 orperhaps Al >~0 J

Two objective functions are often considered in this context:

@ when the data are separable, maximize the margin:
p(A) == min (A)X);
e

1,....m
@ when the data are non-separable, minimize exponential loss
Lep(N) 1= 1 oilg exp (—(AN)))
o (= the log-exponential loss L(\) := log(Lexp())))

It is known that a high margin implies good generalization
properties [Schapire 97]. On the other hand, the exponential loss

upper bounds the empirical probability of misclassification. 5
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Margin Maximization Problem

The margin is p(A) := {rl’nin }(A)\);
eql,....m

p()\) is positively homogeneous, so we normalize the variables A
Let A,:={A€R":e"TA=1, A>0}
The problem of maximizing the margin over all normalized variables is:

(PM): p" = max p(1)

Recall that we have access to a weak learner W(+) that, for any
distribution w on the examples (w > 0, e’ w = 1), returns the base
classifier j* € {1,..., n} that does best on the weighted example
determined by w:
J* € argmaxw’ A
Jj=1,...,n

16
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AdaBoost Algorithm

AdaBoost Algorithm

Initialize at w® = (1/m,...,;1/m),\° =0,k =0
At iteration kK > 0:
o Compute ji € W(wk)

@ Choose step-size oy > 0 and set:

: = k+1
ARHL e N el N o

Wik+1 . Wik exp(—akAj,) i=1,...,m, and re-normalize
wktl so that eTwktl =1

AdaBoost has the following sparsity/regularization properties:

k—1
Mok and N <Y e
i=0

17
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Optimization Perspectives on AdaBoost

What has been known about AdaBoost in the context of
optimization:
@ AdaBoost has been interpreted as a coordinate descent

method to minimize the exponential loss [Mason et al.,
Mukherjee et al., etc.]

@ A related method, the Hedge Algorithm, has been interpreted
as dual averaging [Baes and Biirgisser|

@ Rudin et al. in fact show that AdaBoost can fail to maximize

the margin, but this is under the particular popular

“optimized" step-size a := 3 In (if;’;)

@ Lots of other work as well...

18
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Complexity of AdaBoost: General Case

Recall L(A) := log (1 37, exp (—(AX);)) and p* is the maximum
(normalized) margin

Complexity of AdaBoost

For all k > 1, the sequence of variables \* and \¥ produced by AdaBoost
satisfy:

. - iy In(m) + 13505 of
~min VL)oo — p(A) < == 1
i€{0,...,k—1} Dm0 Qi

If we decide a priori to run AdaBoost for k > 1 iterations and use a

constant step-size «a; := 4/ M"kﬂ forall i=0,...,k—1, then we have:

2In(m)
P

. i — p(NK) <
. VLA oo = p(AF) <

19



Binary Classification and Boosting

000000000 e00000000

CompIeX|ty of AdaBoost: Separable Case

If the data is separable, then p* > 0 and the margin is informative

Complexity of AdaBoost: Separable Case

For all k > 1, the sequence AX produced by AdaBoost satisfies:

_ k 1 2

If we decide a priori to run AdaBoost for k > 1 iterations and use a

constant step-size a; 1= 2'"( ) for all i = 0,...,k—1, then we
have:
= 2In(m
p(X) > p* - ,E )

20
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Complexity of AdaBoost: Non-separable Case

If the data is not separable, then p* = 0 and the log-exponential
loss function is informative

Complexity of AdaBoost: Non-separable Case

If the data is not separable, then for all k > 1, the sequence \
produced by AdaBoost satisfies:

) . In(m) + 1 S 6142
~min IVLA) oo < (m) k2 123’_0 L,
i€{0,...,k—1} i—0 i

If we decide a priori to run AdaBoost for k > 1 iterations and use a

constant step-size o 1= 2'",5'") forall i =0,...,k —1, then we

have:

mi \V/ i 2In(m)
L )\I o) < )
ie{O,...I,rll—l} ” ( )” = p
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What drives these results?

@ observation that AdaBoost corresponds to the Mirror Descent
method [N-Y, B-M-T, B-T] of non-differentiable convex
optimization, using the “entropy prox function” applied to the
dual of the maximum margin problem

@ application of Mirror Descent convergence theory for various
step-size sequences

o development of some new algorithmic properties of the Mirror
Descent method in general

22
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What about Regularized Log-Exponential Loss

Minimization?

