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Inclusions

Notation

H, Hi , G, Gi : real Hilbert spaces.

B(H,G) bounded linear operators from H to G.

A : H → 2H a set-valued operator.

Graph of A: gra A =
{
(x ,u) ∈ H ×H | u ∈ Ax

}
.

Zeros of A: zer A =
{

x ∈ H | 0 ∈ Ax
}

.

Inverse of A: gra A−1 =
{
(u, x) ∈ H ×H | u ∈ Ax

}
.

Resolvent of A:
JA = (Id + A)−1.

Parallel sum of A and B: A�B = (A−1 + B−1)−1.
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Inclusions

Monotone operators

A : H → 2H is monotone if

(∀(x ,u) ∈ gra A)(∀(y , v) ∈ gra A) 〈x − y | u − v〉 > 0,

and maximally monotone if there exists no monotone operator
B : H → 2H such that gra A ⊂ gra B 6= gra A.

If A is maximally monotone, its resolvent JA = (Id+A)−1 is single-
valued, defined everywhere (Minty), and firmly nonexpansive:

‖JAx − JAy‖2 + ‖(Id− JA)x − (Id− JA)y‖2 6 ‖x − y‖2.

Moreover,

JA + JA−1 = Id and Fix JA = zer(A).

H. H. Bauschke and PLC, Convex Analysis and Monotone Operator The-
ory in Hilbert Spaces, Springer, 2011.
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Inclusions

The proximal point algorithm

Many problems in nonlinear analysis can be reduced to

find x ∈ zer C, where C : H → 2H is maximally monotone.

This inclusion can be solved by the proximal point algorithm

xn+1 = JγnCxn, (1)

where (γn)n∈N lies in ]0,+∞[ and
∑

n∈N γ
2
n = +∞.

H. Brézis and P.-L. Lions, Produits infinis de résolvantes, Israel J.
Math., vol. 29, pp. 329-345, 1978.

Unfortunately, in most situations, (1) is not implementable be-
cause the resolvents of C are too hard to compute.

Splitting methods: Decompose C in terms of operators which
are simpler (i.e., they can be used explicitly or have easily com-
putable resolvents), and devise an algorithm which employs
these operators individually.
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Inclusions

Splitting methods: Some hard facts of life

One knows how to split only two operators: 0 ∈ Ax + Bx .

There exist only only three splitting schemes.

Yet, we want to solve systems of monotone inclusions such as

find x1 ∈ H1, . . . , xm ∈ Hm such that
z1 ∈ A1x1 +

K∑
k=1

L∗k1

(
(Bk �Dk )

( m∑
i=1

Lkixi − rk

))
+ C1x1

...
zm ∈ Amxm +

K∑
k=1

L∗km

(
(Bk �Dk )

( m∑
i=1

Lkixi − rk

))
+ Cmxm,

for instance [inf-convolution: gk � `k : y 7→ inft gk (t) + `k (y − t)]

minimize
x1∈H1,..., xm∈Hm

m∑
i=1

fi(xi)+
K∑

k=1

(gk � `k )

( m∑
i=1

Lkixi−rk

)
+

m∑
i=1

hi(xi)−〈xi |zi〉
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Inclusions

Early example: Legendre’s method of least squares

Set m = 1, z1 = 0, H1 = RN , Lk1 = Id, A1 = C1 = 0, Dk = Id,
and

Bk : x 7→

{
span {uk}, if 〈x | uk 〉 = ρk ;

Ø, if 〈x | uk 〉 6= ρk ,
where


uk ∈ RN

‖uk‖ = 1
ρk ∈ R.

Then the problem becomes

minimize
x∈RN

m∑
k=1

|〈x | uk 〉 − ρk |2,

which is precisely Legendre’s least squares method for solving
the overdetermined system 〈x | uk 〉 = ρk , 1 6 k 6 K .

A. M. Legendre, Nouvelles Méthodes pour la Détermination de
l’Orbite des Comètes. Courcier, Paris, 1805.
C. F. Gauss, Theoria Motus Corporum Coelestium. Perthes and
Besser, Hamburg, 1809.
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Inclusions

Basic splitting schemes for 0 ∈ Ax + Bx

Douglas-Rachford algorithm: γ ∈ ]0,+∞[.

zer(A + B) = JγB

(
Fix
(

1
2

(
(2JγA − Id) ◦ (2JγB − Id) + Id

)))
.

