
Learning in Sequential Bilevel Linear Programming

Juan S. Borrero
School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK 74078,

juan.s.borrero@okstate.edu

Oleg A. Prokopyev
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, droleg@pitt.edu

Denis Sauré
Department of Industrial Engineering, University of Chile, Santiago, Chile dsaure@dii.uchile.cl

We consider a framework for sequential bilevel linear programming where a Leader and a Follower interact

over multiple time periods. In each period, the Follower observes the actions taken by the Leader and reacts

optimally, according to his own objective function, which is initially unknown to the Leader. By observing

various forms of information feedback from the Follower’s actions, the Leader is able to refine her knowledge

about the Follower’s objective function, and hence, adjust her actions at subsequent time periods, which ought

to help in maximizing the Leader’s cumulative benefit. We show that Greedy and Robust policies adapted from

previous work in the max-min (symmetric) setting might fail to recover the optimal full information solution

to the problem (i.e., a solution implemented by an oracle with complete prior knowledge of the Follower’s

objective function) in the asymmetric case. In contrast, we present a family of Greedy and Best-Case policies

that are able to recover the full information optimal solution and also provide real-time certificates of opti-

mality. In addition, we show that the proposed policies can be computed by solving a series of linear mixed-

integer programs. We test policy performance through exhaustive numerical experiments in the context of

asymmetric shortest path interdiction, considering various forms of feedback and several benchmark policies.

1. Introduction

Motivation. In this paper we study sequential bilevel programming, where a Leader and a

non-strategic Follower interact over multiple time periods. In these problems, at each time period,

the Leader acts first by selecting an action, which is observed by the Follower, who then responds

in an optimal fashion. On the one hand, the Leader aims at maximizing her cumulative payoff,

which depends on the Follower’s response at each period. On the other hand, the Follower aims

at minimizing his immediate cost on each period, which also depends on the Leader’s actions.

We assume that the single-period interaction between these two agents is modeled using the

bilevel linear programming framework: at each period the Follower responds to the Leader’s actions

by solving a lower-level linear program, whose feasible region depends on the Leader’s action

(note this rules out any strategic behavior on the Follower’s behalf); the Leader in turn, knowing

this, solves an upper-level mathematical program in which some variables (those corresponding

to the Follower’s response) are constrained to be solutions to the lower-level program. Because of

1

2 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

its inherent ability to model hierarchical decision-making settings, bilevel programming has been

extensively used in many application areas including defense (Brown et al. 2006), economics (Sherali

et al. 1983), transportation (Lucotte and Nguyen 2013), revenue management (Côté et al. 2003),

among many others; see the surveys by Colson et al. (2005, 2007) and the references therein.

In this paper we are motivated by bilevel linear programming applications in interdiction,

particularly, sequential problems in military, surveillance and homeland security domains, where

the objectives of the different agents are not necessarily aligned. For example, consider an inter-

diction setting where border patrol agents (the Leader) can block routes that drug-smugglers (the

Follower) use to transport raw material (chemicals used for drug production) or finalized product

(drug), by placing resources such as planes, ships, or military units to patrol those routes. This

setting is in fact responsible for the renewed interest in network interdiction in the early nineties,

in the context of the US counter-narcotic efforts to disrupt drug production and distribution in

South America (Steinrauf 1991). A key feature of the early application of network interdiction to

this context is that, while smugglers aim at maximizing drug-production/distribution, because of

uncertainty about the precise location of production facilities, authorities’ efforts aim at minimiz-

ing the flow of raw material/drug in/out of a region thought to include such facilities. Under the

assumption of complete knowledge of the transportation network, its costs, the targeted region

and facility locations, this problem can be framed as a network flow interdiction problem (Wood

1993, Chern and Lin 1995, Israeli and Wood 2002, Lim and Smith 2007, Bayrak and Bailey 2008),

which is a particular type of bilevel linear optimization problem; see also a recent survey by

Smith and Song (2020). However, in practice authorities do not have complete knowledge of the

network or its costs, nor of the facility locations, thus it is not possible to directly instantiate

the problem. Nonetheless, border patrol agents might observe (after-the-fact) the route used by

smugglers, or infer transportation costs (even without knowing which route was used) by collecting

information about drug activity from paid informants, or refine their assessment about the location

of production facilities by collecting information about aircraft flights in and out covert airfields.

