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SUMMARY 

 
The one-factor Gaussian copula method has become the de facto standard to 
analyze most synthetic collateralized debt obligation structures.  
Unfortunately, this method produces a peculiar phenomenon known as 
correlation smile (the implied correlation determined by the model depends 
on the CDO tranche one is considering instead of being tranche-
independent).  Market participants are divided regarding this issue.  Many 
suspect that the correlation smile is caused by a flaw in the above-mentioned 
modeling strategy although they have been unable to articulate why.  Others 
insist that the smile is actually correct and reveals important and relevant 
tranche-dependent characteristics but have failed to produce convincing 
evidence to support this view. 
 
In this article we present evidence that the correlation smile is really a by-
product (artifact) of an unfortunate modeling strategy and has no financial or 
market-driven interpretation whatsoever.   Moreover, we argue that this 
modeling approach should be abandoned at once. 
 

INTRODUCTION 
 

Collateralized debt obligations (CDOs) in general and synthetic CDOs in 
particular, specifically bespoke tranches and index tranches such as those of 
the North American high yield 5-year index (DJ CDX NA HY 5) or the 
North American investment grade 5-year index (DJ CDX NA IG 5), have 
become permanent fixtures of the fixed income investment universe.  



Therefore, the need to have a sound modeling strategy to assess the risk-
reward characteristics of these investments is paramount. 
 
The performance of these vehicles (and to be more precise, the performance 
of the specific tranche that one is concerned with) depends chiefly on one 
factor: the credit risk behavior of the underlying assets.  Therefore, to assess 
this risk (a task that one has to tackle using simulation techniques for closed-
form solutions seem impossible at this point) the ability to generate realistic 
default scenarios is essential.  To this end, two variables are critical: the 
default characteristics of the pool of assets (default probability) and the 
default correlation of such assets.  A failure to characterize these variables 
correctly would be tantamount to building a high-rise on a shaky foundation: 
only tragedy could ensue. 
 
The remaining of this article is organized as follows: first, we introduce 
some basic notation and review (for the sake of completion) the key features 
of the Gaussian copula.  Then, we explain briefly the correlation smile 
problem and present some of the explanations given for it.  Afterwards, we 
discuss in detail the one-factor Gaussian copula as it is currently employed 
in the context of CDOs and we explain why there are serious flaws with this 
approach.  We end the article with a discussion regarding the implications of 
the present situation.  

 
PRELIMINARY BACKGROUND 

 
Probability of Default.  Consider an asset that is subject to default risk.  
That is, it can default with a probability p or perform (not default) with a 
probability 1 – p.  Thus, from a modeling viewpoint, we can simulate the 
default behavior of this asset by taking successive samples (x) from a 
univariate normal distribution and comparing x with the appropriate cutoff 
value, X* (X* is such that Φ(X*) = p, where Φ is the cumulative normal 
distribution function).  For instance, if X ~ N (0, 1) and p= 30%, then a value 
of  x <  X* = -0.55 (or Φ(x) < 30%) indicates a default (see Figure 1). 
 
Default Correlation.  Correlation in general, and default correlation in 
particular, is one of the most misused and misunderstood concepts in 
structured finance.  Thus, before we proceed, we will introduce some 
formalities for the sake of clarity.  First of all, correlation is a precise 
mathematical concept that only has meaning in reference to random 



variables.  If A and B are random variables, the correlation coefficient, ρ, 
between A and B is defined as 
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where µ denotes the mean, σ denotes the standard deviation, and E is the 
expected value operator.  The sub-indexes A and B refer to the random 
variables. 
 
Thus, statements such as company X and company Y are correlated are 
meaningless.  One needs to refer to a quantifiable variable associated with 
companies X and Y (stock price, revenue growth or credit default spreads, 
for example) for that statement to make sense.   
 
In the same spirit, stating that the default behavior of companies 1 and 2 is 
correlated does not carry a lot of meaning unless one specifies a random 
variable that captures what “default behavior” means.  In summary, before 
we can talk about default correlation, we need to define a random variable 
that somehow captures “default behavior.” 
 
Accordingly, we introduce an index random variable, I, for this purpose.  If 
the asset defaults, then I = 1 (otherwise the index is 0). 
 
