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Complementarity problems

Let F : Rn → Rn be a map and K ⊂ Rn be a closed convex cone.
The Nonlinear Complementarity Problem (NCP) is defined by

NCP(F ,K )


Find z ∈ K such that

F (z) ∈ K ∗ and 〈z ,F (z) = 0.

K ∗ is the positive polar of K , defined by

K ∗ =
{
p ∈ Rn : 〈p, x〉 ≥ 0, ∀x ∈ K

}
.

K 3 z ⊥ F (z) ∈ K ∗.

- Other formulation as a variational inequality:

VI (F ,K )


Find z ∈ K such that

〈F (z), y − z〉 ≥ 0, ∀y ∈ K



Linear Complementarity Problems on the positive orthant

- K = Rn
+ and F (z) = Mz + q with M ∈ Rn×n

LCP(M, q) : 0 ≤ z ⊥ Mz + q ≥ 0.

- Existence result:

LCP(M, q) has a unique solution for all q ∈ Rn if and only M is a
P-matrix, i.e. all its principal minors are positive.

- Numerical solvers:

I Lemke’s algorithm

I PATH Solver

I Quadratic Programming with bound constraints (if M is
symmetric):

min
z≥0

1

2
zTMz + qT z .



PATH Solver

0 ≤ x ⊥ F (x) ≥ 0.

- Nonsmooth Normal map (S. Robinson):

Φ(x) = F (x+) + x − x+ = 0.

0 ≤ x+ ⊥ F (x+) = x+ − x ≥ 0.

- Nonsmooth Newton Method applied to Φ.

- Merit function: 1
2‖F (x+)‖2

2 with Armijo line search.

- Generalization to a closed convex cone K

x+ → PK.



Applications of Complementarity

I Mechanical engineering: unilateral contact problems with
friction

I Electrical engineering: electrical circuits with diodes

I Pricing electricity markets and options

I Electricity market deregulation

I Congestion in Networks

I Structural engineering

I Economic equilibria

I Game Theory (Nash equilibria)

I transportation planning

I Crack propoagation

I Video games



Unconstrained eigenvalue problems

Let A, B, C ∈ Rn×n be given.

I The standard eigenvalue problem is:{
Find λ ∈ R and x ∈ Rn \ {0} such that
Ax = λx

I The generalized eigenvalue problem is:{
Find λ ∈ R and x ∈ Rn \ {0} such that
Ax = λBx

I The quadratic eigenvalue problem is:{
Find λ ∈ R and x ∈ Rn \ {0} such that
Q(λ)x = 0 with Q(λ) = λ2A + λB + C .



Pencil applications

I Mechanical systems:

Mq̈(t) + Cq̇(t) + Kq(t) = f .

I Electrical systems:

L
d2i

dt
(t) + R

di

dt
(t) +

1

C
i(t) = u′(t).

q(t) = eλtx =⇒ (Mλ2 + Cλ+ K )x = 0.



Constrained eigenvalue problems

Let A, B, C ∈ Rn×n be given and K be a closed convex cone of
Rn. We denote by K+ its positive polar.

I The constrained eigenvalue problem is:{
Find λ ∈ R and x ∈ Rn \ {0} such that
K 3 x ⊥ (Ax − λx) ∈ K+

I The constrained generalized eigenvalue problem is:{
Find λ ∈ R and x ∈ Rn \ {0} such that
K 3 x ⊥ (Ax − λBx) ∈ K+

I The constrained quadratic eigenvalue problem is:{
Find λ ∈ R and x ∈ Rn \ {0} such that
K 3 x ⊥ Q(λ)x ∈ K+, with Q(λ) = λ2A + λB + C .



Pencil applications

I Mechanical systems with impact and/or friction

Mq̈(t) + Cq̇(t) + Kq(t) ∈ −NK(q(t)).Hard impact systems
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Buck Converter as a piecewise-smooth system
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Applications of Constrained Eigenvalue Problem CEiP
A wide variety of applications require the solution of CEiP:

I Dynamic analysis of structural mechanical systems
I Vibro-acoustic systems
I Electrical circuit simulation
I Signal processing
I fluid dynamics

How can instability and unwanted resonance be avoided for a given
system?

Eigenvalues corresponding to unstable modes or yielding large
vibrations can be relocated or damped.



Pareto eigenvalue problems

An important particular case is given when K = Rn
+ (pareto

eigenvalue problem):

I 0 ≤ x ⊥ (Ax − λx) ≥ 0.

I 0 ≤ x ⊥ (Ax − λBx) ≥ 0.

I 0 ≤ x ⊥ Q(λ)x ≥ 0, with Q(λ) = λ2A + λB + C .



Stability Analysis of Finite Dimensional Elastic Systems
with Frictional Contact.