The setting also arises in other applications areas such as manufacturing (Cao and Chen 2006).

Consider a firm (the Leader) that outsources production to various plants (the Follower); the

Leader designs contracts to minimize acquisition costs; and once contracts are signed, the plants

configure their operations so as to minimize their operational costs. In practice, firms often do

not know the cost parameters associated with the plants’ operations, and the plants might not

have any incentive to reveal this information to the firm. However, the firm observes outsourced

production, and might have access to some form of periodic financial statements by the plants,

from which cost structures might be inferred.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 3

The subject of learning through repeated sequential interaction between agents has been

addressed in the Game Theory literature, mostly through an axiomatic approach (Fudenberg and

Levine 1998). In this regard, we are motivated by Stackelberg-like interactions, focusing on the

computation of optimal policies. For this, following the bulk of the literature on sequential bilevel

programming, we assume that the Follower is non-strategic, i.e., a short-run player in a finite game

(Fudenberg and Levine 1998), so as to simplify the analysis.

In this work, we aim at closing the gap between the theory and practice of bilevel programming

by jointly incorporating two key aspects of the motivating examples above: the (initial) uncertainty

surrounding certain parameters, and the fact that the Leader’s profit does not necessarily coincide

with the Follower’s cost as in the max-min setting. In this regard, traditional bilevel optimization

literature assumes that all parameters defining the upper/lower-level problems are known upfront

by both agents, and when it does, it is usually in the max-min setting, which henceforth we refer

to as the symmetric setting. While this might not fit most settings in practice, it is often the

case that the Leader might have access to some form of feedback about the Follower’s response to

her decisions. Thus, while the Leader might have limited initial information about the Follower’s

operational parameters, such a knowledge might be refined periodically by using feedback from the

Follower’s reaction.

One possible approach to addressing the uncertainty surrounding the parameters guiding the

Follower’s response is via the use of probability distributions (Hemmecke et al. 2003), which can

be constructed by using historical data, expert opinions, or well-understood physical processes.

However, in many applications, such as the ones presented above, this type of information might

either not be available or sufficient to reliably estimate such distributions.

A possible approach to addressing parametric uncertainty is the multi-armed bandit (Robbins

1952), which can be leveraged to tackle settings with combinatorially many arms (Cesa-Bianchi

and Lugosi 2012, Modaresi et al. 2020). However, current methods do not extend to our setting.

The reason for this is that, unlike in previous work in combinatorial bandits, which take advantage

of the additive nature of the rewards to minimize the exploration of alternatives, in our problem

rewards are the outcome of an optimization problem, and thus lack a structure that can be taken

advantage of. Another ‘distribution-free’ alternative to deal with uncertainty is multi-stage robust

optimization (Bertsimas and Georghiou 2015, Lorca et al. 2016). This approach, however, assumes

a worst-case realization of the uncertainty and typically considers a one-level problem (rather

than a bilevel) at each stage. Perhaps more importantly, this method deals with time-independent

uncertainty, thus the learning process of the Leader cannot be addressed because modeling

learning requires having dependent uncertainty sets.

4 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

A different approach that incorporates specific forms of feedback from the Follower’s actions

and deals with two-level optimization problems is given by sequential interdiction problems under

incomplete information (Borrero et al. 2016, 2019). As mentioned earlier, these models assume

a (symmetric) max-min relationship between a Leader’s profit and a non-strategic Follower’s

cost. We are instead motivated by settings where the Leader and the Follower’s objectives do not

necessarily coincide, which we refer to as the asymmetric setting.

For example, in the context of drug smuggling, the border patrol might be interested in min-

imizing the evasion probability, while the evader might be maximizing the evasion probability,

respectively. However, their costs coefficients (e.g., arc costs in the underlying transportation net-

work) might be not necessarily aligned, i.e., “the players may not have the same perception of their

problem data” (Smith and Song 2020). Alternatively, the evader might be optimizing some other

measure, e.g., minimizing transportation costs (if either being unaware or simply ignoring possible

border patrols), or maximizing the expected amount of the drugs smuggled. We refer the reader

to the detailed survey Smith and Song (2020) and the references therein for other examples and

the discussion of network interdiction problems with asymmetric settings.

