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Problem

Problem (P)

Find x € H suchthat 0 & Ax + Bx + NyX.
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Problem

Problem (P)

Find x € H suchthat 0 & Ax + Bx + NyX.

@ 7 is areal Hilbert space,
@ A: H — 2" is maximally monotone, i.e., it is monotone:

(Vue Ax)(W e Ay) (u—-v|x—-y)>0

and its graph is maximal among graphs of monotone op.
@ B: H — H is monotone and x—lipschitzian.

@ V is a closed vectorial subspace of H (Ny = V= is the
normal cone to V).
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Problem

Problem (P)

Find x € H suchthat 0 & Ax + Bx + NyX.

@ 7 is areal Hilbert space,
@ A: H — 2" is maximally monotone, i.e., it is monotone:

(Vue Ax)(W e Ay) (u—-v|x—-y)>0

and its graph is maximal among graphs of monotone op.
@ B: H — H is monotone and x—lipschitzian.

@ V is a closed vectorial subspace of H (Ny = V= is the
normal cone to V).

@ We suppose that the set of solutions to (P) is Z # @.
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Examples

@ If A=0f and B = Vg, where f and g are convex functions,
the problem (P) reduces to (+ qualification conditions)

minimize f(x) + g(x).
Xev
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Examples

@ If A=0f and B = Vg, where f and g are convex functions,
the problem (P) reduces to (+ qualification conditions)

minimize f(x) + g(x).
Xev

@ If H = H", where H is areal Hilbert space, A = Ay x--- x Ay,
where A;: H — 2" is maximally monotone, B: (X)1<i<n —
(BXi)1<i<n, Where B is single-valued, monotone, and lips-
chitzian, and V. = {x € # | Xy =+ =Xa}, the problem
(P) becomes

n
find x € # suchthat 0€ ) Ax+Bx
i—1
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Particular case 1

(P) Find x € H suchthat 0 e Ax + Bx + Nyx. J

If B =0, (P) becomes

find xeV and yeV® suchthat y e Ax J
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Particular case 1

(P) Find x € H suchthat 0 e Ax + Bx + Nyx. J

If B =0, (P) becomes

find xeV and yeV® suchthat y e Ax J

Partial inverse of A with respect to V
Ay: H — 2H
v eAyu & Pyv +Pyiu e APyu +Py1v)
Ay =Aand Ajgy =A™t
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Particular case 1

(P) Find x € H suchthat 0 e Ax + Bx + Nyx. J

If B =0, (P) becomes

find xeV and yeV® suchthat y e Ax J

Partial inverse of A with respect to V
Ay: H — 2H
v eAyu & Pyv +Pyiu e APyu +Py1v)
Ay =Aand Ajgy =A™t

Problem of partial inverse

find x eV and yecV® suchthat 0¢€Ay(x +y).
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Particular case 1

Method: Proximal point algorithm (Martinet (1970), Rockafellar
(1976)) Xn+1 = Jrnay Xn = (Id + ’YnAV)_lxn, Y >0
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Motivation Characterization Algorithm and convergence Applications

Particular case 1

Method: Proximal point algorithm (Martinet (1970), Rockafellar
(1976)) Xn11 = Jy,a, Xn = (Id + AV ) X, 1 > 0

Partial inverse method (Spingarn, 1983)

Letxg € V andyg € V1. For every n € N,

Step 1. Find (pn,qn) € #2 such that x, + yn = pn + 0

al’]d Pan Plen)
In In
Step 2. Set Xn4+1 = Pypn andyp1 = Py1Qgn. Back to step 1.

+Pyian € A(Pvpn +

We have x, — x solution to partial inverse problem.
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Motivation Characterization Algorithm and convergence Applications

Particular case 1

Method: Proximal point algorithm (Martinet (1970), Rockafellar
(1976)) Xn11 = Jy,a, Xn = (Id + AV ) X, 1 > 0

Partial inverse method (Spingarn, 1983)

Letxg € V andyg € V1. For every n € N,

Step 1. Find (pn,qn) € #2 such that x, + yn = pn + 0
IDlen

In )

Step 2. Set Xn4+1 = Pypn andyp1 = Py1Qgn. Back to step 1.

P
and Y9 Py1Qn € A(Pvpn +

Tn

We have x, — x solution to partial inverse problem.

