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Problem

Problem (P)

Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

Forward–partial inverse–forward method for solving monotone inclusions 2/ 25 L. M. Briceño-Arias



Motivation Characterization Algorithm and convergence Applications

Problem

Problem (P)

Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

H is a real Hilbert space,

A : H → 2H is maximally monotone, i.e., it is monotone:

(∀u ∈ Ax)(∀v ∈ Ay) 〈u − v | x − y〉 ≥ 0

and its graph is maximal among graphs of monotone op.

B : H → H is monotone and χ–lipschitzian.

V is a closed vectorial subspace of H (NV = V⊥ is the
normal cone to V ).
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Problem

Problem (P)

Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

H is a real Hilbert space,

A : H → 2H is maximally monotone, i.e., it is monotone:

(∀u ∈ Ax)(∀v ∈ Ay) 〈u − v | x − y〉 ≥ 0

and its graph is maximal among graphs of monotone op.

B : H → H is monotone and χ–lipschitzian.

V is a closed vectorial subspace of H (NV = V⊥ is the
normal cone to V ).

We suppose that the set of solutions to (P) is Z 6= Ø.
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Examples

If A = ∂f and B = ∇g, where f and g are convex functions,
the problem (P) reduces to (+ qualification conditions)

minimize
x∈V

f (x) + g(x).
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Examples

If A = ∂f and B = ∇g, where f and g are convex functions,
the problem (P) reduces to (+ qualification conditions)

minimize
x∈V

f (x) + g(x).

If H = Hn, where H is a real Hilbert space, A = A1×· · ·×An,
where Ai : H → 2H is maximally monotone, B : (xi)1≤i≤n 7→
(Bxi)1≤i≤n, where B is single-valued, monotone, and lips-
chitzian, and V =

{
x ∈ H | x1 = · · · = xn

}
, the problem

(P) becomes

find x ∈ H such that 0 ∈

n∑

i=1

Aix + Bx.
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Particular case 1

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

If B ≡ 0, (P) becomes

find x ∈ V and y ∈ V⊥ such that y ∈ Ax
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Particular case 1

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

If B ≡ 0, (P) becomes

find x ∈ V and y ∈ V⊥ such that y ∈ Ax

Partial inverse of A with respect to V

AV : H → 2H

v ∈ AV u ⇔ PV v + PV⊥u ∈ A(PV u + PV⊥v)
AH = A and A{0} = A−1
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Particular case 1

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

If B ≡ 0, (P) becomes

find x ∈ V and y ∈ V⊥ such that y ∈ Ax

Partial inverse of A with respect to V

AV : H → 2H

v ∈ AV u ⇔ PV v + PV⊥u ∈ A(PV u + PV⊥v)
AH = A and A{0} = A−1

Problem of partial inverse

find x ∈ V and y ∈ V⊥ such that 0 ∈ AV (x + y).
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Particular case 1

Method: Proximal point algorithm (Martinet (1970), Rockafellar
(1976)) xn+1 = JγnAV

xn = (Id + γnAV )
−1xn, γn > 0
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Particular case 1

Method: Proximal point algorithm (Martinet (1970), Rockafellar
(1976)) xn+1 = JγnAV

xn = (Id + γnAV )
−1xn, γn > 0

Partial inverse method (Spingarn, 1983)

Let x0 ∈ V and y0 ∈ V⊥. For every n ∈ N,

Step 1. Find (pn,qn) ∈ H2 such that xn + yn = pn + qn

and
PV qn

γn
+ PV⊥qn ∈ A

(
PV pn +

PV⊥pn

γn

)
.

Step 2. Set xn+1 = PV pn and yn+1 = PV⊥qn. Back to step 1.

We have xn ⇀ x solution to partial inverse problem.
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Particular case 1

Method: Proximal point algorithm (Martinet (1970), Rockafellar
(1976)) xn+1 = JγnAV

xn = (Id + γnAV )
−1xn, γn > 0

Partial inverse method (Spingarn, 1983)

Let x0 ∈ V and y0 ∈ V⊥. For every n ∈ N,

Step 1. Find (pn,qn) ∈ H2 such that xn + yn = pn + qn

and
PV qn

γn
+ PV⊥qn ∈ A

(
PV pn +

PV⊥pn

γn

)
.

Step 2. Set xn+1 = PV pn and yn+1 = PV⊥qn. Back to step 1.

We have xn ⇀ x solution to partial inverse problem.

If γn ≡ 1,

{
xn+1 = PV JA(xn + yn)

yn+1 = PV⊥(xn + yn − JA(xn + yn)).
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Particular case 2

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .
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Particular case 2

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

If V = H, (P) becomes

(P2) Find x ∈ H such that 0 ∈ Ax + Bx .
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Particular case 2

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

If V = H, (P) becomes

(P2) Find x ∈ H such that 0 ∈ Ax + Bx .