Similarly, in the context of manufacturing, in general, the firm’s procurement costs (e.g., reg-

ulated by a contract) do not necessarily match the plants’ cash flows (which depends on how

production is executed). Broadly speaking, many settings of interest are asymmetric in a sense that

the Leader’s profit does not necessarily coincide with the Follower’s cost as in the max-min setting.

Moreover, we will see that policies adapted from the existing work for the max-min case (Borrero

et al. 2016, 2019) do not perform well in the asymmetric setting. In particular, such policies might

stall and implement sub-optimal interdiction actions indefinitely.

Research goal. Considering the issues above, in this paper we analyze sequential bilevel linear

programming where the Leader has incomplete information about the parameters defining the

Follower’s lower-level problem, but has access to feedback from the Follower’s response in each

period. Our research goal is two fold. First, we aim at studying the performance of policies

adapted from extant research in terms of their convergence and the optimality guarantees they

provide. Second, we aim at developing policies that converge to the optimal “full information”

solution that a Leader with prior knowledge on the Follower’s parameters would implement, and

that are able to signal in real time when such a convergence has been achieved.

Specifically, we consider a class of online optimization problems, which we refer to as sequential

bilevel linear problems with incomplete information (SBPI). We assume that the Leader and the

Follower interact across a set of given time periods T , and that the Leader knows all the parameters

of the Follower’s problem except for his cost vector, which she knows is time-invariant (see Section

6 for a discussion on time-variant settings) and belongs to a given uncertainty set. At each period

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 5

t∈ T , the Leader selects a feasible upper-level solution xt, and then the Follower, who knows his

cost vector with certainty, selects (rather non-strategically) an optimal response yt to xt. Such

response in turns generates some information feedback, which is observed by the Leader. We consider

three different types of feedback: Standard, where the Leader observes both the values of the

upper- and lower-level objective functions; Value-Perfect, where in addition to Standard feedback,

the Leader observes the lower-level objective coefficients associated with all activities performed

by the Follower at t; and Response-Perfect, where in addition to Standard feedback, the Leader

observes the Follower’s response yt. The Leader might use this feedback to refine her belief about

the unknown cost coefficients, and thus improve her decision-making in subsequent time periods.

Following extant literature (Borrero et al. 2019), we assess policy performance in terms of their

time stability, which is defined as the number of periods it takes a policy to converge to the solu-

tion implemented by an oracle Leader with complete prior knowledge of the Follower’s objective

function. Note that time stability is closely connected to the notion of regret in online optimiza-

tion (Cesa-Bianchi and Lugosi 2006), as a finite upper bound on time stability implies a finite upper

bound on regret. Our analysis follows closely that by Borrero et al. (2019), who studies sequential

interdiction in the max-min setting, when the Leader is not only unaware of the Followers’ objective

function (and thus, her own), but also about other parameters defining the Followers’ response.

(While we restrict uncertainty to the Follower’s objective, further uncertainty can be handled fol-

lowing the framework presented in Borrero et al. (2019); we do not consider such an extension here,

so as to streamline the exposition.) Because our work can be seen as extending the model of Borrero

et al. (2019) to asymmetric settings, we connect our results to those in the aforementioned work

throughout the manuscript. The reader is directed to Appendix B for a summary of the setting and

results in Borrero et al. (2019). There, we provide a comparative analysis of our setting and results.

Contribution. Our work contributes to the literature on online optimization in various fronts.

First, we show that in the general asymmetric case, policies adapted from the max-min (symmetric)

setting might fail to converge to the full-information solution, even when all information contained

in the feedback is used, and thus it is not possible to bound their time stability. From the Leaders’

perspective, such policies operate as if the Follower was also unaware of his objective function and

adopt a robust approach to handling such uncertainty; assuming this, the Leader acts greedily,

selecting the action that maximizes the immediate profit (Borrero et al. 2019).

Second, we reinterpret the ideas behind the aforementioned policies in the context of our setting,

and propose the family of the Greedy and Best-Case policies, which, as we show, converge to the

full-information solution, and provide certificates of optimality in real time, under mild conditions,

even when feedback is Standard, see Theorem 2. From the Leaders’ perspective, these policies

operate as if the Leader was able to select the cost vector that the Follower would face, and acts

6 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

greedily by selecting the action that maximizes the immediate profit. (This is only an artifact,

as the Follower knows the actual cost vector and acts upon such a knowledge.) We show that

convergence to the full-information solution can be checked on each period, simply by comparing the

Leaders’ expected benefit (if her choice of costs was correct) and the observed one, see Theorem 1.

