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We consider a real problem faced by a large company providing repair services of office machines in
Santiago, Chile. In a typical day about twenty technicians visit seventy customers in a predefined service
area in Santiago. We design optimal routes for technicians by considering travel times, soft time windows
for technician arrival times at client locations, and fixed repair times. A branch-and-price algorithm was
developed, using a constraint branching strategy proposed by Ryan and Foster along with constraint
programming in the column generation phase. The column generation takes advantage of the fact that
each technician can satisfy no more than five to six service requests per day. Different instances of the
problem were solved to optimality in a reasonable computational time, and the results obtained compare
favorably with the current practice.
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1. Introduction

This research was motivated by a real problem, which is the
dispatch of technicians from a large company that provides repair
services for their machines to overcome failures that occur over a
typical working day. The company offers black-and-white digital
printers, digital presses, multifunction devices, and digital copiers.
Of the services that the firm provides to its clients, the mainte-
nance of its machines distributed over Santiago is probably one
of the most important for building a positive image of the company
in terms of level and quality of service over time. It is therefore
critical to carefully route the available technicians to satisfy the
client requirements occurring in certain service areas on a typical
working day. In this research, we propose a formulation and solu-
tion for this problem, satisfying the typical routing constraints as
well as soft time-window constraints. The latter constraints arise
from the fact that service requests come from clients with different
priorities. The company defines different promised service times
(denoted hereinafter target service times) according to the impor-
tance of each customer. These promises of technician arrival can be
violated, so these conditions can be added as penalties in the objec-
tive function. From this, we see that the proposed scheme is based
on the classical formulation of the vehicle routing problem with
soft time windows (VRPSTW), which is formulated and solved
using constraint programming (CP)-based column generation
(Section 3).

The vehicle routing problem (VRP) involves constructing routes
for a set of vehicles to serve a set of customers, given a number of
requirements. There are many classes of the VRP, depending on the
requirements and constraints.

One of the best-known versions is the vehicle routing problem
with time windows (VRPTW), which has the characteristic that
each of the clients must be served within a predefined time inter-
val. VRPTW has been one of the most intensively studied NP-hard
problems in the last decades. Exact methods are still restricted to
solve a limited number of real instances, and their performance
strongly depend on the time-window characteristics. Heuristic
and meta-heuristic approaches have been developed for many
cases and potential applications of VRPTW. A complete review of
the models and methods to solve the VRPTW can be found in
Cordeau, Desaulniers, Desrosiers, Solomon, and Soumis (2002,
chap. 7). Later on, Bräysy and Gendreau (2005a, 2005b) performed
deep reviews of VRPTW solution methods, focused on the descrip-
tion of heuristic route constructions methods, local search algo-
rithms and meta-heuristic methods for solving capacitated
problems of different size and time-window configurations. Now-
adays, state of the art results are currently offered by the hybrid
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genetic algorithm due to Nagata, Bräysy, and Dullaert (2010). Their
method combines powerful route minimization procedures,
proposing an effective edge assembly crossover along with very
efficient local search algorithm. In the same line of research,
Ibaraki et al. (2008) and Pisinger and Ropke (2007) developed
two simple, efficient and flexible methods able to address various
VRP variants, namely the Iterated Local Search (ILS) method and
the Adaptive Large Neighbourhood Search (ALNS), respectively.
Recently, Vidal, Crainic, Gendreau, and Prins (2013) proposed an
efficient Hybrid Genetic Search with Advanced Diversity Control
for a large class of time-constrained vehicle routing problems, add-
ing to the method new features to properly handle the temporal
dimension.

The most successful exact methods are based on column gener-
ation for linear programs with decomposable structures; this was
originally introduced in Dantzig and Wolfe (1960). The first appli-
cation of this approach to the VRP was developed by Desrochers,
Desrosiers, and Solomon (1992) (see also Desrosiers, Solomon, &
Soumis, 1995, chap. 2). The basic idea is to decompose the problem
into sets of customers visited by the same vehicle (routes) and to
select the optimal set of routes among all possible routes. The
decomposition is based on two structures: a master problem and
a subproblem. The former optimizes the global route objective
function and includes the constraint that each customer must be
covered exactly once, resulting in a set partitioning formulation.
The latter creates new routes that improve the solution, using
dynamic programming to solve a shortest path problem with time
windows. More recently column generation methods have been
extended to include cuts, heuristic pricing and relaxed elementa-
rity constraints (Desaulniers, Lessard, & Hadjar, 2008) to produce
better lower bounds for the master problem and to speed up the
generation of columns. Exact solution approaches using column
generation without requiring Branch and Price have been proposed
by Baldacci, Mingozzi, and Roberti (2012).

With regard to vehicle routing schemes for technician dispatch
problems, it is worth mentioning a real application of technicians
dispatch for emergency calls of an important electricity company
in Chile (Weintraub, Abud, Fernandez, Laporte, & Ramirez, 1999).
Blakeley, Bozkaya, Cao, Hall, and Knolmajer (2003) and Weigel
and Cao (1999) also develop and implement technician dispatch
systems for large companies using heuristics and GIS data. Recent
publications related to service technician routing and scheduling
are not many. We can mention the work by Cordeau, Laporte,
Pasin, and Ropke (2010), who address a service technician scheduling
problem arising in large telecommunications companies, focusing
on team configurations and assignment of tasks respecting specific
skills, priorities and precedence constraints for the tasks assigned,
with the objective of minimizing a weighted function related to the
makespan. Xu and Chiu (2001) also perform task scheduling for a
telecommunication company with the objective of maximizing
the realized orders. Tang, Miller-Hooks, and Tomastik (2007)
implement a tabu search heuristic for a real world maintenance
dispatch system which is formulated as a Multiple Tour Maximum
Collection Problem with Time-Dependent rewards. Liberatore,
Righini, and Salani (2011) present an exact solution procedure
for the VRPSTW. The proposed algorithm is a column generation
scheme, with ad hoc heuristics based on dynamic programming
to generate new columns. We use CP for that purpose instead.
Liberatore et al. (2011) model explicitly the time window violation
for early and late arrivals. By contrast, in our work we just penalize
for late arrivals due to the nature of the real application we are
trying to solve; nevertheless, in our model and solution algorithm
it is straightforward to incorporate penalization for early arrivals as
explained later in Section 3.2. Kovacs, Parragh, Doerner, and Hartl
(2012) formulate a service technician routing and scheduling prob-
lem motivated by a real problem faced by infrastructure service
and maintenance providers. The objective is to minimize the sum
of total routing and outsourcing costs, considering hard time win-
dows for reaching customers sites. They solve the problem through
an Adaptive Large Neighborhood Search algorithm, tested on both
artificial and real-world instances. Pillac, Gueret, and Medaglia
(2013) adapt the large neighborhood search algorithm (Shaw,
1998) for the VRPTW with resource constraints. Finally, Souyris,
Cortés, Ordoñez, and Weintraub (2013) formulate a robust optimi-
zation version of a column generation scheme for a technician dis-
patch problem, putting the focus on properly handling the
uncertainty associated with service time in such kind of real
applications.

The CP-based column generation (CG) framework was intro-
duced by Junker, Karisch, Kohl, Vaaben, Fahle, et al. (1999) and
Yunes, Moura, and de Souza (2000) for two different crew rostering
problems. Their work was motivated by the difficulties that arose
in standard column generation approaches when modeling com-
plex rules from legislation and union agreements. To overcome
these difficulties, they proposed solving the pricing subproblem
using CP models of resource-constrained shortest paths on acyclic
graphs. The most attractive feature of CP, compared with dynamic
programming, was the expressiveness of its modeling languages.
Rousseau, Gendreau, Pesant, and Focacci (2004) and then Chabrier
(2006) extended this framework to cyclic graphs, thus allowing
VRPTW problems to be solved. In the last decade, the CP-CG frame-
work has been used in several applications that are discussed in a
recent survey by Gualandi and Malucelli (2009).