Method: Forward-backward-forward (Tseng (2000)):

(∀n ∈ N)



γn ∈
]
0, χ−1

[

yn = zn − γnBzn

pn = JγnAyn

qn = pn − γnBpn

zn+1 = zn − yn + qn.
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Particular case 2

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

If V = H, (P) becomes

(P2) Find x ∈ H such that 0 ∈ Ax + Bx .

Method: Forward-backward-forward (Tseng (2000)):

(∀n ∈ N)



γn ∈
]
0, χ−1

[

yn = zn − γnBzn

pn = JγnAyn

qn = pn − γnBpn

zn+1 = zn − yn + qn.

We obtain that (xn)n∈N converges weakly to a solution to (P2).
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General case

Existing methods do not exploit the whole structure of the
problem:

Combettes (2009) and B-A & Combettes (2011) propose an
algorithm that converges weakly to a solution to (P). How-
ever, it is necessary to compute (Id + B)−1.

Combettes and Pesquet (2012) exploit the single-valued
property of B. However, the algorithm does not take into
advantage the normal cone structure and the use of prod-
uct space techniques generates several additional auxiliary
variables to be updated at each iteration.
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Objectives

To propose a new convergent method for solving problem
(P) that take into advantage of all the structure of the prob-
lem.

To generalize the previous methods: partial inverse and
forward-backward-forward.

Applications: monotone inclusions involving partial sums
and land use planning and Generalized Nash equilibrium
problems.
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1 Motivation

2 Characterization

3 Algorithm and convergence

4 Applications
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Characterization

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .
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Characterization

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

Equivalence

x is a solution to Problem (P) if and only if

x ∈ V and (∃ y ∈ V⊥) such that

0 ∈ (λA)V (x + λ(y − PV⊥Bx)︸ ︷︷ ︸
z

)+λPV BPV (x + λ(y − PV⊥Bx)︸ ︷︷ ︸
z

),

where λ ∈ ]0,+∞[.
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Characterization

(P) Find x ∈ H such that 0 ∈ Ax + Bx + NV x .

Equivalence

x is a solution to Problem (P) if and only if

x ∈ V and (∃ y ∈ V⊥) such that

0 ∈ (λA)V (x + λ(y − PV⊥Bx)︸ ︷︷ ︸
z

)+λPV BPV (x + λ(y − PV⊥Bx)︸ ︷︷ ︸
z

),

where λ ∈ ]0,+∞[.
Note that:

1 (λA)V is maximally monotone.
2 λPV BPV is λχ–lipschitzien and monotone.
3 Z = PV ((λA)V + λPV BPV )

−1(0).
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Main result

Let λ ∈ ]0,+∞[, let (γn)n∈N be une sequence in
]
0, (λχ)−1

[
, let

x0 ∈ V and let y0 ∈ V⊥. For every n ∈ N,

Step 1. Find (pn,qn) such that xn−γnλPV Bxn + λyn = pn + λqn

and
PV qn

γn
+ PV⊥qn ∈ A

(
PV pn +

PV⊥pn

γn

)
.

Step 2. Let xn+1 = PV pn+γnλPV (Bxn − BPV pn)

and yn+1 = PV⊥qn. Back to Step 1.
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Main result

Let λ ∈ ]0,+∞[, let (γn)n∈N be une sequence in
]
0, (λχ)−1

[
, let

x0 ∈ V and let y0 ∈ V⊥. For every n ∈ N,

Step 1. Find (pn,qn) such that xn−γnλPV Bxn + λyn = pn + λqn

and
PV qn

γn
+ PV⊥qn ∈ A

(
PV pn +

PV⊥pn

γn

)
.

Step 2. Let xn+1 = PV pn+γnλPV (Bxn − BPV pn)

and yn+1 = PV⊥qn. Back to Step 1.

Then, the sequences (xn)n∈N and (yn)n∈N are in V and V⊥, re-
spectively, and for a solution x ∈ Z and y ∈ V⊥ ∩ (Ax + PV Bx)
we have:

1 xn ⇀ x and yn ⇀ y .

2 xn+1 − xn → 0 and yn+1 − yn → 0.

3 PV Bxn → PV Bx.
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Particular cases

If λ = 1 and B ≡ 0, the proposed method becomes the
partial inverse algorithm (Spingarn, 1983) that solves

find x ∈ V and y ∈ V⊥ such that y ∈ Ax .
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Particular cases

If λ = 1 and B ≡ 0, the proposed method becomes the
partial inverse algorithm (Spingarn, 1983) that solves

find x ∈ V and y ∈ V⊥ such that y ∈ Ax .
Step 1 is not always easy to compute. If we set γn ≡ 1 we
obtain

Let λ ∈ ]0, β[, x0 ∈ V , y0 ∈ V⊥.