Furthermore, to alleviate potential scalability issues, we discuss a modified policy that ensures

convergence to constant-factor approximate full-information solutions, see Corollary 1.

Third, a key distinctive feature of our work, relative to Borrero et al. (2019), is that our analysis

assumes that the Leader have some discretion on the use of the information contained in Stan-

dard feedback beyond the value or response-perfect cases. This leads to a series of possible update

mechanisms, which affect the practical implementation of the proposed policies. In particular, we

show that the best “use” of the information leads to a full update of the uncertainty set. We

show however, that such an update is rather intractable as it is non-convex and non-closed, and

does not lend itself to a mixed-integer representation of the uncertainty set in each period, which

prohibits the use of mixed-integer programming-based approaches to implement Greedy and Best-

Case policies. For this reason, we consider additional Cvx and NCvx update mechanisms, which

differ in the amount of information incorporated while trading tractability of their representation.

These updates are amenable to implementation (in particular, are more easily incorporated into

mixed-integer programming-based approaches for policy implementation), and thus are used in our

computational experiments. In this regard, our numerical results suggest that update mechanisms

that consider a better use of the information also provide better performance. Despite its good

practical performance, we show that in general such updates do not guarantee convergence to the

full-optimal solution under Greedy and Best-Case policies, as such policies might stall and imple-

ment suboptimal solutions indefinitely, even under Value-Perfect or Response-Perfect feedback.

Considering the above, our third contribution is showing that if the Follower’s problem admits

a linear-programming (LP) representation, then the uncertainty set is mixed-integer linear

representable under both the Cvx and the NCvx update mechanisms. Moreover, we show that

the proposed policies can be implemented by solving a series of mixed-integer linear programs.

Regarding the case of the full update mechanism, we present an approximate mechanism that adds

a series of “non-repetitive” linear constraints to the NCvx mechanism (and thus, it is mixed-integer

representable), and show that such an approximation yields a bound on time stability, which

coincides with that provided by the full update mechanism under certain conditions. Following

our motivating example on drug smuggling, our experiments, as well as the illustrating examples

presented throughout the paper, consider instances of asymmetric shortest path interdiction

problems (see Example 1), understanding that the theoretical developments in the paper, as well

as the proposed policies, apply to the more general bilevel linear setting.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 7

To assess the performance of the various policies introduced, we perform an extensive series of

computational experiments under various combinations of feedback and update mechanisms. In

our results, the time stability of the proposed policies is considerably better than the worst-case

theoretical bound, and quite close to the number of actions of the Follower. The latter observation

suggests that under certain assumptions on the feedback and the update mechanisms, the Greedy

and Best-Case policies might be worst-case optimal. That is, the proposed policies might the

best possible, when evaluated against settings that while consistent with the prior information, are

designed so as to result in the largest time-stability.

Structure of the paper. In the next section we formally introduce sequential bilevel linear

problems with incomplete information, and present the different update mechanisms and feedback

types. Section 3 analyzes the theoretical performance of the Greedy and Robust policies, while

Section 4 presents such an analysis for the newly proposed Greedy and Best-Case policies. Details

for policy implementation when the Follower’s problem admits an LP representation are presented

in Section 5, together with our numerical experiments. Finally, in Section 6 we provide conclusions

and possible directions for future research. Proofs of all results are relegated to Appendix A.

2. Problem Formulation

Overview. Consider two decision–makers, the Leader and the Follower, that interact sequentially

in each time period t in T = {1, . . . , T}. At period t, the Leader acts first by selecting xtr, the usage

level of each resource r in a set R; and after observing the Leader’s decision, the Follower selects

yta, the usage level of each activity a in a set A.

We assume that the Leader’s payoff is a time-invariant, known and linear function of xt and yt,

and that the Follower’s cost is the dot product between yt and a time-invariant cost vector c, known

to the Follower but not to the Leader. Instead, we assume that the Leader maintains an uncertainty

set U t, which is known to contain c. (Thus, U1 represents the Leader’s initial knowledge about c.)

At each time t∈ T the following sequence of events takes place:

1. Knowing that the cost vector c lies in an uncertainty set U t, the Leader chooses an (upper-

level) resource-usage vector xt within a feasible region X.