In this paper we use a CP-based pricing model similar to that
proposed by Yunes et al. (2000) and Yunes, Moura, and De Souza
(2005) in the context of bus driver scheduling, which allows for a
flexible and simple modeling of the technician-route requirements.
This straightforward model, which takes advantage of the fact that
each technician visits only a small fraction of the overall daily cli-
ents, has significantly fewer variables than the graph-inspired
models normally used for routing problems (Rousseau et al.,
2004). Although it may be somewhat less efficient, this model does
not require the implementation of complex shortest-path
constraints such as those proposed for airline crew rostering prob-
lems (Junker, Karisch, Kohl, Vaaben, Fahle, et al., 1999). To obtain
optimal solutions for different service request distributions, we
implement a branch-and-price approach based on the efficient
branching strategy of Ryan and Foster (1981), again taking advan-
tage of CP flexibility when we include these branching constraints.

The main contributions of this paper are threefold: (i) we
provide an efficient exact solution procedure for the VRPSTW using
CP; (ii) it is the first to show that the approach proposed by Yunes
et al. (2000, 2005) for crew scheduling problems can be applied to
problems whose underlying structure is a cyclic graph, and to inte-
grate it into a branch-and-price framework; (ii) as stated above,
the approach that we propose has some advantages over the
alternatives; it can thus prove attractive for similar practical
applications.

The remainder of this paper is organized as follows. In the next
section we state the problem formally and provide a mathematical
formulation. Section 3 presents the column generation approach,
while the branch-and-price methodology is described in Section 4.
Experiments on a real-case scenario are reported in Section 5.
2. Problem statement and mathematical model

The strategic objective of the firm is based on client satisfaction.
Within this context, the maintenance of their machines is one of
the most important activities of the company in Chile. As explained
in Section 1, service requests have different priorities, and there are
different target response times for service requests at different
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priority levels. Strictly, the target response time is defined as the
maximum allowable time for a technician to reach the service loca-
tion, measured from the time of the service request. If the techni-
cian reaches the location after the target response time, a penalty
will be incurred by the system; this is considered in the
formulation.

To consider this effect, we use a compound objective function
for assigning technicians and jobs. The function minimizes two
components: the sum of the differences between the target re-
sponse times of requests and the effective service times provided
by the firm, plus the travel times. This objective function seems
to meet the needs of the company since it takes into account both
service quality and the effective use of technicians.

The approach considers expected travel and service times,
which are estimated from historical company data. In further
developments, we will include uncertainty in the service times to
make the model more robust and realistic. Travel times are less
important than service times in the results, and therefore the
assumption of deterministic travel behavior is reasonable in this
case.

The set of service requests assigned during a given day come
from the previous days, usually the day before, since the company
attempts to enforce a 24-hour service policy. It is assumed that the
dispatcher in charge of service selects which requests should be
handled during the coming day. Furthermore, the dispatcher will
choose a set of high-priority requests to be served first. A techni-
cian will begin his working day at one of these high-priority
customer locations, under the reasonable assumption that the
number of service requests is larger than the number of available
technicians. In some cases, a technician can start the working
day at the depot because he was not assigned to a specific client.
In addition, all the tasks assigned to each technician must be com-
pleted during the day.

The modeling scheme was adapted from the classical formula-
tion of the VRPSTW (Cordeau et al., 2002, chap. 7) with the follow-
ing adjustments:

� For this problem, only the upper bound of the soft time window
(related to the target response time of each service request) is
considered, since the objective is to serve each requirement as
soon as possible.
� Service times are quantitatively longer and are known less

accurately than travel times; therefore, the former will play a
more important role than the latter in the proposed decision
rules.
� Although the VRPSTW considers soft time windows by penaliz-

ing the objective function, we add the hard constraint that all
tasks scheduled for a specific day must be completed during
that day. To ensure feasibility, we modified the classical formu-
lation slightly to be able to decide which service requests can be
handled during the day by the available technicians; any
remaining requests are then postponed to the next day and
given a very high priority.

Let K ¼ f1; . . . ;Kg be the set of technicians available to work
during the day. As mentioned earlier, the technicians must start
the day at the location of a service request with a very high priority
or at the depot. Let I1 ¼ f1; . . . ;Kg be the set of these locations; and
I2 ¼ fK þ 1; . . . ;Cg be the set of locations of the service requests
that remain to be scheduled, where C is the cardinality of I1 [ I2.
We set C þ 1 as a dummy depot to which all technicians must be
sent after their schedule is finished. To simplify the notation, we
define the arc set A ¼ fði; jÞji 2 I1 [ I2; j 2 I2 [ fC þ 1g; i – jg to
represent all feasible trips between locations. Additionally, let bi

be the time-window upper bound of service request i, and si the
expected repair time for service request i; i 2 I1 [ I2. Let tij be the
travel time from service request i to service request j, ði; jÞ 2 A.
We assume that travel times satisfy the triangular inequality. The
end of the working day is set at instant F, which represents the
latest time a technician can start the last job of the day. b 2 ½0;1�
is a multiobjective parameter.

We next formulate a mixed integer model, including both {0–1}
(binary) and continuous variables. Specifically, we define flow var-
iable xk

ij, which is equal to 1 if technician k attends service request i
and service request j sequentially, and 0 otherwise, ði; jÞ 2 A; k 2 K.
Two continuous variables are also included: wik is the time that
technician k arrives at the location of service request
i; i 2 I1 [ I2 [ fC þ 1g; k 2 K; and dik represents the amount of time
by which technician k violates the soft time window of service
request i; i 2 I2; k 2 K. Finally, we define the binary variable v i,
which allows the model to handle the demand not served during
the day with the available fleet by scheduling those service re-
quests for the beginning of the next day, i 2 I2. In the model, such
requests are assigned to virtual paths at a high penalty P. Thus, v i is
equal to 1 if i is sent through a virtual path, 0 otherwise. To simplify
the notation we define the sets OðiÞ and DðiÞ associated with node
i : OðiÞ ¼ fjjði; jÞ 2 Ag; i 2 I1 [ I2; and DðiÞ ¼ fjjðj; iÞ 2 Ag; i 2 I2 [ fC þ 1g.
The formulation is as follows:

min
x;w;v ;d

b
X
k2K

X
i2I2

dik þ ð1� bÞ
X
k2K

X
ði;jÞ2A

tijxk
ij þ

X
i2I2

Pv i ð1Þ

s:t:
X
k2K

X
j2OðiÞ

xk
ij ¼ 1 i 2 I1 ð2Þ

X
k2K

X
j2OðiÞ

xk
ij ¼ 1� v i i 2 I2 ð3Þ

X
j2OðiÞ

xk
ij �

X
j2DðiÞ

xk
ji ¼

1 i ¼ k

�1 i ¼ C þ 1
0 otherwise:

8><
>:

i 2 I1 [ I2 [ fC þ 1g; k 2 K ð4Þ

wik þ si þ tij �wjk 6 1� xk
ij

� �
F ði; jÞ 2 A; k 2 K ð5Þ

wik 6 F
X

j2DðiÞ
xk

ji i 2 I2; k 2 K ð6Þ

wik � dik 6 bi i 2 I2; k 2 K ð7Þ
xk

ij 2 f0;1g ði; jÞ 2 A; k 2 K ð8Þ
v i 2 f0;1g i 2 I2 ð9Þ
wik; dik P 0 i 2 I2; k 2 K: ð10Þ

The objective function (1) accounts for the total cost, computed as a
convex combination of the sum of soft time-window violations and
the total travel time. An additional term is added to penalize the
unsatisfied demand. Constraints (2) and (3) restrict the assignment
of each service request scheduled during the day to exactly one
technician; if the request is postponed to the next day, the condition
v i ¼ 1 together with constraint (3) ensure that no technician at-
tends it on the current day. Next, constraints (4) ensure flow conser-
vation, considering the dummy node where each path must end.
Constraints (5) guarantee schedule feasibility with respect to prece-
dence-time consistency (i.e., if technician k travels from customer i
to customer j, then the arrival time at node j will be greater than or
equal to the arrival time at node i plus the service time there). If
xk

ij ¼ 1, then k goes from i to j, and we can start serving j no earlier
than the start of service at i, plus the time spent in i, plus the travel
time from i to j. If xk

ij ¼ 0, technician k does not go from i to j and
constraint (5) becomes inactive. Note that, for a given k, constraints
(6) force wik ¼ 0 if service request i is not met by technician k and
require k to reach i before time F if service is going to be provided
(i.e., v i ¼ 0). Constraints (7) define dik, the violation of the soft time
window. Finally, (8)–(10) impose binary conditions on the flow
variables and state the nonnegativity restriction on the time-arrival
variables.