Two Assets.  Suppose we have two assets: 1 and 2.  Hence, we can use two 
random variables Y1 and Y2, both univariate normals, to generate default 
scenarios for assets 1 and 2.  If we generate n possible default scenarios we 
can define two index variables (I1 and I2) to capture the default patterns of 
each asset.  (Each index variable, actually a vector, will be a sequence of n 
1’s and 0’s). 
 
Using a random sample generated as above we can compute an estimate of 
the statistic “correlation coefficient” between I1 and I2 in order to estimate 
the default correlation (ρD) between assets 1 and 2. 
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In this context vi = (I1)i and wi = (I2)i. Equation (2) is just a “discrete” 
version of equation (1). 
 
The Simulation Challenge.  We can assume, for the sake of simplicity but 
without losing generality, that we are dealing with a portfolio in which all 
the assets have the same default probability, p.  (This is indeed the case 
when one deals with index tranches.) 
 
The challenge to do a Monte Carlo relies on the modeler’s ability to generate 
realistic default scenarios.  That is, being able to be loyal to p (the average 
default probability of the pool) and ρD (the assets’ default correlation.)  Note 
that if we are dealing with two assets, the default correlation is captured by 
one number. In the case of N assets, ρD is a symmetric matrix.  In the 
simplest case, that is, when all the pair-wise correlations are the same, all the 
off-diagonals elements are identical.  
 
The One-Factor Gaussian Copula.  The one-factor Gaussian copula, 
leaving CDOs aside for a moment, is nothing but a numerical algorithm to 
generate samples of normally distributed random variables that have a given 
pair-wise correlation.  This method can be summarized as follows: 
 
[1]  Let Z1 , Z2 ,…, ZM  be M independent random variables, each distributed 
as N(0, 1)  
 
[2]  Define random variables Y1, Y2, …, YM  as 

  
 (3) 
 

and R is N(0, 1), independent of all Zi. 
 
By repeatedly drawing instance vectors (z1, …, zM, r) of the random variables 
Z1, …, ZM, R we can generate several instance vectors of the form (y1, …, yM) 
with the desired correlation (ρ). 
 

THE STANDARD “ONE-FACTOR GAUSSIAN COPULA” 
MODELING APPROACH 

 
The quotes in this section’s title are very intentional.  In reality, what is 
called one–factor Gaussian copula approach in the context of CDO modeling 
is a bit misleading.  In fairness, the method employed (to be described more 
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fully shortly) consists of two steps: (1) the application of the Gaussian 
copula followed by (2) the creation of an additional random variable (an 
index variable).  As we will see later, this second step creates some 
problems. 
 
Before describing this approach an additional clarification is required.  In 
principle (as stated before) to characterize properly the credit risk behavior 
of a pool of assets we need to estimate (and control) two variables: p (default 
probability) and ρD (default correlation). 
 
The default probability is relatively easy to estimate as we can rely on 
ratings, CDS spreads, fundamental analyses, KMV-like models, etc.  The 
problem is ρD.  First, there are very little data on default correlation (after all, 
defaults do not happen that often).  Second, the data seem to indicate that 
this correlation changes over time (it is time-dependent).  Worse yet, nobody 
has proposed an algorithm to generate default scenarios (assuming one 
knows p and ρD) that are consistent with p and ρD. 
 
Therefore, most practitioners have given up on estimating default 
correlations and have concentrated on correlation exhibited by asset prices 
(normally called asset correlation) since such data abound.  The secret hope, 
of course, is that asset correlation has, somehow, something to do with 
default correlation.  Asset correlation is denoted as ρA. 
 
Consider, again for simplicity, that we have two assets (the extension to 
many is straightforward) and assume that we know both p (the same for 
assets 1 and 2) and ρA (since we have given up on ρD).  How do we generate 
default scenarios “consistent” with p and  ρA ? 
 
The standard one-factor Gaussian copula approach extends the two-step 
process described in the previous section with a third step that computes the 
indicators of non-default or default events for each asset. Here is the 
complete description: 
 
[1]  Let R, Z1 , Z2  be independent random variables, each distributed as   
N(0, 1) 
 
 
 
 



 
 
[2]  Define random variables Y1, Y2 as 
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[3]  Define index random variables I1 and  I2 with values in {0, 1} as 
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( )⋅Φ  is the standard normal cumulative distribution function (note that  
( ) pY =Φ * );  y1 and y2 represent random draws from Y1 and Y2, respectively.  

For example, the event {Asset 1 defaults, Asset 2 does not default) can be 
expressed as: {I1 = 1, I2 = 0}. 
 