2. Observing the Leader’s decision, the Follower chooses a (lower-level) activity-usage vector yt

from a region Y (xt), which depends on the Leader’s decision.

3. The Leader collects the period’s profit and observes a feedback Kt, which is used, via an update

mechanism, to update the uncertainty set U t+1.

Regarding this last step, and borrowing from extant literature, we consider various form of feedback,

all of which include the Follower’s and Leader’s cost and profit, respectively.

8 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Assuming that the Follower is non-strategic and greedy, and that the Leader maximizes her cumu-

lative profit, a feasible policy (for the Leader) is a sequence of set functions that, on each period,

map the history of the interaction to a feasible resource-usage vector. In presenting and analysing

the proposed policies it is helpful to think about the uncertainty set U t as mapping the history of

the process to actionable information on c, so that a policy is characterized by how it selects a usage

vector as a function of U t; and how it uses the feedback generated to update U t+1. In this regard,

our analysis shows that this two components are interconnected as, for example, the tractability of

the update mechanism affects the complexity of choosing a resource-usage vector, and vice-versa.

Next, we formally introduce the components of interaction, as described above. For that purpose,

we use bold symbols to denote the parameters of either the Leader’s or the Follower’s problems.

The Follower’s response. Suppose the Leader selects xt := (xtr : r ∈R) in period t∈ T . Following

extant literature, we assume that the Follower then selects yt := (yta : a ∈ A) from his rational

reaction set

Z(xt;c) := arg min
{
c>y : y ∈ Y (xt)

}
, (1)

with Y (x) =
{
y ∈R|A|+ : F y+Lx≤ f

}
for all x ∈R|R|. Thus, the Follower minimizes a linear cost

function, whose coefficients are given by the vector c, subject to polyhedral constraints. Note that

this prevents any strategic behavior on the Followers’ behalf. The cost perceived by the Follower

is given by

z(xt;c) := min
{
c>y : y ∈ Y (xt)

}
. (2)

Note that the Leader’s decisions affect the feasible region in (1). We assume all parameters above

are known to the Follower upfront, so that yt can be computed upon observing the value of xt.

The Leader’s decision. The Leader collects a profit in each time period, and aims at maximizing

the cumulative profit throughout the horizon. We assume that the Leader’s profit in period t is a

linear function of both the Follower’s decision yt, and the Leader’s decision xt, which is constrained

to lie within a region X :=
{
x ∈ R|R|−I+ × ZI+ : Hx ≤ h

}
, where I ≤ |R|. With this, the Leader’s

profit in period t is given by w(xt, yt), where

w(x, y) = b>x+d>y, y ∈ Y (x), x∈X.

Here, b relates to the profit generated by the Leader directly from her actions, and d relates to

those generated by the Follower’s reactions to said actions. Note that, given xt ∈X, the Follower’s

response lies within the set Z(xt;c), and assume that whenever such a set is not a singleton, the

Follower’s response yt takes the value that is most beneficial to the Leader; this optimistic approach

is standard in the bilevel literature (Dempe 2002). With this, the Leader’s profit depends solely on

xt, and is given by

w̃(xt;c) := b>xt + v(xt;c),

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 9

where

v(x;c) := max
{
d>y : y ∈Z(x;c)

}
, x∈X. (3)

Note that we implicitly assume that the Follower knows d (i.e., knows how the lower-level actions

impact the Leader, see below); and reacts in accordance with the optimistic approach to bilevel

programming. For a given sequence of decisions {xt : t∈ T }, the Leader’s total cumulative profit is

given by

P(
{
xt : t∈ T

}
;c) :=

∑

t∈T
w̃(xt;c).

Information setting. A key feature of this work is that we assume that, at time t = 1, the

Leader does not know with certainty the parameters defining the Followers response, and thus

can not optimize her profit P directly. In particular, we assume that while the Leader knows her

profit function (i.e., knows b and d), she does not know c, the cost coefficients on the Follower’s

objective function. Note that, were the Leader certain about the value of c, then in each period

she would implement an optimal solution to the bilevel deterministic problem:

w̃∗(c) := max{b>x+ v(x;c) : x∈X}. (4)

We call this the full-information solution to the Leader’s problem. Instead, we assume that the

Leader only knows that c lies within a known polyhedral uncertainty set U1 (Ben-Tal et al. 2009),

given by

U1 = {ĉ∈R|A| : G1ĉ≤ g1}.