Iterate⌊
xn = JγByn (backward step)
yn+1 = JγA

(
2xn − yn

)
+ yn − xn (backward step)

Then yn ⇀ y and z = JγBy ∈ zer(A + B) (Lions&Mercier,
1979), and xn ⇀ z ∈ zer(A + B).
ADMM, method of partial inverses are essentially special
cases.
There are tricks to reduce m-operator problems to 2-
operator problems in product spaces [Spingarn (1983), PLC
(2009), Briceño-PLC (2011)] and use Douglas-Rachford
splitting.

P. L. Combettes Monotone operator splitting 7/ 15



Inclusions

Basic splitting schemes for 0 ∈ Ax + Bx

Forward-Backward algorithm: γ ∈ ]0,+∞[.

B : H → H is β-cocoercive: 〈x − y | Bx − By〉 > β‖Bx −
By‖2; γ ∈ ]0,2β[.
zer(A + B) = Fix

(
JγA
(
Id− γB

))
.

Iterate ⌊
yn = xn − γBxn (forward step)
xn+1 = JγAyn (backward step)

Then xn ⇀ z ∈ zer(A + B) (Mercier, 1979)
There are tricks to use the forward-backward algorithm
(on the dual problem if the primal is strongly monotone,
in primal-dual spaces, in renormed spaces) to solve m-
operator problems; see [PLC&Vũ, (2013)]
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Inclusions

Basic splitting schemes for 0 ∈ Ax + Bx

Forward-Backward-Forward algorithm: γ ∈ ]0,+∞[.

zer(A + B) = Fix
(

JγA
(
Id− γB

))
.

B : H → H is 1/β-Lipschitzian; 0 < γn < β.
Iterate 

yn = xn − γBxn (forward step)
pn = JγA yn (backward step)
qn = pn − γBpn (forward step)
xn+1 = xn − yn + qn

Then xn ⇀ z ∈ zer(A + B) [Tseng (2000)]
There are tricks to use the forward-backward-forward algo-
rithm to obtain fully split algorithms for rather complex struc-
tured monotone inclusion problems, such as...
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Inclusions

Multivariate structured inclusion problem

find x ∈ H such that

z ∈ Ax + Bx (2)

where:

z ∈ H, A : H → 2H is maximally monotone

B : H → 2H is maximally monotone

Dk : Gk → 2Gk is maximally monotone, D−1
k is νk -Lipschitzian,

Bk �Dk = (B−1
k + D−1

k )−1
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Inclusions

Multivariate structured inclusion problem

find x ∈ H such that

z ∈ Ax +
K∑

k=1

L∗k (Bk �Dk )(Lk − rk x) + Cx (2)

where:

z ∈ H, A : H → 2H is maximally monotone

Bk : Gk → 2Gk is maximally monotone, rk ∈ Gk , Lk ∈ B(H,Gk )

Dk : Gk → 2Gk is maximally monotone, D−1
k is νk -Lipschitzian,

Bk �Dk = (B−1
k + D−1

k )−1

C : H → H is monotone and µ-Lipschtizian
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Inclusions

Multivariate structured inclusion problem
find x1 ∈ H1, . . . , xm ∈ Hm such that


z1 ∈ A1x1 +

K∑
k=1

L∗k1

(
(Bk �Dk )

( m∑
i=1

Lkixi − rk

))
+ C1x1

...
zm ∈ Amxm +

K∑
k=1

L∗km

(
(Bk �Dk )

( m∑
i=1

Lkixi − rk

))
+ Cmxm

(2)

where:

zi ∈ Hi , Ai : Hi → 2Hi is maximally monotone

Bk : Gk → 2Gk is maximally monotone, rk ∈ Gk , Lk ∈ B(H,Gk )

Dk : Gk → 2Gk is maximally monotone, D−1
k is νk -Lipschitzian,

Bk �Dk = (B−1
k + D−1

k )−1

Ci : Hi → Hi is monotone and µi -Lipschtizian
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Inclusions