After repeating steps [1], [2] and [3] many times (say L) one has enough 
default scenarios to calculate whatever is required for the tranche under 
investigation: price, appropriate spread over LIBOR, estimated rating, 
default likelihood, etc. 
 
Additionally, one ends up with two index-vectors having L components each 
(a sequence of L 1’s and 0’s) that can be used to estimate ρD using 
expression (2).  This process is demonstrated more graphically in Figure 2.  
 
Note that up to this point we have no idea what  ρD is; the only thing we 
know is that the normal samples we generated in [1] and [2] to simulate the 
defaults have a given (ρA) correlation.   
 
Three observations are relevant at this point.  First, although this might seem 
rather innocuous, calling this approach one-factor Gaussian copula does not 
seem entirely accurate for the one-factor Gaussian copula approach relates 



only to steps [1] and [2] above.  Step [3], which is an integral and quite 
important part of the process, has nothing to do with the Gaussian copula. 
 
Second, and this is rather subtle, denoting (as most people do) the Gaussian 
copula correlation factor ρA seems like an obvious choice.  But is this the 
actual asset (market value) correlation between assets 1 and 2?  (Leave aside 
for a second the issue of whether we have a good estimate of the asset 
correlation).  The truth is, that this is really a Gaussian copula correlation 
parameter that has nothing to do with the value of any asset.  We believe this 
confusion has arisen due to the common use of Merton’s method to estimate 
the default probability of a company.  If one does not know p,  Merton’s 
method states, one can estimate it by calculating the likelihood that the 
market value of the assets of the company will drop below a critical level 
(value of liabilities) [1].  Such market (asset) value is supposed to follow a 
normal distribution.   
 
But in the context of the CDO problem at hand we are already assuming that 
we know p.  Thus, the only thing we are doing in Steps [2] and [3] is using a 
numerical trick to generate default scenarios consistent with such default 
probability; scenarios which, by the way, just happened to have been 
generated by normal random variables that have a given correlation 
coefficient.  Whether we have the right to call this parameter asset 
correlation is far from clear.  Thus, in what follows, we will call this 
parameter “copula correlation factor”, or ρC. 
 
In any event, the two preceding points are quite irrelevant in comparison 
with this third observation: What is the relationship between the copula 
correlation factor (ρC) and the pool default correlation (ρD).  Or, put in a 
different way: if we choose the copula correlation factor to be some fixed 
value, what is the value of the default correlation factor we end up with? 
This is really the critical question at the root of this modeling approach.  It 
arises because what we are controlling here is ρC  (a variable we think we 
can estimate and we can use as the driving force for the Gaussian copula 
algorithm) but we have no control (or clue) as to what the value of ρD  (the 
variable of interest) will be. We will return to this point in the subsequent 
section. 
 

 
 
 



THE CORRELATION SMILE ISSUE 
 
The correlation smile issue can be best described in the context of a CDO 
structure that has several tranches, from very safe to very risky, (typically 
AAA to Equity).  Suppose we know the market price of each tranche.  Since 
we know the assets (pool) default probability (p) we can use the one-factor 
Gaussian copula approach to determine the implied correlation.  In other 
words, we work backwards (iterating several times) until we determine the 
copula correlation factor (ρC) such that we can match the tranche price while 
keeping p fixed.  Obviously, p is the same no matter what tranche we are 
looking at since it is a characteristic of the underlying collateral (not the 
tranche).  Unfortunately, when we do this, we obtain different implied 
correlation values depending on the tranche we are considering.  Figure 3 
displays the typical curve, the correlation smile curve.  Several explanations 
have been offered for this “anomaly”.1 
 
Broadly speaking, market participants are divided in terms of this issue. A 
small minority believes the correlation smile is a non-issue (annoying but 
irrelevant).  Another group thinks it is “obviously” wrong but cannot pin 
down the reason for it or they blame it on the normal distribution (tails not 
fat enough).  A third group thinks the correlation smile (different correlation 
numbers for different tranches) makes sense for it captures demand and 
supply circumstances, liquidity issues, segmentation among investors, model 
uncertainty, banks’ appetite for selling protection only on certain tranches, 
and a host of other factors [2, 3, 4, 5].  
 
That said, it is fair to say that this issue has not yet received an explanation 
that has been fully accepted. 
 