The VRP problem with soft time windows is hard to solve as
mentioned in Taillard, Badeau, Gendreau, Guertin, and Potvin
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(1997). We propose to solve this problem using column generation,
as described in the next section.

3. Column generation approach

By working with actual company data, we realized that most
real instances were not solvable using the arc-based formulation
presented in the previous section, because the number of variables
was too large to handle. Therefore, we looked for an alternative for-
mulation and solution approach.

Column generation approaches have provided promising results
for various types of VRPs (see for example Desrochers et al., 1992).
Moreover, column generation approaches are very flexible in the
sense that the problem under consideration can be split into two
parts: a main model, the master problem, which chooses the routes
with the minimum total cost from a pool of feasible routes; and a
secondary model, the subproblem, which generates feasible routes
that could potentially reduce the total cost.

In the literature, the subproblem is usually solved via dynamic
programming (DP). We decided to use CP instead, for several rea-
sons. First, it seems that CP works well when the length of each
route is relatively small, which is the case for this application. Sec-
ond, the CP model we implement is simple and easy to code. Third,
under a CP approach, any additional constraint can be incorporated
directly into the code without a special modeling technique. This is
crucial when we use the branch-and-price algorithm (see Section 4)
improved by the branching strategy proposed by Ryan and Foster
(1981). Imposing some constraints on routes turned out to be
straightforward with CP. For example, the proposed branching
strategy forces two specific service requests to appear in a specific
route, which can be included easily under CP, whereas in a DP
implementation incorporating such constraints could become cum-
bersome. In Sections 3.2 and 4 we describe these features in detail.

3.1. Master problem

The master problem can be formulated as a set partitioning
model assuming that it is possible to choose routes for each tech-
nician from an existing set of routes R. We use the result presented
in Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance (1998),
which shows that the set covering relaxation is numerically far
more stable and thus easier to solve than the set partitioning ver-
sion. Also the authors argue that it is easy to construct a feasible
integer solution from a solution of the set covering relaxation.

Each route r 2 R is characterized by a technician who initiates
the route r at a specific service location i1 2 I1, and then follows a
sequence of service requests fi2; . . . ; ieg# I2, where i2 is the second
one and ie is the service request at the end of route r. For each ser-
vice request in position l 2 f2; . . . ; eg of the route, the technician’s
arrival time is wil ¼ wil�1

þ sil�1
þ til�1 il , and thus the time-window

violation becomes dil ¼maxf0;wil � bilg. Additionally, wi1 ¼
di1 ¼ 0. Hence, the total cost of the route is cr ¼
b
Pe

l¼2dil þ ð1� bÞ
Pe�1

l¼1 til ;ilþ1
. In this formulation, the binary variable

hr indicates whether or not route r 2 R is chosen. air is a binary
parameter that indicates whether or not route r contains service
request i, and the binary variable v i is equal to 1 if service request
i is not included in any route, incurring a high penalty P. Then the
master problem is the following:

ðMPÞ min
h;v

X
r2R

crhr þ
X

i2I1[I2

Pv i ð11Þ

s:t:
X
r2R

airhr þ v i P 1 i 2 I1 [ I2 ð12Þ

hr 2 f0;1g r 2 R ð13Þ
v i 2 f0;1g i 2 I1 [ I2: ð14Þ
Note that in the MP formulation, the pool R of routes can be empty,
and there still exists a feasible solution: v i ¼ 1; i 2 I1 [ I2, with cost
C � P, where C is the cardinality of I1 [ I2 as defined before.

To generate new columns, we replace the integrality constraints
(13) and (14) by hr 2 ½0;1�; r 2 R, and v i 2 ½0;1�; i 2 I1 [ I2, respec-
tively. Thus, for a given pool of routes R, the optimal solution of MP
provides the dual values of constraint (12) to the subproblem that
generates new routes. This procedure is described below.

3.2. Subproblem

Given a pool R of columns and the associated optimal solution
of the LP relaxation of problem (11)–(14), it is well known from lin-
ear programming theory that a new column r, not in R, has the po-
tential to improve the objective function only if it has a negative
reduced cost. The reduced cost of a column is defined as the cost
of the route, cr , minus the sum of the dual variables of the service
requests that belong to that route, which come from constraint
(12).

At each iteration, the subproblem identifies a route of minimum
reduced cost. We solve the master problem over the current set of
columns using the simplex method and obtain the dual variables.
Let ai be the dual variables associated with constraint (12). The
subproblem generates the optimal route by minimizing the real
cost cr (the sum of the time-window violations and travel times)
minus the sum of the dual variables of the service requests
included in the route, subject to the constraints that ensure that
the route is feasible. By this process, a route with minimum re-
duced cost is generated. If the resulting reduced cost is negative,
this new column can be included in the basis to improve the objec-
tive function of the master problem.

Constraint programming models have been used to solve pric-
ing subproblems within hybrid column generation for almost a
decade (Gualandi & Malucelli, 2009). There are essentially three
families of models in the literature that specifically address routing
and scheduling problems. One of the first models, proposed by
Yunes et al. (2000, 2005), is based on an array of finite-domain
variables Xp 2 T; p 2 P, that identify which task in T is to be per-
formed by a bus driver in position p 2 P. Junker, Karisch, Kohl,
and Vaaben (1999); Junker, Karisch, Kohl, Vaaben, Fahle, et al.
(1999) and Fahle et al. (2002) proposed using a single set variable
S # T to identify the subset of tasks in T to be covered by a crew
pairing. In order for their model to be valid and efficient, they
introduced a new shortest path constraint, as well as a negative-
reduced-cost constraint on S. Finally, in the context of vehicle rout-
ing with time windows, Rousseau, Pesant, and Gendreau (2001),
Rousseau et al. (2004) based their model on successor variables
Nt 2 T; t 2 T , that identify the task to be performed immediately
after t. This approach also required the use of specially designed
global constraints and a search strategy based on dynamic
programming.

In this paper, we adapt the simple model proposed by Yunes
et al. (2000) for the following reasons. First of all, it is straightfor-
ward, is flexible, and works without the addition of dedicated
global constraints. In constraint programming, a global constraint
is a relationship among decision variables for which an efficient
algorithm is available that can find the set of all infeasible values
for each of the included decision variables. For example, the global
constraint alldifferentðx1; x2; x3Þ ensures that the three variables
x1; x2, and x3 are all different. Modern constraint programming
packages offer a set of global constraints, and associated
algorithms, that can model a generous number of relationships.
The algorithms to find feasible sets are based on the principles of
constraint propagation and domain reduction. When it is not pos-
sible to model a particular relationship with the existing global
constraints, it is necessary to design a dedicated global constraint



Fig. 1. Shortest path model implemented with CP.

Fig. 2. Path Depot � 2� 3� Depot has a negative reduced cost of �5.
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and an associated algorithm. A detailed explanation of these con-
cepts is found in the exhaustive survey by Régin (2011).

Second, in contrast with the model of Rousseau et al. (2004),
which defines one variable for every node or task in the problem,
Yunes et al. (2000) introduce only a number of variables equivalent
to the number of tasks that can be performed by one technician.
Since in our context this number is small (from three to six), this
model seems particularly appropriate. Moreover in both these
models the size of domains of the main decision variables are equal
as they correspond to the number of nodes in the graph.