Log-exponential loss function is:

L()\) = log ( Zexp )

In the non-separable case, AdaBoost guarantees || VL(\)||oo N\ 0
Let us consider directly tackling L(\) in the regularized setting:
Lr= miny L(N)

st AL <6
A>0

23
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FW Method for Log-Exponential Loss Minimization

Ly = miny L(N)

st. [M1<6
A>0

Consider using the FW method. At iteration k the method needs
to:

o compute VL(\¥)

@ solve VLT

min
A|IA[1<8,A>0
o update \<t1

We cannot necessarily do first two steps .... But we do have
access to a weak learner W(-): for w € Ap,, W(w) computes:

-k T
J© €argmaxw’ A;

Jj=1,...,n 24
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Log—ExponentlaI Loss Minimization, contlnued

Instead, work with log-exponential loss function in conjugate
(adjoint) form. Let e(w) :=>_", w; In(w;) + In(m) be the entropy
function.

o L(AK) = max {—wT AN —e(w)}

Wem

o VL(\K) = —ATwk where

wk — exp(—(AXY);)
b YR exp(—(ANK))
@ Weak learner can be used to solve the linear optimization
subproblem using w*:

i=1,...,m

Jk € W(w") S € arg ,\:||,\||T£J$,>\ZO (X%

25
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FW Boost Algorithm Description

FW-Boost Algorithm

Initialize at \° =0, w® = (1/m,...,1/m), k=0
At iteration k > 0:

o Compute:

Jk € W(wH)
o Choose ay € [0,1] and set:
ML — (1 — @) Af + audel
Wi o (W) =B exp(—axdA;,) i=1,...,m
Re-normalize w1 so that e’ wk+1 =1

Note that FW-Boost has the sparsity property that || \¥|lo < k

26
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Complexity of FW-Boost

Complexity of FW-Boost

With the step-size rule ay := ki for all k > 1 the following

inequalities hold:
() LA - L5 < &5

k+3
(i) PV 2 o — (& + =)
(iii) [|\¥]jy < 6
(iv) IX¥1lo < &

27
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Binary Classification Boosting Summary

@ AdaBoost is interpretable as an instance of the Mirror Descent
method applied to the dual of the maximum margin problem

o Computational complexity guarantees for AdaBoost for
maximizing the margin, minimizing the log-exponential loss in
AdaBoost

@ New properties of the Mirror Descent method

@ Frank-Wolfe method to minimize the log-exponential loss is
seen to be a slight modification of AdaBoost, with associated
computational complexity guarantees in the separable and
non-separable cases

28
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Linear Regression

Linear Regression
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Linear Regression

Consider the linear regression model

y=X3+e
o y € R" is given response data
@ X € R™P is the given model matrix
@ [ € RP are the coefficients

@ e € R" is noise

30
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Linear Regression and Boosting

Linear regression model:

y=X3+e )

In the setting of boosting:

o the column X; represents the data of the j™ weak model

@ f3; is the regression coefficient for the j* weak model

31
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Linear Regression Aspirations

Linear regression model:

y=X3+e J

In the high-dimensional regime with p > 0, n > 0 and often
p > n, we seek:

@ Good predictive performance (on out-of-sample data)

e Good performance on the training data (residuals r :=y — Xg
are small)

@ “Shrinkage” in the coefficients (|| 31 is small)

@ Sparsity in the coefficients (]| 3]0 := number of non-zero
coefficients of 3 is small)

32
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Traditional Least-Squares Regression

LS: ming L(B):= 3|ly — XB|I3 J

L(B) := i|ly — XB|13 is the least-squares loss
Let r:=y — X8, then L(B) = 3|3
L* := ming L(3)

Bis is any solution of LS

33
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L,-Regularization and LASSO

L;-Penalized Least-Squares optimization problem:

LASSO™ : mins 3|ly — XB|3 + 7|18l

LASSO stands for Least Absolute Shrinkage and Selection Operator

Let 3} be an optimal solution of LASSO™

18710 “as 7 7

There is a well-developed theory of sparse Li-regularized solutions

34
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Constraint Version of LASSO

LASSO™ : ming 3|y — X8B3 + 781

LASSOs : ming L(8) := 3[ly — X3

st. 1Bl <o

Both LASSO” for 7 € [0, 00) and LASSO;s for § € [0, 00) generate
the same solution path, which is simply called the LASSO path

35
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Incremental Forward Stagewise Regression Algorithm (FS.)

Incremental Forward Stagewise Regression (FS;) is a simple
boosting algorithm:

Start with 3% < 0, and hence r® « y .

Given 8 and rk :=y — X3¥, determine the weak model X;
most correlated with the current residuals rk:

Jk < arg max |(rk)TXJ-|

Adjust B}Z by +& depending on sgn((rk)TXj)

36
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FS. Algorithm

FS. Algorithm

Initialize at r® =y, 9 =0,k =0, sete >0
At iteration k > O:

o Compute:
rk «—y — Xpk
jk € argmax |(rK)TX;|
je{1,p}
@ Set:

BrFL Bkt sgn((rF)TX;, ) ek

FSc has the following regularization/sparsity properties:

184][x < ke and [|8¥]lo < k. N
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CompIeX|ty of FS,

Complexity of FS,

With the constant shrinkage factor €, for any k > 0 there exists

i < k for which:
() L(B") ~ 1" < srs=2oyye | sl + el
(ii) there exists a solution ;s for which
o X 2
Hﬁl - BLS”2 S ()\m;‘/(ﬁx))z [lL(flef +5||X||%,2}
(i) 18] < ke
(iv) [18'llo < K
f X X113
(v) IVL(B) oo < 20 4 T2