THE GAUSSIAN COPULA DECONSTRUCTED 
 
The best way to tackle the correlation smile issue is by investigating the 
relationship among the three variables involved: p, ρC and ρD. For given 
values for p and ρC it is possible to perform a Monte Carlo simulation in 
order to determine ρD.  In fact, by covering all possible values of the pair (p, 
ρC) in the range (0, 1) x  (0, 1) and then computing the resulting value of ρD 
                                                 
1 Strictly speaking, correlation smile is a special case of correlation skew.  From a “purist” point of view 
correlation skew refers to the fact that the correlation is non-constant (the phenomenon just described in the 
text) while the “smile” refers to the particular case in which there is a change in slope (from negative to 
positive).  Here, we just use correlation smile as the generic term to refer to the broader anomaly. 



via a Monte Carlo/one-factor Gaussian copula method, one can gain great 
insight into these variables’ behavior2.  Figure 4 depicts a three-dimensional 
view of these variables’ relationship. An immediate observation is that for a 
given (fixed) value of the default probability, the default correlation ρD 
becomes an increasing function of the copula correlation factor ρC. There 
also appears to be a symmetry around p = 50%, when fixing the value for 
ρC. 
 
A better appreciation for how these variables are interconnected is obtained 
by looking at the data depicted in Figure 4 in a more selective fashion.  To 
start, consider Figure 5 which shows, for a fixed value of p (arbitrarily 
chosen at 10%), the relationship between ρC and ρD.  The obvious 
observation is that for any given value of ρC, the value of ρD  is always less 
than ρC.  Clearly, the thought that selecting one specific value for the copula 
correlation parameter might result in the same value for the pool default 
correlation (ρD) is unwarranted. 
 
Figure 6, again, shows the relationship between ρC and ρD but for several 
values of p (10%, 20% and 30%). The fact that the (ρC, ρD) relationship 
depends on p (three curves instead of one) is a bit “distressing.”  Put in a 
different way, this figure indicates that if we select a value for the copula 
correlation factor (ρC), the value of the default correlation (ρD) we end up 
with, depends on p.  This hints at a potential problem.  It means that we 
cannot control the default correlation via the copula correlation factor only 
(we also need to “control” p). Intuitively, it is clear why the default 
correlation (ρD) is affected by the value of p. This happens in Step [3] of the 
one-factor Gaussian copula process, when one forms the index variables, 
which in turn determine the default correlation.  (Recall Figure 2).  The 
cutoff value (Y*), the one factor that determines whether the index is 1 or 0, 
depends on p.  Incidentally, conventional correlation assumptions state that 
correlation is a function of either geographical area or industrial sector, but 
not default probability.  The fact that ρD depends on both, p and ρC , indicates 
that the one-factor Gaussian copula does not lend itself (at least not 
naturally) to be used in conjunction with these conventional correlation 
assumptions.  Unless, of course, one is willing to accept some strange 
effects. 
  
                                                 
2  As an alternative to the Monte Carlo simulation, one could obtain a semi-analytic expression for ρD as a 
function of the default probability and the copula correlation factor, to examine the relationship among the 
three variables.  This option is discussed in the Appendix. 



In addition, the “distortion” introduced in Step [3] when creating the index 
variables not only depends on p, but it does so in a fairly special way: the 
“distortion” is “symmetric” with respect to p = 50%.  This is fairly obvious 
just by looking at Step [3] in Figure 2: The results of two binomial processes 
with probabilities of occurrence q and 1-q are essentially mirror images of 
each other. To illustrate, consider modeling a series of coin flips for two 
identical coins, where we define the event {Coin 1 is Heads } as 1 for the 
first coin, and {Coin 2 is Tails } as 1 for the second coin. The two series or 0 
and 1 events are, from a statistical point of view, identical. Figure 7 
illustrates this point: the (ρC, ρD) relationship is the same for p=10% and 
p=90% (identical curves).  
 
Figure 8, again, illustrates another interesting point: it shows (like Figure 6) 
the value of ρD as a function of ρC for different values of p. Three curves 
(10%, 20% and 30%) are the same curves depicted in Figure 6; but there is a 
fourth curve in the graphic (p=98%).  The first three curves (10%, 20% and 
30%) show that for increasing values of p, as we move in the 0% to 50% 
direction, the curves move upwards. Then, consistent with the “symmetry 
with respect to p=50%” situation the order is reverse; the p=98% curve has 
moved downward.   
 