In the subsequent model (15)–(25), the new route to be gener-
ated is represented by the array of variables sc½l�; l ¼ 1; . . . ; L,
where L is the maximum number of service requests that a techni-
cian can satisfy in one day. The lth element of sc is the service
request scheduled in position l of the route. The route must start
at an initial location of a technician (which could be either a
high-priority service request or the depot, in case there are more
available technicians than high-priority requests), that is a location
from I1. The route must contain at least one service request that
remains to be scheduled, that is a service request from set I2.
Any position of the route that is not used by a service request must
be utilized by fictitious nodes that are added for CP modeling pur-
poses. Hence, the maximum number of fictitious nodes that a route
can contain is L� 2. Let us define the set of fictitious nodes to be
I3 ¼ fC þ 1; . . . ;C þ L� 2g, where, as before, C is the cardinality of
I1 [ I2. Therefore, the domain of the sc½l� variables, l ¼ 1; . . . ; L, is
set to I1 [ I2 [ I3. The distinction between the fictitious nodes in
I3 is necessary in order to impose the global constraint
alldifferentðscÞ, which will be discussed after the presentation of
the model. The travel time between a service request in I2 and
any fictitious node in I3 is set to 0, as is the travel time between
any pair of nodes in I3. Fig. 1 shows an example of a route that
starts servicing request 3, then proceeds to requests 5, 10, and
14, and finishes with the fictitious nodes C þ 1 and C þ 2.

Variables w½l� and d½l� define the start time of service and the
time-window violation respectively for the service request in posi-
tion l ¼ 1; . . . ; L. Variable a½i�; i 2 I1 [ I2 [ I3 takes the value 1 if re-
quest i is served by the route, and 0 otherwise, l ¼ 1; . . . ; L. These
definitions are useful for the control of the branch-and-price meth-
od as described in Section 4. The constraint programming model
for the subproblem is thus the following:

ðSPÞ min b
XL

l¼1

d½l� þ ð1� bÞ
XL

l¼1

tsc½l�1�;sc½l� �
XL

l¼1

asc½l� ð15Þ

s:t: w½1� ¼ 0 ð16Þ
w½l� ¼ w½l� 1� þ ssc½l�1� þ tsc½l�1�;sc½l� l ¼ 2; . . . ; L ð17Þ
d½l� ¼maxð0;w½l� � bsc½l�Þ l ¼ 1; . . . ; L ð18Þ
alldifferentðscÞ ð19Þ
sc½l� 2 I1 l ¼ 1 ð20Þ
sc½l� 2 I2 l ¼ 2 ð21Þ
sc½l� 2 I2 [ I3 l ¼ 3; . . . ; L ð22Þ
sc½l� ¼ i; i 2 I3 ) sc½lþ 1� ¼ iþ 1 l ¼ 3; . . . ; L ð23Þ
a½sc½l�� ¼ 1 l ¼ 1; . . . ; L ð24ÞX
i2I1[I2[I3

a½i� ¼ L ð25Þ

The objective function (15) minimizes the convex combination of
time-window violation and travel cost, which is the real cost of
the route minus the sum of the dual values, a, associated with the
service requests in the route. For i 2 I3, which is not in constraint
(12) of MP, we set ai equal to 0. Constraint (16) ensures that the
start time of the path is associated with the start time of the day,
and (17) sets the starting time of next service requests that are
visited by the route. CP constraint (18) sets the late time-window
violations. Note that the model can also include early time window
violations; for adding that feature, we just have to change the right
hand side of constraint (18) by maxðfsc½l� �w½l�;w½l� � bsc½l�Þ, where fi

corresponds to the time window lower bound associated with ser-
vice request i. Thus, the CP algorithm presented next can be easily
adapted to incorporate this modification. Constraint (19),
alldifferentðscÞ, is a global constraint that ensures that all of the
variables sc are different, so any request is served by the path no
more than once (for an explanation of this global constraint see,
for example, Régin, 2011). Constraint (20) ensures that the first
request served by the route is assigned to a location where a tech-
nician is initially positioned, (21) ensures that the second position
of the route is a service request without a technician initially
allocated, and (22) restricts the other positions along the path to
be either service requests or fictitious nodes. (23) ensures that, if
position l is used by a fictitious node, the next service request in
the route must be the next fictitious node (proceeding to any other
service request is not allowed in order to reduce the search space as
much as possible). Variable a is useful to impose new constraints for
the service requests that can belong to a specific route, which are
needed to implement the search procedure in the branch-and-price
methodology, as explained below and detailed in Section 4. Finally,
constraints (24) and (25) impose logical restrictions between the
different variables in sc and a.

CG frameworks depend heavily on marginal costs to guide the
search at the subproblem level. In some cases it is possible that,
during the first iterations, the marginal cost associated with each
customer is not accurately estimated by the dual values. For in-
stance, in some routes some service requests pick up most of the
total dual values. This undesirable behavior is illustrated by the
example in Fig. 2. A path that visits each of overweighted service
requests (2 and 3’s dual values are exactly twice 1 and 4’s dual
values) will be considered a good route (with a reduced cost
of �5), but it is not (it is unlikely to be selected in an optimal IP
solution). With a more realistic distribution of the dual values, all
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the nodes would have been given a value of 15 and no more re-
duced-cost paths would have been found, thus removing the need
for a last iteration.

In this example, described in Rousseau, Gendreau, and Feillet
(2007), such undesirable behavior may occur because the master
problem is degenerate, and thus its dual has an infinite number
of optimal solutions. The bases of the primal solutions all exhibit
a common set of strictly positive variables, but different sets of null
variables. A different dual solution is associated with each of these
equivalent primal optimal solutions.

The standard function that returns dual values in the LP codes
returns an extreme point of the dual polyhedron. Extreme solu-
tions are characterized by large values for some marginal costs
while others are at zero. Therefore, the subproblem tends to build
routes that have very low reduced costs but potentially large travel
times and time-window violations. To avoid this, we instead opti-
mize over the real objective function (cr). Negativity of the reduced
cost can then be enforced through a constraint, since the necessary
condition imposed by the CG framework to ensure convergence is
that we add, at each iteration, a set of negative-reduced-cost routes
or prove that none exists. The objective function (15) thus becomes
(26) and constraint (27) is added to the subproblem model:

min b
XL

l¼1

d½l� þ ð1� bÞ
XL

l¼1

tsc½l�1�;sc½l� ð26Þ

b
XL

l¼1

d½l� þ ð1� bÞ
XL

l¼1

tsc½l�1�;sc½l� �
XL

l¼1

asc½l� < 0 ð27Þ

After experimenting with our CP implementation, we decided to
split the subproblem into a two-step procedure (SP1 and SP2); we
found a considerable reduction in the running time when many
interesting columns are generated at each iteration of the pricing
problem. SP1 attempts to select service requests such that the re-
duced cost is negative (i.e., constraint (27) is satisfied), but the order
of the service requests in the route is not necessarily the best. Thus,
SP1 is not an optimization problem but a CP feasibility problem
with feasible region (17)–(27). SP2 then optimizes the sequence
to find the lowest real cost given by (26) subject to (17)–(25). SP1
passes the selected service request to SP2 by fixing the variables a
in constraint (24). Fig. 3 shows an example of the process. First,
SP1 chooses service requests 0, 2, 3, 5, 8, and 10, and then SP2
rebuilds the route with only these service requests. Notice that
the reduced cost of the resequenced route can only be lower than
the original route or equal in case the sequence does not change,
because the real cost of the re-sequenced route decreases and the
sum of the dual variables remains the same.

Empirically, we found a considerable improvement in terms of
the number of columns generated using this procedure, which
reduces the computational time by about 30%.

To help SP1 find routes of good quality faster, we implement a
simple but efficient search consistent with our problem. It guides
the local search logically, by exploring a neighborhood matrix for
each service request.

For a given set of dual values a, we define the neighborhood
matrix NðaÞ to be a square matrix of C rows and columns (recall
that C ¼ jI1 [ I2j). The element in row i and column p; nip, is the
pth closest service request to request i. We considered different
distance measures, and the one that performs the fastest in compu-
tational terms is the following. For a new route that has been cre-
ated and includes the service request i, we would like to have the
sequence ði; jÞ if two conditions hold: first, j’s time-window upper
bound, bj, is close to bi þ si þ tij (recall that si is the expected service
time of i, and tij is the expected travel time between i and j); and
second, j has a large dual value. If j has a small dual value, then
it is already efficiently covered by a route belonging to pool R. Thus,
for each pair ði; jÞ we define the distance measure
dði; jÞ ¼ cððbj � ðbi þ si þ tijÞÞþ þ qðbi þ si þ tij � bjÞþÞ þ ð1� cÞ 1

aj
,

where ðxÞþ ¼maxf0; xg; q > 1 and c 2 ½0;1�. The larger penaliza-
tion when bi þ si þ tij > bj is to avoid a time-window violation at
j. The implemented search for SP1 that uses NðaÞ is described in
Algorithm 1.