Multivariate structured inclusion problem
Primal problem:

find x1 ∈ H1, . . . , xm ∈ Hm such that
z1 ∈ A1x1 +

K∑
k=1

L∗
k1

(
(Bk �Dk )

( m∑
i=1

Lkixi − rk

))
+ C1x1

...

zm ∈ Amxm +
K∑

k=1

L∗
km

(
(Bk �Dk )

( m∑
i=1

Lkixi − rk

))
+ Cmxm,

Dual problem:

find v1 ∈ G1, . . . , vK ∈ GK such that
−r1 ∈ −

m∑
i=1

L1i
(
Ai + Ci

)−1
(

zi −
K∑

k=1

L∗
kivk

)
+ B−1

1 v1 + D−1
1 v1

...
−rK ∈ −

m∑
i=1

LKi
(
Ai + Ci

)−1
(

zi −
K∑

k=1

L∗
kivk

)
+ B−1

K vK + D−1
K vK .

PLC, Systems of structured monotone inclusions: Duality, algorithms,
and applications, SIAM J. Optim., to appear.
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Inclusions

Reformulation in primal-dual space

H = H1 ⊕ · · · ⊕ Hm, G = G1 ⊕ · · · ⊕ GK , K =H⊕ G

A : H→ 2H : x 7→
m

×
i=1

Aixi , C : H→H : x 7→ (Cixi)16i6m

B : G → 2G : v 7→
K

×
k=1

Bk vk , D : G → 2G : v 7→
K

×
k=1

Dk vk

L : H→ G : x 7→
( m∑

i=1

Lkixi

)
16k6K

, z = (zi)16i6m, r = (rk )16k6K

P : K→ 2K : (x ,v) 7→ (−z + Ax)× (r + B−1v) (max. mon.)

Q : K→ K : (x ,v) 7→
(
Cx + L∗v ,D−1v − Lx

)
(mon. and Lips.)

Any zero of P + Q is a primal-dual solution.

−→ Apply the forward-backward-forward algorithm to get...
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Inclusions

Splitting algorithm

For n = 0,1, . . .

ε 6 γn 6 (1− ε)/
(

max
{

max
16i6m

µi , max
16k6K

νk

}
+
√∑K

k=1
∑m

i=1 ‖Lki‖2
)

For i = 1, . . . ,m⌊
s1,i,n ≈ xi,n − γn

(
Cixi,n +

∑K
k=1 L∗kivk,n

)
p1,i,n ≈ JγnAi (s1,i,n + γnzi)

For k = 1, . . . ,K
s2,k,n ≈ vk,n − γn

(
D−1

k vk,n −
∑m

i=1 Lkixi,n

)
p2,k,n ≈ s2,k,n − γn

(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk )
)

q2,k,n ≈ p2,k,n − γn

(
D−1

k p2,k,n −
∑m

i=1 Lkip1,i,n

)
vk,n+1 = vk,n − s2,k,n + q2,k,n

For i = 1, . . . ,m⌊
q1,i,n ≈ p1,i,n − γn

(
Cip1,i,n +

∑K
k=1 L∗kip2,k,n

)
xi,n+1 = xi,n − s1,i,n + q1,i,n
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Inclusions

Open question

All existing splitting methods are, in the end, an instance of the 3
basic splitting schemes.

In some very special cases, it is possible to devise methods which
cannot be reduced to a 2-operator scheme, for instance if zer(A)∩
zer(B) ∩ zer(C) 6= Ø, iterate

xn+1 = (JA ◦ JB ◦ JC)xn ⇀ z ∈ zer(A + B + C).

Open problem: Can we devise a genuine (not reducible to a 2-
operator scheme through some reformulation or transformation)
splitting scheme for m > 2?
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Inclusions

Open question: possible bad news?

34 years have elapsed since 1979.

∈ is a binary relation.

2 6= 3. For a proof see:

J.-B. Baillon, PLC, and R. Cominetti, There is no variational char-
acterization of the cycles in the method of periodic projections, J.
Funct. Anal., vol. 262, pp. 400–408, 2012.

Open problem 2: Can we formally show that any splitting method
for m > 2 operator is reducible to a 2-operator method?
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