Finally, Figure 9 illustrates the relationship between the copula correlation 
factor (ρC) and the default probability. For a fixed default correlation, the 
copula correlation factor is a convex function of the default probability. 
Three such iso-contours are displayed in the figure, for three corresponding 
values of the default correlation. Again, the symmetry of the p-dependence 
is manifest. 
 
In summary, these graphs show that the relationship among p, ρC and ρD is 
not that simple.  First, they show that the only way to make sure we end up 
with a given (and presumably correct) default correlation value is that we 
select a copula correlation factor (ρC) that is not only a function of ρD but 
also a function of p.  Second, failure to do this, that is, choosing the same ρC 
regardless of the value of p, can certainly have undesirable effects.  And 
third, it is not clear that working with a functional relationship that imposes 
on ρD (or ρC )  a symmetry with respect to p=50% has any realistic basis (or 
advantage).  Although these features by themselves are not sufficient to pass 
an indictment of the one-factor Gaussian copula approach, they certainly 
raise some concern as to the suitability of this technique to generate realistic 
default scenarios. 



 
THE GAUSSIAN COPULA: THE FINAL BLOW 

 
The best way to detect the flaws in the one-factor Gaussian copula approach 
is by reductio ad absurdum.  Specifically, we can prove that the correlation 
smile phenomenon makes no sense (it does not capture any meaningful 
attribute of the tranches in question and is at odds with reality). 
 
Suppose we have several CDO tranches and further assume that we know 
the price (given by the market) for each tranche.  Invoking the Gaussian 
copula and noting that p is known we can estimate the “implied correlation 
value”  (ρC ) associated with each tranche: 1, 2, 3….  Let us denote these 
values as (ρC )1, (ρC )2, (ρC )3 ….  Obviously, these correlation values are all 
different (correlation smile).  Can this be true?  Does this make sense?  Let 
us assume that this is indeed the case and let us see where this assumption 
will take us. 
 
We can invoke now the relationship between ρC   and ρD  established in the 
previous section (a relationship which for a given p will look like the curve 
shown in Figure 5) and we determine for each value (ρC )1, (ρC )2, (ρC )3 ….  
the corresponding value of the default correlation (ρD )1, (ρD )2, (ρD )3  ….  
Clearly, these values ((ρD )1, (ρD )2, (ρD )3  …)  will all be different since the 
implied correlation values ((ρC )1, (ρC )2, (ρC )3 ….) are all different.  This 
would imply that the pool default correlation does not depend on the 
characteristics of the pool only, it would also depend on the CDO tranches. 
Or, alternatively, it would imply that the collateral pool has “several” (and 
correct) default correlation values. This is clearly nonsense for this value has 
to be unique.  Thus, the hypothesis is false. (Unless, of course, one is willing 
to accept that the market price of the tranches is wrong; but we are assuming 
that that is not the case). Ergo, the Gaussian copula leads to unreasonable 
conclusions.  In a way, the clarity with which one can see the fallacy is due 
to the relationship presented in Figure 4.  This relationship has allowed us to 
move the discussion from the liabilities side of the CDO (where arguments 
about the uniqueness of ρC or ρA might be less obvious) to the asset side of 
the CDO (where the nonsense associated with having several values for ρD 
becomes indefensible).  
 
 
 
 



DISCUSSION 
 
In the preceding sections we have established that the Gaussian copula leads 
to results that are at odds with reality. At the root of this incompatibility is 
the relationship that this method imposes on p, ρC and ρD, a relationship from 
which we cannot escape because is part of the intrinsic structure of the 
copula.  Hence, there is no cure for this: the method must be abandoned 
(cannot be repaired). 
 
In addition, the following observations can be made: 
 

• Some practitioners have voiced the view that the Gaussian copula/ 
correlation smile issue is overblown because most CDO-tranches (at 
least in the secondary market) are priced according to supply-demand 
dynamics and the market “more or less” knows what the correct price 
is.  In other words, who cares about this model?  Fair enough.  But the 
fact remains that many investors do analyze newly issued CDO-
tranches with this method.  Thus, the need to discuss the method (and 
the need to question the accuracy of the results produced with it) 
should not be dismissed. 

 
• When it comes to delta hedging (the technique employed to manage 

the risk in a portfolio of index tranches) the role of the one-factor 
Gaussian copula is very relevant.  In fact, it is the most popular 
method to determine the so-called hedge ratios.  This is crucial for it 
means that the effectiveness of such hedging strategy, particularly at 
times of market turmoil (May 2005 comes to mind), could be 
ineffective.  This is anything but trivial.   

