A New Method for Solving Pareto Eigenvalues
Complementarity Problems?

Samir ADLY
University of Limoges, France

ADGO 2013
Playa Blanca, october 16, 2013

’ Université ! ‘@
‘ de Limoges ) i -

A joint work with H. Rammal



Complementarity problems

Let F:R" — R” be a map and K C R” be a closed convex cone.
The Nonlinear Complementarity Problem (NCP) is defined by

Find z € K such that
NCP(F, K)
F(z) € K* and (z, F(z) = 0.

K* is the positive polar of K, defined by

K* = {p ER" : (p,x) >0, Vx € K}.
K>z 1 F(z) e K*.
- Other formulation as a variational inequality:

Find z € K such that
VI(F, K)
(F(2),y —2) >0, Vy e K



Linear Complementarity Problems on the positive orthant
- K =R and F(z) = Mz + q with M € R™"

LCP(M,q) : 0<zl Mz+q>0.

- Existence result:

LCP(M, q) has a unique solution for all g € R" if and only M is a
P-matrix, i.e. all its principal minors are positive.

- Numerical solvers:

» Lemke's algorithm
» PATH Solver

» Quadratic Programming with bound constraints (if M is
symmetric):
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PATH Solver

0<xLlF(x)>0.

- Nonsmooth Normal map (S. Robinson):
d(x)=F(xT)+x—x"=0.
0<xt L F(x")=x"-x>0.
- Nonsmooth Newton Method applied to ®.

- Merit function: ||F(xT)||3 with Armijo line search.

- Generalization to a closed convex cone C

XJr — ch.



Applications of Complementarity

> Mechanical engineering: unilateral contact problems with
friction

> Electrical engineering: electrical circuits with diodes
» Pricing electricity markets and options

> Electricity market deregulation

» Congestion in Networks

» Structural engineering

» Economic equilibria

» Game Theory (Nash equilibria)

> transportation planning

» Crack propoagation

> Video games



Unconstrained eigenvalue problems

Let A, B, C € R™" be given.

» The standard eigenvalue problem is:

Find A € R and x € R"\ {0} such that
Ax = Ax
» The generalized eigenvalue problem is:

Find A € R and x € R"\ {0} such that
Ax = ABx

» The quadratic eigenvalue problem is:

Find A € R and x € R"\ {0} such that
Q(M\)x = 0 with Q(\) = N2A+ \B + C.



Pencil applications

» Mechanical systems:

Maq(t) + C4(t) + Kq(t) =

> Electrical systems:

2
L)+ RS (6)+ Zi(t) =
q(t) = e —0.

f.

u'(t).



Constrained eigenvalue problems

Let A, B, C € R™" be given and K be a closed convex cone of
R". We denote by K™ its positive polar.

» The constrained eigenvalue problem is:

Find A € R and x € R"\ {0} such that
K>x 1 (Ax—Xx) e KT

» The constrained generalized eigenvalue problem is:

Find A € R and x € R"\ {0} such that
K> x L (Ax—ABx) € KT

» The constrained quadratic eigenvalue problem is:

Find A € R and x € R"\ {0} such that
K>x L Q\)x e KT, with Q(\) = \2A+ B + C.



Pencil applications

» Mechanical systems with impact and/or friction

Mé(t) + Ca(t) + Ka(t) € —N(a(t)).

X
Before impact After impact



Buck Converter as a piecewise-smooth system
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Applications of Constrained Eigenvalue Problem CEiP
A wide variety of applications require the solution of CEiP:
» Dynamic analysis of structural mechanical systems
Vibro-acoustic systems
Electrical circuit simulation
Signal processing
fluid dynamics

vV vyVvyy

How can instability and unwanted resonance be avoided for a given
system?

Eigenvalues corresponding to unstable modes or yielding large
vibrations can be relocated or damped.




Pareto eigenvalue problems

An important particular case is given when K = R’} (pareto
eigenvalue problem):

» 0<x L (Ax—Ax)>0.

» 0<x Ll (Ax—ABx) >0.