(∀n ∈ N)



sn = xn − λPV Bxn + λyn

pn = JλAsn

rn = pn − λPV BPV pn

qn = (sn − pn)/λ
xn+1 = PV (xn − sn + rn)
yn+1 = PV⊥qn.

If V = H we obtain the forward–backward–forward splitting
(Tseng, 2000) with a constant step size.
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Composite monotone inclusions involving partial sums

Definition

Let A : H → 2H and B : H → 2H be maximally monotone
operators and let V be a closed vectorial subspace of H. We
define the partial sum of A and B with respect to V by

A�V B = (AV + BV )V .

Note that
1 A�HB = A + B
2 A�{0}B = A�B = (A−1 + B−1)−1 (parallel sum).

Forward–partial inverse–forward method for solving monotone inclusions 15/ 25 L. M. Briceño-Arias



Motivation Characterization Algorithm and convergence Applications

Monotone inclusion involving partial sums

Problem

Find x ∈ H such that

z ∈ Ax+NUx+
m∑

i=1

(
L∗

i (Bi �V⊥
i
Di)(Lix−ri)+L∗

i NVi (Lix−ri)
)
+Cx

For every i ∈ {1, . . . ,m}:
1 U and Vi are closed vectorial subspaces of real Hilbert

spaces H and Gi , respectively.
2 A : H → 2H and Bi : Gi → 2Gi are maximally monotone.
3 Di : Gi → 2Gi is monotone and (Di)V⊥

i
is νi -lipschitzian.

4 C : H → H is monotone and µ-lipschitzian.
5 Li : H → Gi is linear and bounded.
6 z ∈ H and ri ∈ Gi .
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Particular case

If U = H and, for every i ∈ {1, . . . ,m}, Vi = Gi the problem
reduces to

Find x ∈ H such that

z ∈ Ax +

m∑

i=1

(
L∗

i (Bi �Di)(Li x − ri) + Cx ,

which is solved in Combettes-Pesquet (2012).
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Equivalent formulation

KKT conditions yields

Primal-Dual inclusion



0
0
...
0


 ∈




A 0 . . . 0
0 (B1)V⊥

1
. . . 0

...
. . .

...
0 0 . . . (Bm)V⊥

m




︸ ︷︷ ︸
A




x
v1
...

vm


+




C L∗
1 . . . L∗

m
−L1 (D1)V⊥

1
. . . 0

...
. . .

...
−Lm 0 . . . (Dm)V⊥

m




︸ ︷︷ ︸
B




x
v1
...

vm


+




NU 0 . . . 0
0 NV1 . . . 0
...

. . .
...

0 0 . . . NVm




︸ ︷︷ ︸
NW




x
v1
...

vm
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Equivalent formulation

KKT conditions yields

Primal-Dual inclusion

Find z ∈ H s.t. 0 ∈ Az + Bz + NW z,

where

H = H × G1 × · · · × Gm.

A : H → 2H is maximally monotone.

B : H → H is monotone and lipschitzian.

W = U × V1 × · · · × Vm.

Forward–partial inverse–forward method for solving monotone inclusions 19/ 25 L. M. Briceño-Arias



Motivation Characterization Algorithm and convergence Applications

Equivalent formulation

KKT conditions yields

Primal-Dual inclusion

Find z ∈ H s.t. 0 ∈ Az + Bz + NW z,

where

H = H × G1 × · · · × Gm.

A : H → 2H is maximally monotone.

B : H → H is monotone and lipschitzian.

W = U × V1 × · · · × Vm.

Our algorithm applied in this case gives a splitting convergent
algorithm.
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Land use planning: Notation

C: finite set of types of households (or agents). For every
h ∈ C, Hh > 0 is the number of agents of type h.

N: finite set of zones. For every i ∈ N, Si > 0 is the
number of available houses in the zone i .

xhi : % of agents of type h which will be localized in the
zone i (variable to obtain).

Constraints: for every i ∈ N and h ∈ C,
∑

h∈C Hhxhi ≤ Si

and
∑

i∈N xhi = 1.

zhi : perceived utility of agents type h with respect to the
zone i . It depends on the localization of the agents of all
types (externality):

zhi = γhi +
∑

g∈C

αhgxgi .
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Land use planning: Notation

|C|-players game: we denote xh = (xhi)i∈N and x−h as usual.

Strategy set: ∆ =
{

x ∈ [0,+∞[|N| |
∑

i∈N xi = 1
}

Payoff agent type h:

Fh(x
h, x−h) =

∑

i∈N

(xhi zhi − µxhi(ln(xhi)− 1))

=
∑

i∈N

(xhiγhi − µxhi(ln(xhi )− 1) + αhhx2
hi)

+
∑

i∈N

∑

g 6=h

αhgxhixgi

Shared constraintes: For every i ∈ N,
Xi =

{
x = (xh)h∈C ∈ [0,+∞[|C|+|N| |

∑
h∈C Hhxhi ≤ Si

}
.