 
• Additionally, the rating agencies are increasingly relying on this 

method to rate CDOs, especially synthetic deals.  Although most 
people are becoming dismissive of ratings and the market is certainly 
moving to ignoring them, one fact remains: certain investors are 
subject to ratings-driven requirements in terms of what they can or 
cannot buy; many SIVs (specialized investment vehicles) are required 
to liquidate assets whose ratings fall below certain level; and many 
institutions are subjected to capital requirements that are ratings-
driven.  Thus, to the extent that ratings are determined with a flawed 
method, the implications are quite serious.  Incidentally, the ratings 
system is already showing some cracks:  for example, in March-April 



2007, we have seen newly issued CDO-tranches, with the same rating 
(BBB/Baa), priced as wide as LIBOR + 1000 and as tight as LIBOR + 
120.  This is unheard of. 

 
• A byproduct of the correlation smile issue is the so-called base 

correlation.  Base correlation is nothing but a cheap numerical trick to 
re-compute correlation using a different formula with the hope that 
things will look better.  And they do.  The base correlation versus 
tranche-rating curve looks just bad instead of terrible: it is not 
constant (parallel to the x-axis) but at least is monotonic (no change in 
slope sign).  But not much comfort should be derived from this 
alternative definition no matter what traders say. 

 
• Consider the following thought experiment.  Assume we have one 

asset and also assume that we have a very good estimate of the default 
probability of this asset.  In other words, we have incorporated into 
this estimate all the information available, including the influence of 
macro-economic factors, performance of other companies and 
political events, etc.  Suppose now we do the same for several (M) 
assets: thus, we have q1, …, qM  all excellent estimates of the default 
probability of these assets.  Clearly, this situation will allow us to 
make future default projections.  Now put these assets into an SPV.  
Would that change the default probability estimates?  (Or, to be more 
clear, would that change the default probability of these assets?)  The 
answer is a resounding NO (the assets do not realize they are in an 
SPV; they will behave the same as before for their risk profile is still 
the same, it does not change as a result of putting them in the SPV).  
Therefore, there is no need for correlation.  In fact, correlation does 
not exist.  What does exist is the need to “correct” our estimate of the 
default probability of an asset after we put it in an SPV if the initial 
estimate did not take into account all the relevant factors. Hence, in 
this case, we throw in “correlation” simply to “improve” an initially 
bad estimate.  In reality, instead of spending time trying to estimate 
correlation (something that does NOT exist) it would be better to put 
more effort into estimating default probabilities more accurately.  In 
this sense, a modeling approach assuming no correlation but time-
dependent default probabilities (something along the lines of the 
CreditRisk+ framework [6], for example) seems much more 
reasonable and promising.   

 



Finally, a curious point: The most common argument that we have heard 
from people who disagree with us (that is, die-hard Gaussian copula 
defenders) is that: (i) everybody uses it, and (ii) it is very easy to use.  As a 
matter of principle we endorse the view that those two arguments, in no 
particular order, are probably the worst possible justifications ever offered 
for anything: clear evidence that there is something rotten in Denmark!  To 
sum up: the one-factor Gaussian copula method is a flawed technique to 
model something that does not exist -- two very good reasons to move on 
and leave all this correlation/copula nonsense behind.  Future efforts should 
be focused on estimating default probabilities better.  Period.  End of story. 



 
REFERENCES 
 
[1] Robert C. Merton (1974), “On the Pricing of Corporate Debt: The Risk 
Structure of Interest Rates”, Journal of Finance, Vol. 29. 
 
[2] Jeffery D. Amato and Jacob Gyntelberg (2005), “CDS index tranches 
and the pricing of credit risk correlations”, BIS Quarterly Review, March 
2005. 
 
[3] Dominique Guegan and Julien Houdain (2005), “Collateralized Debt 
Obligations pricing and factor models: a new methodology using normal 
inverse Gaussian distributions,” Note de Recherche IDHE-MORA, number 
07-2005. 
 
[4] Toby Daglish and Wei Li (2005), “Probability of default as a function of 
correlation: the problem of non-uniqueness,” available from 
www.defaultrisk.com. 
 
[5] Julien Turc and Philippe Very (2004), “Pricing and hedging correlation 
products,”  Societe Generale, Credit Research, available from 
www.defaultrisk.com. 
 