Notes: Recall L* is the optimal least-squares loss, 55 is an

optimal least-squares solution, therefore | XS;s|l2 < |ly]l2 28
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Complexity of FS., continued

Optimized Complexity of FS,

: : : — _lIXBisll2
For a given number of iterations k, set € := Xl o VAT Then

there exists i < k for which:

e X2 X813
() LB - L < e r

(ii) there exists a solution /315 for which

- Vip Xl Xusl
18" = Buslle < i varr

(i) 1181 < *gpete
() 180 < k

i IX[1,2[1XBrs |l
() [VL(B oo < [Xn2lXfusl

39
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A “Smarter” Forward Stagewise Regression Algorithm (FS)

Forward Stagewise regression (FS) chooses ¢ = ¢, “optimally”
with respect to L(3) at each iterate:

Start with 3° < 0, and hence r® « y .

Given 8 and rk :=y — X3¥, determine the weak model X;
most correlated with the current residuals rk:

Jk < arg max |(rk)TXJ-|

Adjust B}Z by ek < argmin_ L(B* + celk)

40
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FS Algorithm

FS Algorithm

Initialize at r° =y, 9 =0,k =0, sete >0
At iteration k > 0:

e Compute:
rk « y — X gk
jk € argmax |(r¥)TX;|
Jj€{1,....p}
@ Set:

ex  (r*) X, /11X, 12

BEHL Bk + gy ed

41



Linear Regression and Boosting
0000000000000 e0000000

Complexity of FS

Complexity of FS

With the shrinkage factors 4 < (r*)"X;, /[|X;,||, for all k >0 it
holds that:

k
. ky _ yx* Ty, _ |* _ (Amin(x))2
(i) LB ) — L <(y"y—L") (1 _4p||xn§,2>

(ii) there exists a solution /35 for which

Ty—|[* . 2 k/2
185 — s, < Y2OL) (1 _ Cwin(X)) )

Amin (X) 4p[XJ3

(iii) ||/6k||1 < VK|IXBLs|l2

min; {[[X;[[2}
(iv) 1850 < k
1 i X X
(v) minjego,. k3 [IVL(B)[loo < I ||1\,;/|(ITKI3LSH2

42
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What drives these results?

@ observation that FS. “looks like” subgradient descent for
some objective function f(-) and some decision variable (-)

o indeed, the objective function is f(r) := || X7 r||s

o and the variables are the residuals r in the affine space
Pres :={r e R": r =y — Xf for some 3 € R}

@ application of subgradient descent convergence theory for
various step-size sequences

@ development of some new theory on algorithmic implications
of positive semi-definite quadratic functions

43
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What about Explicit Regularized Linear Regression?

Recall LASSOy:

Lj:= min L(3):=3lly — X3

st [Bllhh<d

FS. guarantees that ||3]|o < k. A method with similar sparsity
properties is the Frank-Wolfe method on the LASSO

At iteration k, the Frank-Wolfe method needs to:
o Compute VL(B%) = —XT(y — XBK) = —(rF)TX
@ Solve |r’n||n VLB B

BBl <é

o Update g<+1

44
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FW for LASSO, Linear Optimization Subproblem

Linear optimization subproblem is:
min VL(5%)75
st. Bl <é

Extreme points of feasible region are {de/ : j=1,..., p}
VL(B¥) = —XT(y = Xp¥) = —(r*)TX
Therefore:

j* € argmax |(r)TX;| < dsgn((r*)"X;<)e)” € argmin VL(5%)T 3
Je{1,...p} BBl <s

This is the same subproblem that FS. solves, namely find the weak

model X;+ that is most correlated with the current residuals rk
45
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FW-LASSO Algorithm

Initialize at 50 =0, k=0
At iteration k > 0:
o Compute:
rk « y — X,Bk
Jk € arg max \(rk)TXj|
je{lr"'7p}
@ Choose ay € [0, 1] and set:
Bl (1 — ay) Bk + ayd sgn((rk)TXJ-k)ejk

Note that FW-LASSO is structurally very similar to FS,

46
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Properties of FW-LASSO

Note that FW-LASSO shares similar sparsity/regularization
properties as FS;:

o [I8X]0 < &

o [IBlL <o

47
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Complexity of FW-LASSO
2

With the step-size rule &k := 755, after k iterations there exists an

i €{1,...,k} such that the following hold:
. ; N 17.4]|X||3 62

() L) -1y < Tl

(i) 1841 <8

(iii) 185110 < &

(iv) IVL(B)loo < 5lXBisl3 +—%

17.4(|X|3 ,6

48
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Linear Regression Summary

@ FS. and FS are interpretable as subgradient descent to
minimize the correlation between the residuals and the
predictors in the space of residuals

e Computational complexity guarantees for least-squares loss of
iterates, distance of iterate solutions to optimal least-squares
loss, sparsity and regularization bounds for FS. and FS

@ New theory of algorithmic implications of positive
semi-definite quadratic functions

@ Frank-Wolfe method to minimize the explicitly regularized
least-squares loss (LASSOs) is seen to be a slight modification
of FS., with associated computational complexity guarantees
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