If oy = 1 Xn+1 = PvJIa(Xn + Yn)
Ynt1 = Py (Xn + Yn — Ja(Xn + ¥n)).
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Particular case 2

(P) Find x € H suchthat 0 e Ax + Bx + NyXx. J
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Particular case 2

(P) Find x € H suchthat 0 e Ax + Bx + NyXx. J

IfV =#H, (P) becomes

(P2) Find x € X suchthat 0 Ax + Bx. J
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Particular case 2

(P) Find x € H suchthat 0 e Ax + Bx + NyXx. J

IfV =#H, (P) becomes

(P2) Find x € X suchthat 0 Ax + Bx. J

Method: Forward-backward-forward (Tseng (2000)):

T €10, x71]
Yn = Zn — Bzn
(Vn € N) Pn = J'ynAYn
On = Pn — "BpPn
Zn41 =Zn — Yn + On.
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Particular case 2

(P) Find x € H suchthat 0 e Ax + Bx + NyXx. J

IfV =#H, (P) becomes

(P2) Find x € X suchthat 0 Ax + Bx. J

Method: Forward-backward-forward (Tseng (2000)):

T €10, x71]
Yn = Zn — Bzn
(Vn € N) Pn = J'ynAYn
On = Pn — "BpPn
Zn41 =Zn — Yn + On.

We obtain that (xp)nen converges weakly to a solution to (P2).
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General case

Existing methods do not exploit the whole structure of the
problem:

@ Combettes (2009) and B-A & Combettes (2011) propose an
algorithm that converges weakly to a solution to (P). How-
ever, it is necessary to compute (Id + B)~1.

@ Combettes and Pesquet (2012) exploit the single-valued
property of B. However, the algorithm does not take into
advantage the normal cone structure and the use of prod-
uct space techniques generates several additional auxiliary
variables to be updated at each iteration.
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Objectives

@ To propose a new convergent method for solving problem
(P) that take into advantage of all the structure of the prob-
lem.

@ To generalize the previous methods: partial inverse and
forward-backward-forward.

@ Applications: monotone inclusions involving partial sums
and land use planning and Generalized Nash equilibrium
problems.
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Characterization

(P) Find x € H suchthat 0 e Ax + Bx + Nyx. J
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Characterization

Characterization

(P) Find x € H suchthat 0 e Ax + Bx + Nyx. J

Equivalence
X is a solution to Problem (P) if and only if

xeV and (3y eV1) such that
0 € (AA)y (X + Ay — Py1Bx))+APyBPy (X + A(y — Py 1Bx)),

Z Z

where \ € 10, +ool.
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Characterization

Characterization

(P) Find x € H suchthat 0 e Ax + Bx + Nyx. J

Equivalence
X is a solution to Problem (P) if and only if

xeV and (3y eV1) such that
0 € (AA)y (X + Ay — Py1Bx))+APyBPy (X + A(y — Py 1Bx)),

Z Z

where \ € 10, +ool.
Note that:

© (\A)y is maximally monotone.
@ )\PyBPy is Ax—lipschitzien and monotone.
© Z =Py((M\A)y + APyBPy)1(0).
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Main result

Let X € ]0, +ool, let (yn)nen be une sequence in ]0, (Ax) 1, let
Xo €V and letyy € V*. Foreveryn € N,

Step 1. Find (pn,qn) such that Xp—yn APy BXn + AYn = Pn + AQn
Pvdn Pvipn>
In n
Step 2. Let Xntr1 = Pypn+mAPv (Bx, — BPypn)
and y,.1 = Py.qn. Backto Step 1.

and +Py.i0n € A(Pvpn +
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Algorithm and convergence

Main result

Let X € ]0, +ool, let (yn)nen be une sequence in ]0, (Ax) 1, let
Xo €V and letyy € V*. Foreveryn € N,

Step 1. Find (pn,qn) such that Xp—yn APy BXn + AYn = Pn + AQn
Pvdn PVipn>
In n
Step 2. Let Xntr1 = Pypn+mAPv (Bx, — BPypn)
and y,.1 = Py.qn. Backto Step 1.

and +Py.i0n € A(P\,pn +

Then, the sequences (Xn)nen and (Yn)nen are in V and V-4, re-
spectively, and for a solution X € Z andy € V+ N (AX + Py BX)
we have:

QO x,—~Xandy,—V.
Q Xnp1—Xn— 0 and y,11 —yn — 0.
e PV Bxn, — PV BX.
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Particular cases

@ If A\ =1 and B = 0, the proposed method becomes the
partial inverse algorithm (Spingarn, 1983) that solves

find x eV and y eV, suchthat y € Ax.
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Motivation Characterization Algorithm and convergence Applications

Particular cases

@ If A\ =1 and B = 0, the proposed method becomes the
partial inverse algorithm (Spingarn, 1983) that solves
find x eV and y eV, suchthat y € Ax.