Denote by X = ∩i∈NXi .
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Land use planning: Model

Generalized Nash equilibrium (GNE)

Find x = (xh)h∈C ∈ ∆|N| ∩ X such that

(∀h ∈ C)(∀yh ∈ ∆ ∩ Xx−h) Fh(x
h, x−h) ≥ Fh(y

h, x−h).
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Land use planning: Model

Generalized Nash equilibrium (GNE)

Find x = (xh)h∈C ∈ ∆|N| ∩ X such that

(∀h ∈ C)(∀yh ∈ ∆ ∩ Xx−h) Fh(x
h, x−h) ≥ Fh(y

h, x−h).

Particular case: If, for every g,h, αhg = 0, our game becomes
the potential game:

maximize
x∈X∩∆|N|

∑

h∈C

∑

i∈N

(
xhiγhi − µxhi(ln(xhi )− 1)

)
,

which has been proposed by Wilson (1967) (see also Roy
(2004)).
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Land use planning: Model

Generalized Nash equilibrium (GNE)

Find x = (xh)h∈C ∈ ∆|N| ∩ X such that

(∀h ∈ C)(∀yh ∈ ∆ ∩ Xx−h) Fh(x
h, x−h) ≥ Fh(y

h, x−h).

Particular case: If, for every g,h, αhg = 0, our game becomes
the potential game:

maximize
x∈X∩∆|N|

∑

h∈C

∑

i∈N

(
xhiγhi − µxhi(ln(xhi )− 1)

)
,

which has been proposed by Wilson (1967) (see also Roy
(2004)).
Existing methods for solving (GNE) use lagrangian multipliers
or penalty methods (see Facchinei-Fischer-Piccialli, 2009;
Facchinei-Kansow, 2007; Pang-Fukushima, 2005, ...)
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Land use planning: Equivalent formulation

Define
Φ: R|C|+|N| → R

|C|+|N| : x = (xh)h∈C 7→ (−∇xhFh(xh, x−h))h∈C .
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Land use planning: Equivalent formulation

Define
Φ: R|C|+|N| → R

|C|+|N| : x = (xh)h∈C 7→ (−∇xhFh(xh, x−h))h∈C .
Since, for every h ∈ C and x−h, −Fh(·, x−h) is convex, it is
enough to solve:

find x = (xh)h∈C ∈ X ∩∆|N| such that

(∀y ∈ X ∩∆|N|) 〈Φ(x) | y − x〉 ≥ 0,

or, equivalently, (qualification conditions hold)

Monotone inclusion

find x ∈ X such that 0 ∈ Φ(x) + N∆|N|(x) + NX (x).
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Land use planning: Equivalent formulation

Define
Φ: R|C|+|N| → R

|C|+|N| : x = (xh)h∈C 7→ (−∇xhFh(xh, x−h))h∈C .
Since, for every h ∈ C and x−h, −Fh(·, x−h) is convex, it is
enough to solve:

find x = (xh)h∈C ∈ X ∩∆|N| such that

(∀y ∈ X ∩∆|N|) 〈Φ(x) | y − x〉 ≥ 0,

or, equivalently, (qualification conditions hold)

Monotone inclusion

find x ∈ X such that 0 ∈ Φ(x) + N∆|N|(x) + NX (x).

Remark: All solution of the inclusion is NE, but not every NE is
a solution of the inclusion. These special NE are called
variational equilibria (see e.g. Facchinei-Kansow, 2007).
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Land use planning: Equivalent formulation

Variable sustitution: u = x − e, where e = (1, . . . ,1)/|N|.
Define V =

{
x ∈ R

|C|+|N| | (∀h ∈ C)
∑

i∈N xh
i = 0

}
, which is a

vectorial subspace of R|C|+|N|, and X̃ = X − e. Then our
inclusion becomes

Modified inclusion

find u ∈ X̃ such that 0 ∈ Φ(u + e) + NV u + NX̃ u.
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Land use planning: Equivalent formulation

Variable sustitution: u = x − e, where e = (1, . . . ,1)/|N|.
Define V =

{
x ∈ R

|C|+|N| | (∀h ∈ C)
∑

i∈N xh
i = 0

}
, which is a

vectorial subspace of R|C|+|N|, and X̃ = X − e. Then our
inclusion becomes

Modified inclusion

find u ∈ X̃ such that 0 ∈ Φ(u + e) + NV u + NX̃ u.

Under suitable conditions on the constants (αhg)h∈C,g∈C we
can guarantee that Φ is monotone. Hence, we can apply the
forward-PI-forward method for finding a solution of the land use
planning problem.
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