- A. Costa, J. Martins, I.
Figueiredo and J. Júdice, “The
directional instability in systems
with frictional contacts”, Com-
put. Methods Appl. Mech. En-
grg., 193 (2004)357–384.

Labels f or c denote the nodes that, at the

equilibrium state under consideration, are out

of contact (free from any geometrical con-

straint) or in contact, respectively.

A necessary and sufficient condition for the occurrence of
divergence instability along a constant admissible direction, is to
find λ2 ≥ 0 and (x , y) ∈ Rn × Rn with x 6= 0 such that

(λ2M + K )x = y ,
yf = 0
0 ≤ xc ⊥ yc ≥ 0

x =

[
xf
xc

]
, y =

[
yf
yc

]



Applications in mechanics

I P. Quittner (1986): Spectral analysis of variational
inequalities.

I J. A. C. Martins and A. Pinto da Costa (2001): Computation
of Bifurcations and Instabilities in Some Frictional Contact
Problems.

I A. Pinto da Costa, J.A.C. Martins, I.N. Figueiredo and J.J.
Judice (2004): The directional instability problem in systems
with frictional contacts.

I J. A. C. Martins and A. Pinto da Costa (2004): Bifurcations
and Instabilities in Frictional Contact Problems: Theoretical
Relations, Computational Methods and Numerical Results.



Pareto Eigenvalue Complementarity Problem EiCP

Definition
Let A ∈Mn(R).

(EiCP)

{
Find λ > 0 and x ∈ Rn \ {0}, such that

x ≥ 0, λx − Ax ≥ 0, 〈x , λx − Ax〉 = 0.

σ(A) = {λ > 0 : ∃ x ∈ Rn \ {0}, 0 ≤ x ⊥ (λx − Ax) ≥ 0}.

Let
πn = max

A∈Rn×n
card [σRn

+
(A)].

I We have

3(2n−1 − 1) ≤ πn ≤ n2n−1 − (n − 1),

I We have π1 = 1, π2 = 3 and that π3 = 9 or 10. We note that
e.g. π20 ≥ 1 572 861



Definitions

Let Φ : Rn → Rn be a locally Lipschitz function.

I The B-subdifferential de Φ at z ∈ Rn is defined by

∂BΦ(z) =
{
M ∈ Rn×n : ∃(zk) ⊂ DΦ : zk → z , lim

k→+∞
∇Φ(zk) = M

}
where Dφ is the set of differentiability points of Φ.

I The Clarke generalized Jacobian of Φ is given by

∂Φ(z) = co ∂BΦ(z),

I The function Φ is said to be semismooth at z ∈ Rn if it is
locally Lipschitz around z , directionally differentiable at z and
satisfies the following condition

sup
M∈∂Φ(z+h)

‖Φ(z + h)− Φ(z)−Mz‖ = o(‖h‖).



Example
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f (x) = ln(1 + |x |)

is semismooth but not differentiable at 0.
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Examples of semismooth functions

I The Euclidean norm: ‖ · ‖2.

I The Fischer–Burmeister function:
ϕFB : R2 → R, (a, b) 7→ ϕFB(a, b) =

√
a2 + b2 − (a + b).

I Piecewise continuously differentiable functions:
(a, b) ∈ R2 7→ min(a, b) or max(a, b).



SNM algorithm

1. Initialization: Choose an initial point z0 and set k = 0.

2. Iteration: One has a current point zk , If ‖Φ(zk)‖ 6 10−8,
then STOP.

3. Else choose Mk ∈ ∂Φ(zk) and compute hk by solving the
linear system

Mkhk = −Φ(zk).

Then, set zk+1 = zk + hk , k = k + 1 and go to STEP 2.



Convergence Theorem

Theorem
Let z∗ be a zero of the function Φ. Suppose the following

I Φ is semismooth (resp. strongly semismooth) at z∗ ;

I all matrices in ∂Φ(z∗)are nonsingular.

Then, there exists a neighborhood V of z∗ such that the SNM
initialized at any z0 ∈ V generates a sequence (zk)k∈N that
converges superlinearly (resp. quadratically) to z∗.



Reformulation

Reformulation of EiCP2: by using Nonlinear Complementarity
Function NCP.
φ : R2 → R is a NCP-function if and only if

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

We conisder
φFB(a, b) = a + b −

√
a2 + b2,

φmin(a, b) = min(a, b).

2S. Adly and A. Seeger, A Nonsmooth Algorithm for Cone-Constrained
Eigenvalue Problems, Springer, Computational Optimization and Applications
49, 299-318 (2011).