@ Step 1 is not always easy to compute. If we set v, = 1 we
obtain

Let A €]0,8[, % € V,yo € V*.

Sn = Xn — APy BXn + Ayp
Pn = JxaSn

' = pn — APy BPypn

On = (Sn — Pn)/A

Xnt1 = Py (Xn — Sn +n)
Yn+1 = Py1Qn.

(Vn e N)
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Motivation Characterization Algorithm and convergence Applications

Particular cases

@ If A\ =1 and B = 0, the proposed method becomes the
partial inverse algorithm (Spingarn, 1983) that solves

find x eV and y eV, suchthat y € Ax.

@ Step 1 is not always easy to compute. If we set v, = 1 we
obtain

Let A €]0,8[, % € V,yo € V*.

Sn = Xn — APy BXn + Ayn
Pn = JAASh

' = pn — APvBPypn

an = (Sh — Pn)/A

Xn+1 = Pv(Xn —Sn + )
Yn+1 = Py10Qn.

(Vn e N)

o If V = H we obtain the forward—backward—forward splitting
(Tseng, 2000) with a constant step size.
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Applications

Composite monotone inclusions involving partial sums

Definition

Let A: H — 2" and B: # — 2" be maximally monotone
operators and let V be a closed vectorial subspace of . We
define the partial sum of A and B with respect to V by

AOyB = (AV aF Bv)v.

Note that
Q@ A0B=A+B
Q AO)B =ADOB = (A~! +B~1)~! (parallel sum).
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Applications

Monotone inclusion involving partial sums
Problem

Find x ¢ H such that

m
Z e AX—l—NuX—i—Z (ﬁT(Bi DViJ_Di)(,CiX—ri)—i-[,i*Nyi (ﬁix—ri)) +Cx
i=1

Foreveryi e {1,...,m}:
© U/ and V) are closed vectorial subspaces of real Hilbert
spaces H and G;, respectively.

Q A:H = 2" and B: G — 26 are maximally monotone.
@ D;: G; — 2Ci is monotone and (Di)vij_ is v;-lipschitzian.
© C: H — H is monotone and y-lipschitzian.

@ £, H — G is linear and bounded.

Q zcHandr €G;.
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Particular case

Ifi{ = H and, for everyi € {1,...,m}, V; = G; the problem
reduces to

Find x ¢ H such that

m
z € AX + Z (Ei*(Bi OD)(Lix —ri) +Cx,
i=1

which is solved in Combettes-Pesquet (2012).
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Motivation Characterization Algorithm and convergence

Applications

Equivalent formulation

KKT conditions yields

Primal-Dual inclusion

0 A 0 0 X
0 0 (Bl)Vf 0 Vi

€ |. . . |t
of [0 o (Bm)yys |V
A

c L Ly Tx] Ny O 0 x

—Lq (Dl)Vf' 0 Vq 0 Nyl 0 V1
. + . .
_Em 0 (Dm)vl Vm 0 0 NVm Vm
B Nw )

Forward—partial inverse—forward method for solving monotone inclusions 18/ 25



Applications

Equivalent formulation

KKT conditions yields
Primal-Dual inclusion J

Findze#H st 0€Az-+Bz+ Nyz,

where
@ H=HxGy x - xGp.
@ A: H — 2" is maximally monotone.
@ B: H — H is monotone and lipschitzian.
OW=UXVy X XVn.

Forward—partial inverse—forward method for solving monotone inclusions 19/ 25



Applications

Equivalent formulation

KKT conditions yields

Primal-Dual inclusion
Findze#H st 0€Az-+Bz+ Nyz, J

where
@ H=HxGy x - xGp.
@ A: H — 2" is maximally monotone.
@ B: H — H is monotone and lipschitzian.
OW=UXVy X XVn.

Our algorithm applied in this case gives a splitting convergent
algorithm.
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Land use planning: Notation

@ C: finite set of types of households (or agents). For every
h € C, H, > 0 is the number of agents of type h.

@ N: finite set of zones. For every i € N, S; > 0 is the
number of available houses in the zone i.

@ Xni: % of agents of type h which will be localized in the
zone i (variable to obtain).

@ Constraints: foreveryi e Nandh € C, >, .- HpXpi < S
and ziEN Xni = 1.