Algorithm 1. SP1 constructs a new route with negative reduced
cost, but not necessarily in the optimal order
We also notice an additional improvement in the performance
of the subproblem when adding some redundant constraints that

do not modify the solution set but improve the constraint propaga-
tion. These constraints improve the tree pruning, filtering pro-
cesses, and domain reduction. We impose

sc½l� > firstðI3Þ ) sc½l� 1� ¼ sc½l� � 1 l ¼ 3; . . . ; L ð28Þ
sc½l� 6 firstðI3Þ ) sc½l� 1� < firstðI3Þ l ¼ 3; . . . ; L ð29Þ

where firstðI3Þ represents the first fictitious service request; i.e.,
C þ 1. Thus, constraints (28) and (29) eliminate identical solutions
from the domain, taking into account the fact that all the fictitious
nodes are the same, although their identification codes are differ-
ent. Without these constraints, the solver does not realize early in
the search tree that a service request cannot follow a fictitious node.
In the CP literature, redundant constraints have often been used to
create a set of different links between variables and to generate new
potential for propagation.

In the implementation, instead of adding only one route per
iteration of the column generation, we generate a number of routes
with negative reduced costs. To do this, we take advantage of the
CP search tree of SP1. Each final node of the search tree is a route
solution that has a negative reduced cost; therefore, each has the
potential to improve the solution of MP if it is added to the pool
R. We add the first Q columns found. Between iterations, we tune
Q depending on the time that SP1 is taking to find solutions. For
the first iterations we set Q to a large number, and for the last iter-
ations we set Q to 1.

We implemented a simple strategy to control the size of the
pool of columns. At every iteration of the CG process, columns with
high positive reduced costs are eliminated from the pool.

Finally, we implemented a branch-and-price method that
guarantees finding the optimal solution. The method allows us to ex-
plore additional routes with negative reduced costs in the branch-
and-bound tree, by inspecting each node of the tree rather than only
the root node. The method performs significantly better when an ad
hoc branching strategy is implemented, as explained below.

4. Branch-and-price implementation

Many successful implementations of branch-and-price schemes
can be found in the literature. Barnhart, Hane, and Vance (2000)
presented a CG model that is solved with a branch-and-price-
and-cut algorithm for an origin–destination integer multicommod-
ity flow problem. Savelsbergh and Sol (1991) solved a dynamic



Fig. 3. Construction of a new route procedure.

306 C.E. Cortés et al. / European Journal of Operational Research 238 (2014) 300–312
vehicle routing problem with heuristic optimization techniques
based on dynamic programming, together with a sophisticated col-
umn management scheme. Theoretical aspects of several versions
of the branch-and-price algorithm are discussed by Barnhart et al.
(1998), Vanderbeck (2000, 2005, 2006), and Vanderbeck and
Savelsbergh (2006). Specifically, the authors concentrate on topics
such as the formulation of the decomposition, proper ways to
perform the branching, and column-management efficiency.

In this application, we use the branching strategy proposed by
Ryan and Foster (1981) for generic set partitioning problems.
Barnhart et al. (1998) proved the following proposition:

Proposition: If A is a 0–1 matrix, and a basic solution of Ah ¼ 1 is
fractional i.e., at least one of the components of h is fractional, then
there exist two rows i and j in the master problem such that:

0 <
X

r:air¼1;ajr¼1

hr < 1 ð30Þ

The pair i; j establishes the following pair of branching constraints:P
r:air¼1;ajr¼1hr ¼ 1 and

P
r:air¼1;ajr¼1hr ¼ 0, i.e., rows i and j must be

covered by the same column on the first (left) branch and by
different columns on the second (right) branch. The CP model can
incorporate constraints of this type in an efficient way.

Thus, for the left branch, constraint (31) must be added to SP1
to restrict the columns to those containing either both service
requests i and j, or neither of them:

a½i� þ a½j� – 1 ð31Þ

Similarly, for the right branch, constraint (32) can be added to
restrict the columns to those containing at most one of the service
requests, either i or j:

a½i� þ a½j� 6 1 ð32Þ

Many possible pairs of service requests ði; jÞ could be chosen. For
efficiency, we use a rule similar to that proposed by Vance et al.
(1997) to choose a pair of service requests with a large probability
of being covered by the same route in a good feasible solution of the
IP. We compute for each pair ði; jÞ the scalar f ði; jÞ ¼

P
r:air¼1;ajr¼1hr .

We choose the pair with the largest f ði; jÞ for branching, and the
depth-first search strategy is applied along the left branch, ensuring
that the chosen pair of service requests will be on the same route.
As mentioned before, the structure of the proposed CP model allows
us to implement the branching strategy in a straightforward way.

Our branch-and-price procedure is terminated when either we
find an acceptable gap or the running time exceeds three hours.
The gap is computed as the ratio of the integral objective value
minus the linear relaxation objective value, and the linear relaxa-
tion objective value ((upper bound � lower bound)/lower bound).

In the next section, we report some empirical results for differ-
ent service-request sets, using real data for a typical day.

5. Implementation and empirical results

The model was coded in Ilog Concert Technology and solved
using CPLEX 9.0 (Ilog, 2003a) for the master problem and SOLVER
6.0 (Ilog, 2003b) for the subproblems. We test our algorithms in an
Intel Pentium M 1.5 gigahertz, with 2 gigabyte of RAM. In this sec-
tion, the branch-and bound-method (B&B), the optimal branch-
and-price scheme (B&P), and the linear relaxation at the root node
are run for several real instances of different sizes and service-re-
quest configurations, all from real data provided by the firm.

The consistency of the CG approach was empirically checked by
observing the convergence pattern toward the optimal solution in
small problems. In fact, for small instances the optimal solution
was obtained directly by solving the IP corresponding to the origi-
nal arc-based formulation presented in Eqs. (1)–(10).

In our results, each technician was assigned to no more than six
service requests per day. For a larger number of requests, it was
necessary to reschedule some for the next day, since serving all
the requests on the same day was not feasible.

5.1. Description of the experiments with real data

We used a data set for the southern region of Santiago, Chile. Let
us denote this region AB, since it can be further split into two sub-
regions, namely A and B. A normal day was considered in terms of
the number of service requests and the number of technicians
working. Thus, 41 calls were received in zone A with 10 technicians
available, while 35 were received in zone B with 9 technicians
available. Note that the company presently schedules service for
the two subregions separately. In our tests, we consider three basic
instances, one for region A, another for region B, and one for the en-
tire region AB. Fig. 4 shows a map of the city and the two zones.

The travel times between service-request locations were
estimated by dividing the complete region AB into microzones.
We decided to use the administrative divisions of Santiago (the
microzones then match what are denoted comunas by the Chilean
authorities). This allows us to use historical information for aver-
age travel times between each pair of comunas and within each
comuna. Microzones (comunas) are required because the travel
times between service requests are not available. The expected
service time is computed as the average service time reported by



Fig. 4. Santiago city with zones A and B.

Table 1
Objective functions of company operation and B&P algorithm for different b values.

Subregion b Objective function

Manual B&P

0.3 813 613
A 0.6 854 578

0.9 896 491

0.3 1083 920
B 0.6 1214 761

0.9 1346 604

Table 2
Performance of the company operation compared with the B&P algorithm in terms of
total time-window violation and total travel time for different b values.

Subregion b Manual B&P

D T D T

0.3 910 772 717 568
A 0.6 910 772 486 717

0.9 910 772 427 1065

0.3 1390 952 1325 746
B 0.6 1390 952 594 1012

0.9 1390 952 544 1147
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the technicians for each type of request over the year. Finally,
target response times (as defined in the first paragraph of Section 2)
were also provided by the company, depending on the priority
assigned to each service request. In most cases, the observed travel
times followed the triangular inequality. If they did not, we
perturbed them with the smallest possible amount necessary to
satisfy the triangular inequality. As mentioned earlier, travel times
are much smaller than service times, therefore this perturbation
does not significantly change the solution.