> 0<x L Q\)x >0, with Q(\) = \2A+ AB + C.



Stability Analysis of Finite Dimensional Elastic Systems
with Frictional Contact.

- A. Costa, J. Martins, I
Figueiredo and J. Jddice, “The
directional instability in systems
with frictional contacts”, Com-
put. Methods Appl. Mech. En-
grg., 193 (2004)357-384.
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A necessary and sufficient condition for the occurrence of
divergence instability along a constant admissible direction, is to
find A2 > 0 and (x,y) € R" x R" with x # 0 such that
Yf
= O p—
yr [y]

(A°M + K)x =y,
=
0<xcLyc=>0



Applications in mechanics
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Pareto Eigenvalue Complementarity Problem EiCP
Definition
Let A € M,(R).

) Find A > 0and x € R"\ {0}, such that
(EiCP)
x>0, Ax — Ax >0, (x,Ax — Ax) = 0.

og(A)={A>0:3xeR"\ {0}, 0 <x L (Ax—Ax)>0}.
Let
= e card [orn (A)].
» We have

32" 1) < 7w, < M- (n—1),

» We have m; = 1, m» = 3 and that 3 = 9 or 10. We note that
€.g. T > 1572 861



Definitions

Let @ : R” — R” be a locally Lipschitz function.
» The B-subdifferential de ® at z € R” is defined by

Ig®(z) = {I\/I ER™":3(zk) C Do : zx — z, lim V(z4) = M}

k——+o00

where Dy is the set of differentiability points of ®.
» The Clarke generalized Jacobian of ® is given by

0P(z) = co 9gP(2),

> The function & is said to be semismooth at z € R” if it is
locally Lipschitz around z, directionally differentiable at z and
satisfies the following condition

sup [|®(z+ h) — ®(z) — Mz|| = o(||h]).
Medd(z+h)



Example
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f(x)=In(1+ |x])

is semismooth but not differentiable at 0.




Example

i
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xZsin(1/x) if x
f(X):{ Oifsx(i/O) P

is not semismooth but locally Lipschitz.



Examples of semismooth functions

» The Euclidean norm: || - [|2.

» The Fischer—Burmeister function:
ore : R?> - R, (a,b) — pra(a,b) = Va2 + b2 — (a+b).

» Piecewise continuously differentiable functions:
(a, b) € R? — min(a, b) or max(a, b).



SNM algorithm

1. Initialization: Choose an initial point z° and set k = 0.
2. lteration: One has a current point z¥, If [|®(z¥)| < 1078,
then STOP.

3. Else choose MX € ¢ (z¥) and compute h* by solving the
linear system
M*pK = —o(25).

Then, set zKt1 = zK + h%, k = k + 1 and go to STEP 2.



Convergence Theorem

Theorem
Let z* be a zero of the function ®. Suppose the following
» & js semismooth (resp. strongly semismooth) at z* ;
» all matrices in 0%(z*)are nonsingular.
Then, there exists a neighborhood V' of z* such that the SNM

initialized at any z° € V generates a sequence (z¥)ien that
converges superlinearly (resp. quadratically) to z*.



Reformulation

Reformulation of EiCP?: by using Nonlinear Complementarity

Function NCP.
¢ : R?> = R is a NCP-function if and only if

d(a,b) =0<=a>0, b>0, ab=0.

We conisder

ngB(ab —a+b \/a2+b2

®min(a, b) = min(a, b).

2S. ApLy and A. SEEGER, A Nonsmooth Algorithm for Cone-Constrained
Eigenvalue Problems, Springer, Computational Optimization and Applications
49, 299-318 (2011).



Resolution
Let z=(x,y,)) and ® : R” x R" x R — R?"*! defined by

Us(x,y)
®(z) =P(x,y,A)= | Ax—Ax—y |,
(1,,x) —1
where Uy : R" x R" — R" is given by

é(x1, y1)
Up(x,y) = : :
¢(Xn7 .yn)

with ¢ = ¢min or ¢ = PpB.

(x,y,A) is a solution of EiCP if and only if ®(x, y, \) = Og2n1.