[6] Tom Wilde (1997), “CreditRisk+: A Credit Risk Management 
framework,” Credit Suisse First Boston, available from 
www.defaultrisk.com. 
 
[7] Christian Blum, Ludger Overbeck and Christoph Wagner (2003) “An 
Introduction to Credit Risk Modeling”, Chapman & Hall/CRC, Financial 
Mathematics Series. 
 
[8] Philipp Schönbucher (2003) “Credit derivatives pricing models: Models, 
pricing and implementation”, Wiley Finance. 
 
[9] Umberto Cherubini, Elisa Luciano and Walter Vecchiato (2004), 
“Copula Methods in Finance”, John Wiley & Sons, Ltd. 
 
 

 
 



 
LIST OF FIGURES 

 
[1] Simulation of default events using a normal distribution. 
 
[2] One-factor Gaussian copula approach: graphical representation. 
 
[3] Typical correlation smile curve. 
 
[4] Three-dimensional view of the relationship among p, ρC and ρD. 
 
[5] Default correlation as a function of copula correlation factor for p=10%. 
 
[6] Default correlation as a function of copula correlation factor for three 
values of p. 
 
[7] Default correlation as a function of copula correlation factor for two 
values of p (10% and 90%).  The curves are identical. 
 
[8] Default correlation as a function of the copula correlation factor for four 
values of p. 
 
[9] Copula correlation factor ρC as a function of p, for different values of the 
default correlation ρD. 
 
[10] Comparison of Monte Carlo and semi-analytic evaluation of the default 
correlation ρD. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
APPENDIX 

 
A Semi-Analytic Derivation of ρD 

 
There exists an extensive literature on modeling correlated defaults (see [7,  
8] for an introductory treatment and numerous references.) In this section we 
outline the derivation of the linear correlation of default events in the 
simplest case of two assets and in the context of the one-factor Gaussian 
copula described previously but using a semi-analytic approach.  The idea is 
to compare the results obtained for ρD using this approach against those 
obtained with the Monte Carlo method.  We will see that both approaches 
give consistent values for ρD . 
 
As in the Bernoulli mixture model developed in [7], we treat the default 
probabilities p1, p2 of the two assets as instances of random variables P1, P2 
defined in [0, 1]. In the context of the previous discussion, where we 
assumed p1 = p2, the default events are in turn determined by the value of Pj, 
if we consider *

jY  a known, fixed “average” value such that ( )*
jj Yp Φ= : 
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The distribution F(u1, u2) of P1, P2 can be derived from the conditional 
probabilities of default events given the value of the common factor R and 
equation (4), as follows: 
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Zj is distributed as N(0,1), therefore the conditional probability can be 
written as a function of the value r of the common factor random variable R: 
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The distribution F(u1, u2) of P1, P2 is the Gaussian copula evaluated at 

( )jj uq 1−  (see [7] and [9]): 
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where ( ) ( ) ( )
C
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ρ
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=
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− 111
1  and ( )ρ;, 212 xxΦ  is the bivariate 

standard normal distribution with correlation coefficient ρ.  
 
The distribution of the default events I1, I2 can be defined as: 
 
( ) { } { }0,1in  ,,,Pr, 21221121 dddIdIdd ==≡∆   (10) 

 
The values of the distribution ∆(d1, d2) are determined, given values for 
P1=u1, P2=u2  as follows: 
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In summary: 
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In turn, the unconditional distribution of I1, I2 given (9) and (11) is: 
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The following outlines the computation of 
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The marginal distributions ( )11 d∆  and ( )22 d∆  can be found as: 
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and similarly for ( )22 d∆ . 
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Finally, the covariance of I1, I2 is determined through (13) and (16) as: 
 

( ) ( ) ( ) ( ) ( )21212121 ,Cov,Cov PPIEIEIIEII =−=   (17) 
 
Equations (15) and (17) allow the expression of ρD in terms of F(u1, u2) of 
P1, P2 as follows: 
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Equations (9) and (18) can be used to compute Dρ  as a function of 21,, ppCρ .  
 
Figure 10 shows a comparison between the values of ρD (default correlation) 
obtained with: (i) the Monte Carlo method; and (ii) the semi-analytic 
approach outlined in this appendix and a range of the average default 
probability 21 ppp == .  We have restricted the comparison for values of ρC 
< 30% (higher values of ρC result in numerically unstable scenarios that are 



computationally expensive).  We note that within the tested range both 
approaches produce consistent results.  
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