@ z;,;: perceived utility of agents type h with respect to the
zone i. It depends on the localization of the agents of all
types (externality):

Zni = hi + Z QhgXgi -
geC
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Land use planning: Notation

|C|-players game: we denote x" = (X )ien and x " as usual.
@ Strategy set: A = {x € [0, +oo[ | ¥y xi =1}
@ Payoff agent type h:

Fr(x",x ") =Y (xnizni — i (IN(xni) — 1))

ieN
= (%nini — i (IN(Xni) = 1) + annXg)
ieN
+ Z Z Othg Xhi Xgi
ieN g#h

@ Shared constraintes: For every i € N,
Xi = {x = (XMnec € [0, +00[CHNI | S5 Hixi < Si}.
Denote by X = NjenXi.
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Land use planning: Model

Generalized Nash equilibrium (GNE)
Find x = (x")hec € AN X such that

(vhe C)(wyM e AnX,—n) Fa(x",x™M > Fp(y", x=M.
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Applications

Land use planning: Model

Generalized Nash equilibrium (GNE)
Find x = (x")hec € AN X such that

(vhe C)(wyM e AnX,—n) Fa(x",x™M > Fp(y", x=M.

Particular case: If, for every g, h, ang = 0, our game becomes
the potential game:

maximize ZZ Xnivhi — #Xni (IN(Xki ) — ))

IN|
XEXNATT eCien

which has been proposed by Wilson (1967) (see also Roy
(2004)).
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Land use planning: Model

Generalized Nash equilibrium (GNE)
Find x = (x")hec € AN X such that

(vhe C)(wyM e AnX,—n) Fa(x",x™M > Fp(y", x=M.

Particular case: If, for every g, h, ang = 0, our game becomes
the potential game:

maximize ZZ Xnivhi — #Xni (IN(Xki ) — ))

IN|
XEXNATT eCien

which has been proposed by Wilson (1967) (see also Roy
(2004)).

Existing methods for solving (GNE) use lagrangian multipliers
or penalty methods (see Facchinei-Fischer-Piccialli, 2009;
Facchinei-Kansow, 2007; Pang-Fukushima, 2005, ...)
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Land use planning: Equivalent formulation

Define
¢ RICHINI & RICHINEG: x = (xM)ce = (= VnFr(X", X ™)nec.
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Applications

Land use planning: Equivalent formulation

Define

¢ RICHINI & RICHINEG: x = (xM)ce = (= VnFr(X", X ™)nec.
Since, for every h € C and x ", —Fy,(-,x ") is convex, it is
enough to solve:

find x = (xX")hec € X N ANl such that
(vy e xnalN) (o(x) |y —x) >0,
or, equivalently, (qualification conditions hold)

Monotone inclusion
find x € X suchthat 0 e ®(x)+ Npni(X) + Nx(x).
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Applications

Land use planning: Equivalent formulation

Define

¢ RICHINI & RICHINEG: x = (xM)ce = (= VnFr(X", X ™)nec.
Since, for every h € C and x ", —Fy,(-,x ") is convex, it is
enough to solve:

find x = (xX")hec € X N ANl such that
(vy e xnalN) (o(x) |y —x) >0,

or, equivalently, (qualification conditions hold)

Monotone inclusion
find x € X suchthat 0 & ®(x)+ Nan(X)+ Nx(x).

Remark: All solution of the inclusion is NE, but not every NE is
a solution of the inclusion. These special NE are called
variational equilibria (see e.g. Facchinei-Kansow, 2007).
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Land use planning: Equivalent formulation

Variable sustitution: u =x —e, wheree = (1,...,1)/|N|.
Define V = {x e RICHFINI | (vhe C) 3.y x" =0}, whichis a
vectorial subspace of RIC+INI and X = X — e. Then our
inclusion becomes

Modified inclusion

find ueX such that 0 € ®(u+e)+ Nyu + Ngu.
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Land use planning: Equivalent formulation

Variable sustitution: u =x —e, wheree = (1,...,1)/|N|.
Define V = {x e RICHFINI | (vhe C) 3.y x" =0}, whichis a
vectorial subspace of RIC+INI and X = X — e. Then our
inclusion becomes

Modified inclusion

find ueX suchthat 0 € ®(u+e)+ Nyu + Ngu.

Under suitable conditions on the constants (ang)nec gec We
can guarantee that ¢ is monotone. Hence, we can apply the
forward-Pl-forward method for finding a solution of the land use
planning problem.
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