Jacobian matrix 09(z)

Us(x, y)
d(z) =P(x,y,\)=| Ax—Ax—y |.
(1,,x) —1

Lemma
The function ® is semismooth. Moreover, its Clarke generalized
Jacobian at z = (x,y, \) is given by

E F 0
oP(z) = { |: Al, —A -1, x ] . [E, F] €8U¢(X,y)}.
17 0 0



Lattice Projection Method LPM

Lemma
EiCP is equivalent to find the roots of the following nonlinear and

nonsmooth function
f:R" x R — R" defined by

(x,A) = f(x,A) = (Ax)T — Ax.

Conclusion: EiCP is equivalent to solve the nonlinear eigenvalue
problem (The Lattice Projection Method)

(Pgrn 0 A)(x) = Ax.



Jacobian matrix of ®ppy;

EiCP is equivalent to solving the nonlinear system

yT — Ax
(DLPM(vav )‘) = Ax — .)7 = 0R2"+1'
(1p,x)—1

Lemma
The function ®1p\ is semismooth. Its Clarke generalized Jacobian
at z = (x,y,\) is given by

0PrpMm(Z) = A —l, 0 |:Fed)" (y)



Testing on matrices of order 3,4 and 5

Let the following matrices (having exactly 9, 23 and 57 Pareto

eigenvalues, respectively).

s 5 o] [
Ai=|(—-4 9 1], A= 5
-6 —1 13 1

and
788 —780 —256
—548 862 —190
Az = |—456 —548 1308
—292 374 —-14
—304 —-402 —66

—-106 18 81
74 24 101
—44 195 7
-38 0 230
156 191
112 143
110 119
1402 28
38 1522



First numerical results

1. LPM: Lattice Projection Method.

2. SNMgg: SNM using ¢pp .
3. SNMnin: SNM using ¢pmin.

Methods Ap Ao Az
Iter Time Failure Iter Time Failure Iter Time Failure
LPM 4 0.0003 0% 6 0.0006 0% 7 0.0004 0%
SNMgp 8 0.0012 5% 10 | 0.0015 16% 11 | 0.0014 31%
SNMpin 2 0.0003 47% 2 0.0008 71% 2 0.0007 95%




Background on Performance Profiles

Dolan and Moré3 introduced the notion of a performance profile as
a means to evaluate and compare the performance of the set of
solvers S on a test set P. The idea is to compare the performance
of solver s on problem p with the best performance by any solver
on this particular problem. The performance ratio is defined by

tp7s
min{tps : s€S’

r(p,s) =

tp,s=computing time required to solve problem p by solver s.

3 E. D. DoLAN and J. J. MORE, Benchmarking Optimization Software with
Performance Profiles, Math. Prog. 91, 201-213 (2002).



Background on Performance Profiles

In order to obtain an overall assessment of a solver on the given
model test set, we define a cumulative distribution function

ps(T) = nisize{p eP :r(p,s) < T}.
p

ps(7) is the probability that a performance ratio r(p, s) is within a

factor of 7 of the best possible ratio.

Interpretation:

In general, ps(7) for a particular solver s gives information on the

percentage of models that the solver will solve if for each model,

the solver can have a maximum resource time of 7 times the

minimum time.

For 7 =1 the probability ps(1) of a particular solver is the

probability that the solver will win over all the others.

For large values of 7 the probability function ps(7) gives

information if a solver actually solves a problem.



Performance profiles
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> Figl. presents the performance profiles of the three solvers
corresponding to the average computing time.

» Fig2. the maximum number of solution found by each
solver is the comparison criterion.



Performance profils

n)
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Plr, <=t 1<=5:
Plr,q <=t <=5

> In Figl. the comparison tool is the number of failures.

> In Fig2. the comparison tool is the average iterative
number.



Conclusions

/ Reformulation of EiCP and SOCEICP as a system of
semismooth equations.

/ Nonsingularity conditions for solving EiCP and SOCEiCP.
v/ New method LPM for solving the two problems.
v/ Numerical results and the performance of LPM.
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