Resolution

Let z = (x , y , λ) and Φ : Rn × Rn × R −→ R2n+1 defined by

Φ(z) = Φ(x , y , λ) =

 Uφ(x , y)
λx − Ax − y
〈1n, x〉 − 1

 ,
where Uφ : Rn × Rn −→ Rn is given by

Uφ(x , y) =

 φ(x1, y1)
...

φ(xn, yn)

 ,
with φ = φmin or φ = φFB.

(x , y , λ) is a solution of EiCP if and only if Φ(x , y , λ) = 0R2n+1 .



Jacobian matrix ∂Φ(z)

Φ(z) = Φ(x , y , λ) =

 Uφ(x , y)
λx − Ax − y
〈1n, x〉 − 1

 .
Lemma
The function Φ is semismooth. Moreover, its Clarke generalized
Jacobian at z = (x , y , λ) is given by

∂Φ(z) =


 E F 0
λIn − A −In x

1Tn 0 0

 : [E ,F ] ∈ ∂Uφ(x , y)

 .



Lattice Projection Method LPM

Lemma
EiCP is equivalent to find the roots of the following nonlinear and
nonsmooth function

f : Rn × R→ Rn defined by

(x , λ) 7→ f (x , λ) = (Ax)+ − λx .

Conclusion: EiCP is equivalent to solve the nonlinear eigenvalue
problem (The Lattice Projection Method)

(PRn
+
◦ A)(x) = λx.



Jacobian matrix of ΦLPM

EiCP is equivalent to solving the nonlinear system

ΦLPM(x , ỹ , λ) =

 ỹ+ − λx
Ax − ỹ
〈1n, x 〉 − 1

 = 0R2n+1 .

Lemma
The function ΦLPM is semismooth. Its Clarke generalized Jacobian
at z̃ = (x , ỹ , λ) is given by

∂ΦLPM(z̃) =


 −λIn F̃ −x

A −In 0
1Tn 0 0

 : F̃ ∈ ∂(·)+(ỹ)

 .



Testing on matrices of order 3, 4 and 5

Let the following matrices (having exactly 9, 23 and 57 Pareto
eigenvalues, respectively).

A1 =

 5 −8 2
−4 9 1
−6 −1 13

 , A2 =


132 −106 18 81
−92 74 24 101
−2 −44 195 7
−21 −38 0 230


and

A3 =


788 −780 −256 156 191
−548 862 −190 112 143
−456 −548 1308 110 119
−292 −374 −14 1402 28
−304 −402 −66 38 1522

 .



First numerical results

1. LPM: Lattice Projection Method.

2. SNMFB: SNM using φFB .

3. SNMmin: SNM using φmin.

Methods A1 A2 A3

Iter Time Failure Iter Time Failure Iter Time Failure

LPM 4 0.0003 0% 6 0.0006 0% 7 0.0004 0%

SNMFB 8 0.0012 5% 10 0.0015 16% 11 0.0014 31%

SNMmin 2 0.0003 47% 2 0.0008 71% 2 0.0007 95%



Background on Performance Profiles

Dolan and Moré3 introduced the notion of a performance profile as
a means to evaluate and compare the performance of the set of
solvers S on a test set P. The idea is to compare the performance
of solver s on problem p with the best performance by any solver
on this particular problem. The performance ratio is defined by

r(p, s) =
tp,s

min{tp,s : s ∈ S
,

tp,s=computing time required to solve problem p by solver s.

3 E. D. Dolan and J. J. Moré, Benchmarking Optimization Software with
Performance Profiles, Math. Prog. 91, 201-213 (2002).



Background on Performance Profiles

In order to obtain an overall assessment of a solver on the given
model test set, we define a cumulative distribution function

ρs(τ) =
1

np
size
{
p ∈ P : r(p, s) ≤ τ

}
.

ρs(τ) is the probability that a performance ratio r(p, s) is within a
factor of τ of the best possible ratio.
Interpretation:
In general, ρs(τ) for a particular solver s gives information on the
percentage of models that the solver will solve if for each model,
the solver can have a maximum resource time of τ times the
minimum time.
For τ = 1 the probability ρs(1) of a particular solver is the
probability that the solver will win over all the others.
For large values of τ the probability function ρs(τ) gives
information if a solver actually solves a problem.



Performance profiles
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I Fig1. presents the performance profiles of the three solvers
corresponding to the average computing time.

I Fig2. the maximum number of solution found by each
solver is the comparison criterion.



Performance profils
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I In Fig1. the comparison tool is the number of failures.

I In Fig2. the comparison tool is the average iterative
number.



Conclusions
√

Reformulation of EiCP and SOCEiCP as a system of
semismooth equations.

√
Nonsingularity conditions for solving EiCP and SOCEiCP.

√
New method LPM for solving the two problems.

√
Numerical results and the performance of LPM.
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