We considered b ¼ 0:3; 0:6; 0:9, which should cover the differ-
ent priority levels a modeler would assign to the two components
of the objective function (travel times versus time-window viola-
tions) according to the company’s goals. In this scheme, if it is
infeasible to insert a specific service request into any route, that
request will be assigned for service at the beginning of the next
day, with a cost-function penalty of 500. Thus, the first columns
generated for each service request are conceptually similar to the
virtual paths defined in the original model through the variables
v i to handle infeasibility. They are assigned a high penalty to pro-
vide an initial feasible solution to the master problem. Under these
conditions, with the original IP model, Eqs. (1)–(10), we obtain the
same optimal solution as that obtained by B&P. Unfortunately, this
result can be verified only for very small instances, since the origi-
nal arc-based formulation becomes intractable as the number of
requests increases.

Under these conditions, we run our model using the B&P algo-
rithm separately for each subregion (A and B), in order to compare
our results with the manual dispatch used by the company (com-
pany operation) for each subregion. Table 1 compares the objective
values of the results. Table 2 compares the results in terms of time-
window violation and travel time for the entire system. In Table 2,
column D reports the total time-window violation observed for all
service requests on all prescribed routes, and column T reports the
sum of the travel time over all vehicle routes.

Table 1 shows that the model improved performance for all
instances (with improvements between 15% and 45%). We notice
a more significant improvement for region A, probably because
access and routing are more complicated in this region. Moreover,
as b increases, the improvement provided by the model becomes
more significant. This is not surprising since larger values of b place
more emphasis on time-window violations in the objective func-
tion. Increasing b thus yields routes in which most technician arri-
val times fall in a range quite close to the target response times.

Table 2 shows that in both cases (zones A and B), the results are
sensitive to the value of b. This is reflected in the ratio of time-win-
dow violations to travel times in each case (namely SH ¼ D

T). Thus,
in the case of zone A (B) SH goes from 1.8 to 0.5 (from 1.9 to 0.4)
when b increases from 0.3 to 0.9. From the results obtained for this
particular instance, we can observe how important the selection of
the parameter b could become in the final performance of the mod-
el, both in terms of time-window violations and travel times.

We also carried out a sensitivity analysis with respect to two
other parameters, to test not only the quality of the solutions but
also the performance of the B&P algorithm. The parameters are
the number of technicians (for the A instance ranging from 6 to
11 and for the B instance from 5 to 10) and the upper bound for
the time window assigned to each service request with respect
to the actual limit (denoted tw1). The idea is to run the model un-
der tighter time-window conditions. We do this by decreasing the
upper bound by 15% to 40%, thus generating new upper levels,
tw2 ¼ 0:85 � tw1 and tw3 ¼ 0:6 � tw1. Table 3 gives the results of
these tests for instance A with tw1; tw2, and tw3, while Table 4
gives the results for instance B with tw1, tw2, and tw3.

When we integrate regions A and B, the problem has 76 service
requests (instance AB). This allows testing on a larger instance and
also allows the dispatcher to consider more flexible options than
those provided by a zoning fixed a priori. Eventually, the zoning
could be defined by a more formal method than the traditional
subdivision of the service area by the company. Zoning may no
longer be necessary (the company could completely rely on the
optimization), or a clustering-type method could be used to define
zones in a more systematic way. Table 5 gives the results of these
experiments for 11, 13, 15, 17, 19, and 21 technicians, considering
also the sensitivity with respect to the time-window upper bounds
tw1; tw2, and tw3.

The columns of Tables 3–5 represent the following: (tw) the
upper bound considered for time windows, (b) the objective weight-
ing parameter, and (#Tec) the number of technicians. For each
instance generated by a combination of these parameters, we report



Table 3
Results for instance A.

tw b #Tec Objective Gap [%] # Columns # Nodes Time [seconds]

LR BB BP BB-LR BP-LR BB BP BB BP MP SP

6 467 468 – 0.2 – 955 – 10 – 130 6327
7 465 468 – 0.7 – 1771 – 79360 – 100 5203

0.3 8 463 468 – 1.0 – 1767 – 1939 – 15 7533
9 463 466 – 0.5 – 1908 – 34 – 30 9020

10 463 466 – 0.5 – 1932 – 1599 – 22 9227
11 463 466 – 0.5 – 1894 – 8594 – 633 8056

6 267 276 – 2.8 – 995 – 179 – 11 4403
7 266 277 276 3.0 3.0 1558 33 8587 3 45 4535

tw1 0.6 8 265 274 267 3.3 0.7 1464 73 36926 105 45 5510
9 265 274 265 3.3 0.2 1670 89 39410 81 53 6364

10 265 274 265 3.3 0.2 1685 71 37027 69 49 6057
11 265 278 – 2.2 – 1683 – 14706 – 87 6173

6 67 67 – 0.7 – 948 – 28 – 10 3480
7 66 67 – 1.2 – 1292 – 3566 – 15 2488

0.9 8 66 67 – 1.4 – 1230 – 3477 – 15 2739
9 66 67 – 1.4 – 1331 – 4761 – 15 2457

10 66 67 – 1.4 – 1334 – 7338 – 24 2237
11 66 67 – 1.4 – 1334 – 7338 – 17 2675

6 481 484 – 0.6 – 1134 – 83 – 9 3563
7 479 481 – 2.2 – 1784 – 20 – 13 3237

0.3 8 476 481 – 2.3 – 1564 – 341 – 13 3295
9 470 481 – 2.4 – 1846 – 760 – 14 3200

10 470 481 – 2.4 – 1842 – 3881 – 17 3342
11 467 467 – 0.0 – 1906 – 0 – 111 5203

6 279 292 282 4.8 1.0 1235 182 1444 89 13 3197
7 269 276 – 2.4 – 1566 – 46 – 12 1609

tw2 0.6 8 269 275 – 2.3 – 1382 – 205 – 11 1378
9 269 275 – 2.3 – 1645 – 643 – 13 2246

10 268 275 – 2.4 – 1577 – 660 – 13 2483
11 268 275 – 2.7 – 1637 – 4624 – 18 2894

6 71 80 71 12.4 0.4 1362 83 869 111 12 2246
7 67 69 – 2.4 – 1406 – 33 – 11 800

0.9 8 67 69 – 2.1 – 1199 – 57 – 10 804
9 67 69 – 2.2 – 1373 – 529 – 10 839

10 67 69 – 2.2 – 1345 – 485 – 10 921
11 67 69 – 3.0 – 1377 – 4737 – 14 1647

6 2028 2074 – 2.5 – 1097 – 7 – 5 900
7 687 730 730 7.1 7.1 2137 1612 3753 203 36 4649

0.3 8 589 590 – 0.3 – 1675 0 1 – 6 702
9 566 568 – 0.2 – 1550 0 1 – 6 561

10 562 569 – 0.3 – 1348 0 64 – 5 422
11 539 548 – 1.0 – 1402 0 120 – 6 556

6 1790 1981 1981 10.7 10.7 1524 1616 263 119 6 4226
7 647 710 697 9.9 7.8 2389 1398 392 163 11 4341

tw3 0.6 8 457 453 – 0.3 – 1951 – 0 – 8 747
9 387 387 – 0.0 – 1708 – 0 – 7 405

10 369 370 – 0.4 – 1427 – 49 – 7 329
11 333 333 – 0.0 – 1270 – 0 – 5 261

6 1697 1888 1888 11.2 11.2 1593 1659 823 57 72 3561
7 604 609 – 0.8 – 2511 – 4 – 10 795

0.9 8 313 316 – 0.7 – 2119 – 12 – 9 574
9 204 206 – 0.7 – 1779 – 4 – 8 353

10 167 167 – 0.1 – 1446 – 4 – 6 166
11 119 117 – 0.3 – 1386 – 4 – 6 142
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the objective function obtained by the linear relaxation at the root
node, the integer solution obtained using the default B&B imple-
mented in CPLEX with only the columns found at the root node,
and the integer solution obtained with the proposed B&P procedure
(columns LR, BB, and BP respectively). We then report the gaps
between (BB-LR) and (BP-LR), the number of columns generated at
the root node (BB), the number of columns generated during the
B&P (discounting the columns generated at the root node), the num-
ber of nodes explored by the CPLEX B&B, and the number of nodes
explored by the B&P algorithm. Finally, the total running time to
solve the master problem (MP) and the subproblem (SP) for both
steps, namely B&B and B&P, are reported in seconds.

When the gap between the B&B solution and the linear relaxa-
tion at the root-node solution (column BB-LR) was lower than 3%,
we did not run the B&P procedure. The tables report ‘‘–’’ for these
cases.

To assign the technicians manually, the dispatchers were forced
to split the region into zones A and B. Comparing the results for
instances A and B in Tables 3 and 4 with those for instance AB in
Table 5, we can see that this division leads to solutions of signifi-



Table 4
Results for instance B.

tw b #Tec Objective Gap [%] # Columns # Nodes Time [seconds]

LR BB BP BB-LR BP-LR BB BP BB BP MP SP

5 1928 1943 – 0.8 – 333 – 3 – 1.13 105.80
6 1418 1419 – 0.1 – 554 – 7 – 1.32 93.16

0.3 7 923 923 – 0.0 – 613 – 0 – 1.24 76.12
8 920 920 – 0.0 – 501 – 0 – 1.16 81.24
9 920 920 – 0.0 – 524 – 0 – 1.30 76.98

10 919 920 – 0.1 – 466 – 0 – 1.16 73.88

5 1312 1316 – 0.3 – 441 – 14 – 1.25 96.61
6 1260 1263 – 0.2 – 582 – 0 – 1.39 74.27

tw1 0.6 7 764 764 – 0.0 – 603 – 0 – 1.50 85.34
8 762 762 – 0.0 – 608 – 0 – 1.39 71.45
9 762 762 – 0.0 – 534 – 0 – 1.20 79.74

10 761 761 – 0.0 – 528 – 62 – 1.50 98.69

5 1118 1118 – 0.0 – 458 – 0 – 1.42 87.70
6 1099 1100 – 0.1 – 620 – 23 – 1.56 60.28

0.9 7 604 604 – 0.0 – 650 – 0 – 1.67 68.21
8 609 604 – 0.0 – 580 – 2 – 1.31 63.41
9 604 604 – 0.0 – 614 – 0 – 1.39 72.00

10 607 604 – 0.0 – 541 – 29 – 1.30 67.98

5 3102 3457 3454 11.5 11.4 224 53 2 7 1.20 164.87
6 1451 1452 – 0.1 – 533 – 4 – 1.33 78.83

0.3 7 950 954 – 0.4 – 525 – 7 – 1.39 61.75
8 942 945 – 0.4 – 544 – 10 – 1.22 57.75
9 942 945 – 0.3 – 476 – 12 – 1.25 64.73

10 940 945 – 0.3 – 478 – 9 – 1.12 53.50

5 2328 2422 2422 4.0 4.0 347 72 2 5 0.68 162.12
6 1283 1283 – 0.0 – 545 – 0 – 1.32 72.99

tw2 0.6 7 786 790 – 0.5 – 655 – 10 – 1.90 78.59
8 783 785 – 0.3 – 567 – 2 – 1.50 53.08
9 783 785 – 0.3 – 506 – 13 – 1.40 63.45

10 783 785 – 0.3 – 493 – 4 – 1.36 55.01

5 2201 2322 2321 5.5 5.5 432 164 12 7 0.73 166.63
6 1111 1111 – 0.0 – 620 – 1 – 1.59 56.86

0.9 7 620 621 – 0.1 – 648 – 9 – 1.75 58.23
8 619 620 – 0.1 – 621 – 9 – 1.92 55.86
9 619 620 – 0.1 – 532 – 19 – 1.51 48.30

10 619 620 – 0.1 – 531 – 0 – 1.47 57.11

5 12000 12000 – 0.0 – 34 – 0 – 0.03 0.22
6 2496 2521 – 1.0 – 368 – 2 – 0.61 47.02

0.3 7 1224 1530 1530 25.0 25.0 465 3018 201 549 2.53 302.30
8 1039 1040 – 0.1 – 405 – 2 – 0.66 35.14
9 1030 1032 – 0.1 – 379 – 0 – 0.50 24.53

10 1016 1017 – 0.1 – 367 – 2 – 0.60 29.61

5 9584 9584 – 0.0 – 36 – 0 – 0.03 0.38
6 2498 2838 2520 13.6 0.9 431 741 2445 193 2.81 507.39

tw3 0.6 7 1214 1438 1436 18.5 18.3 567 1070 222 245 1.66 726.06
8 905 917 – 0.7 - 523 – 2 – 0.79 40.66
9 879 879 – 0.0 – 435 – 0 – 0.97 48.94

10 857 860 – 0.3 – 408 – 3 – 0.64 25.37

5 9560 9560 – 0.0 – 43 – 0 – 0.14 0.47
6 2448 2736 2736 11.8 11.8 437 31 3283 23 4.01 46.57

0.9 7 1147 1328 1328 15.8 15.8 582 2386 114 409 1.55 154.74
8 758 769 – 1.5 – 544 – 15 – 0.77 34.28
9 704 708 – 0.5 – 490 – 3 – 1.06 32.64

10 670 671 – 0.1 – 449 – 1 – 0.68 17.68
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cantly lower quality in all cases. If, for example, we consider in-
stance (tw1; b ¼ 0:9) with 6 technicians in zone A and 5 in zone
B (thus, a total of 11 for AB), we see that the objective-function va-
lue obtained is 66 for case A and 1117 for case B, while that for case
AB is 194. This deterioration in the objective value is due to the loss
of flexibility when each zone is managed independently, since in
zone B many customers need to be postponed to the next day.
One conclusion to draw from these results is the considerable
advantage of having an implementation of the B&P algorithm that
can find an optimal solution for the larger 70-customer problem.

We allowed a maximum of 300 seconds to solve the subprob-
lem at each iteration. We mark with a � those instances where this
limit was reached before an optimal solution was found. It is clear
that in these cases the bound obtained is not valid and the final
solution is not optimal. As noted earlier, after solving the MIP with
the columns found at the root node (B&B), if the gap between the
linear relaxation at the root node and B&B was below 3%, we did
not run the B&P. When used (28 of the 162 cases), the B&P
algorithm reduced the gap by 3.5% on average. And the gap was
reduced for more than 0.1% in 17 of the 28 cases. Most of the com-
putational time was spent on the subproblem phase. Instance A
took much longer than instance B (mainly because there are more
service requests in instance A), and instance AB took the longest.
Except in five cases (all from instance B) when the B&P procedure



Table 5
Results for instance AB.

tw b #Tec Objective Gap [%] # Columns # Nodes Time [seconds]

LR BB BP BB-LR BP-LR BB BP BB BP MP SP

11 955 968 – 1.4 – 2790 – 104 – 39 3871
13 936 941 – 0.6 – 2022 – 2 – 64 10459

0.3 15 917 931 – 1.6 – 2208 – 284 – 16 10800
17 911 929 – 2.0 – 2103 – 284 – 12 10800
19 911 929 – 2.0 – 1928 – 316 – 11 9200
21 911 929 – 2.0 – 1137 – 455 – 23 10800

11 567 576 – 1.6 – 3354 – 1920 – 53 3246
13 528 534 – 1.1 – 3125 – 725 – 17 10800

tw1 0.6 15 528 528 – 0.1 – 1814 – 3583 – 19 6334
17 521 526 – 1.0 – 2072 – 586 – 47 9098
19 513 515 – 0.4 – 2149 – 87 – 13 10206
21 513 515 – 0.4 – 1731 – 2994 – 15 9001

11 194 198 – 1.9 – 3969 – 2071 – 44 8048
13 162 165 – 1.9 – 3394 – 4223 – 39 10800

0.9 15 152 155 – 2.0 – 2414 – 4880 – 27 10365
17 151 153 – 1.4 – 2123 – 4669 – 23 10301
19 150 153 – 1.5 – 1951 – 1485 – 15 10800
21 150 153 – 1.5 – 1800 – 2710 – 15 9728

11 4016 4165 3908 3.7 �2.7� 1875 215 831 11 28 8221
13 986 1019 980 3.3 �0.6� 2588 250 293 27 15 10617

0.3 15 952 959 – 0.7 – 2297 – 7096 – 29 10445
17 944 958 – 1.4 – 2204 – 7666 – 36 8445
19 943 957 – 1.5 – 2064 – 2882 – 34 8644
21 943 957 – 1.5 – 1910 – 278 – 6 7145

11 2682 2697 – 0.5 – 2380 – 32 – 23 3713
13 584 593 – 1.5 – 3341 – 2056 – 27 10800

tw2 0.6 15 570 575 – 1.0 – 2928 – 1178 – 17 7902
17 556 560 – 0.7 – 2426 – 81 – 7 7032
19 552 554 – 0.4 – 2076 – 18 – 33 7118
21 546 550 – 0.8 – 2063 – 50 – 18 9275

11 994 1128 1104 13.4 11.0 3419 89 1933 37 59 10694
13 189 190 – 0.4 – 3856 – 219 – 28 10800

0.9 15 170 171 – 0.4 – 3037 – 32 – 21 9188
17 169 170 – 0.4 – 2412 – 113 – 15 8202
19 169 170 – 0.4 – 2332 – 200 – 8 9372
21 161 162 – 0.7 – 2292 – 1122 – 25 10201

11 10332 10444 – 1.1 – 880 – 14 – 4 7185
13 3126 3505 3072 12.1 �1.7⁄ 2141 204 655 49 28 10578

0.3 15 1561 1661 1643 6.4 5.2 2338 138 457 55 141 9183
17 1105 1108 – 0.3 – 2361 – 12 – 9 4987
19 1101 1107 – 0.6 – 2094 – 474 – 7 8079
21 1076 1084 – 0.7 – 1973 – 838 – 7 3395

11 7887 8365 7935 6.1 0.6 1484 308 98373 7 106 9903
13 2854 2951 2790 3.4 �2.2� 2506 133 29733 19 117 9403

tw3 0.6 15 1159 1211 1140 4.5 �1.7� 2810 197 402 43 21 7522
17 804 813 – 1.2 – 2724 – 68 – 13 4863
19 764 769 – 0.6 – 2555 – 171 – 11 4488
21 719 721 – 0.2 – 2077 – 44 – 8 3418

11 6497 6839 6837 5.3 5.2 2069 404 142108 3 45 7660
13 2447 2696 2354 10.1 �3.8⁄ 3065 227 38014 43 68 10798

0.9 15 959 961 – 0.3 – 3102 – 0 – 7 9515
17 440 444 – 0.7 – 3052 – 9 – 24 8530
19 397 398 – 0.2 – 2672 – 6 – 16 6062
21 345 346 – 0.2 – 2253 – 62 – 8 2824
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was used, fewer nodes were explored than those inspected by the
B&B algorithm.

With regard to the number of columns generated, for B in-
stances it suffices to generate around 500 columns at the root node
of the B&B to solve the linear relaxation to optimality. In the larger
AB instances around 2500 columns are required. When the B&P
algorithm is used, the number of columns required does not seem
to follow a clear pattern. Note that some values in column BP-LR
(Table 5) are negative, reflecting the difference between the B&P
and the linear relaxation at the root node. These correspond to
cases where the column generation at the root-node LP was termi-
nated before reaching optimality.
Recall that we run the B&P algorithm only if the difference
between LR and BB is larger than 3%. This does not occur often,
indicating that the observed gap between LR and BB is generally
small. However, the solution of the linear relaxation at the root
node in terms of h is fractional in most cases.

To illustrate the behavior of the solutions, we consider two
instances in Tables 6 and 7. The first case (instance 1:
tw2; b ¼ 0:9; #Tec ¼ 6) shows a considerable BB-LR gap (12.4%),
justifying the application of the B&P procedure. In contrast, the
second case (instance 2: tw3, b ¼ 0:3; #Tec ¼ 8) yields a small
BB-LR difference (0.3%), and the B&B algorithm obtains a close-
to-optimal solution without having to explore nodes other than



Table 6
Solution instance 1.

Instance 1 cr hr cr � hr

r1 11.0 0.828 9.1
r2 12.5 0.237 3.0
r3 11.2 0.250 2.8
r4 12.5 0.113 1.4
r5 12.0 0.363 4.4
r6 11.2 0.250 2.8
r7 12.1 0.250 3.0
r8 12.4 0.207 2.6
r9 12.7 0.500 6.4
r10 12.0 0.137 1.6
r11 11.4 0.250 2.9
r12 11.6 0.650 7.5
r13 11.0 0.172 1.9
r14 12.5 0.150 1.9
r15 11.4 0.457 5.2
r16 11.4 0.293 3.3
r17 11.6 0.250 2.9
r18 11.4 0.250 2.9
r19 14.9 0.172 2.6
Other routes (� 30) 28.4 < 0:100 2.8

Obj. LR 70.9
Obj. BB 79.7
Gap [%] BB-LR 12.4

Table 7
Solution instance 2.

Instance 2 cr hr cr � hr

r1 73.3 0.250 18.3
r2 70.9 0.750 53.2
r3 56.0 0.500 28.0
r4 71.4 0.250 17.9
r5 70.2 0.750 52.7
r6 73.2 0.250 18.3
r7 76.3 0.250 19.1
r8 68.2 0.250 17.1
r9 63.4 0.250 15.9
r10 60.7 0.250 15.2
r11 56.2 0.250 14.1
r12 78.8 0.250 19.7
r13 80.1 0.250 20.0
r14 74.9 0.250 18.7
r15 94.7 0.750 71.0
r16 82.7 0.250 20.7
r17 79.7 0.750 59.8
r18 57.4 0.500 28.7
r19 56.7 0.250 14.2
r20 82.0 0.250 20.5
r21 84.7 0.250 21.2
r22 99.4 0.250 24.9

Obj. LR 588.8
Obj. BB 590.4
Gap [%] BB-LR 0.3
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the root. In the tables, we show the columns considered in the
linear relaxation at the root-node solution in each case, with the
corresponding h > 0 value associated with each column. Although
both solutions are fractional, there are two aspects that could ex-
plain the difference in the BB-LR gap: the nature of the fractions
(h values) and the number of columns in the solution. The LR of in-
stance 1 (large gap) results in a large range of h values. However,
instance 2 has only three h values (0.25,0.5,0.75) in all the chosen
columns. This occurred in most of the cases with a small BB-LR gap
(see Tables 3–5). Moreover, the number of columns included in the
linear relaxation at the root-node solution of instance 1 is much
larger than the number for instance 2 (more than 50 compared
with 22).

In summary, most of the solutions with a small BB-LR gap have
a small number of columns in the linear relaxation at the root-node
solution and a limited number of h values (0.25,0.5,0.75). These
examples show that when the BB-LR gap is large, the linear
relaxation at the root-node solution has a range of fractional values
(see instance 1) shared among a large number of columns.

6. Conclusions

In this paper, a technician dispatch problem is modeled as a
vehicle routing problem with soft time windows. We solved
several real examples provided by the operation of a large
company in different service areas of Santiago, reformulating the
problem using a set covering model and using constraint program-
ming to solve the subproblems. Constraint programming allowed
the subproblems to be solved easily and effectively.

Our model allows us to optimize the dispatching of technicians
in two actual instances (areas A and B as shown in Fig. 4), showing
the advantages of the proposed B&P algorithm over the manual
solutions implemented by the company. In addition, we were able
to run our model over the entire area AB (70 service requests),
obtaining in some cases significant performance improvements by
not restricting the solution to the prespecified subregions A and B.

Most instances had a small gap between the linear relaxation at
the root node and the B&B solution, so it was not necessary to use
B&P to explore beyond the root node. When B&P was used, it
reduced the gap by 3.5% on average.
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