(Recall our assumption that, unlike the Leader, the Follower has all information needed to solve

problem (1) and compute yt.) Our modeling choice aims at representing that while the Leader

might be aware of her own objective, resources and capabilities, she might not fully understand

the Followers’ rationale (a more general setting considering uncertainty on additional parameters

defining the Followers response would admit a similar treatment (Borrero et al. 2019)). In this

regard, we do not consider uncertainty surrounding the Leader’s own parameters; however, we

discuss the challenges associated with extending our approach to incorporate uncertainty on the

Leader’s parameters in our conclusions.

Remark 1. It is important to note that the setting described above does not generalize the

max-min problem studied by Borrero et al. (2019), since that setting considers uncertainty

surrounding the Leader’s objective (e.g., considering uncertainty about the value of d).

10 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Remark 2. While the assumption that the uncertainty set is polyhedral is required to compute

our proposed policies using mixed-integer linear programming, the theoretical results (which the

exception of those involving polyhedral dimension) do not require this assumption. In fact, these

results, which include convergence guarantees, hold for any non-empty compact uncertainty set,

see Appendix A.

Feedback. Our model assumes that, on period t, after implementing both xt and yt, a feed-

back Kt :=K(xt, yt;c) is observed by the Leader. We use the three types of feedback functions K
introduced by Borrero et al. (2019):

(i) Standard feedback: At each time t ∈ T the Leader learns the values of z(xt;c) and of

v(xt;c) := w̃(xt;c)− b>xt (because b and xt are known by the Leader, this is equivalent to

learning w̃(xt;c)). Thus, under standard feedback, we have

K(xt, yt;c) =
{
z(xt;c), w̃(xt;c)

}
.

(ii) Response-Perfect feedback: At any time t ∈ T , in addition to Standard feedback, the

Leader learns the value of yta for all a ∈A such that yta > 0. Thus, under standard Response-

Perfect feedback, we have

K(xt, yt;c) =
{
z(xt;c), w̃(xt;c), yta for a∈A s.t. yta > 0

}
.

(iii) Value-Perfect feedback: At any time t ∈ T , in addition to Standard feedback, the Leader

learns the value of ca for all a∈A such that yta > 0. Thus, under standard Value-Perfect feed-

back, we have

K(xt, yt;c) =
{
z(xt;c), w̃(xt;c), cta for a∈A s.t. yta > 0

}
.

For example, in the smuggling interdiction setting, the Follower’s objective may correspond to

either maximizing the expected amount of the drugs smuggled, maximizing the evasion probability,

or simply minimizing the transportation costs. Then standard feedback corresponds to observing

the Leader’s and Follower’s objective function values given both the Leader’s and the Follower’s

decisions. From the application perspective such values can be inferred by exploring various types

of available data (e.g., prices in illegal markets, enforcement and punishment records from the

law-enforcement agencies); see Buehn and Eichler (2009), Gathmann (2008), Magliocca et al.

(2019), Yürekli and Sayginsoy (2010), Yang et al. (2019) and the references therein. Similarly,

Response-Perfect and Value-Perfect feedback might correspond to the law-enforcement observing a

particular network route and its arc costs, respectively, from the available intelligence information,

e.g., satellite images, communication interceptions.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 11

2.1. Sequential bilevel problem with incomplete information (SBPI).

Let us revisit the definition of P. Because the Leader’s decisions might adapt to the feedback

collected on each period, we have that, in full generality, a (Leader’s) policy π := (πt : t ∈ T) is a

sequence of set functions such that xt = πt(Ht(π;c))∈X, where Ht(π;c) := (x1,K1, . . . , xt−1,Kt−1)

denotes the history of upper-level decisions made, and feedback collected, up to time t≥ 1, where

we defineH1 = ∅. Note that such a history depends on the actual value of c and π (although we have

suppressed the dependencies of actions and feedback on these values, to streamline the exposition).

Accounting for these dependencies, and considering that c is initially unknown, it is possible to

define the Leader’s problem by assuming that, given U1, the Leader focuses on maximizing profits

assuming a worst-case realization of c, for a given policy π. That is, the Leader’s problem becomes

max
π∈Π

inf
c∈U1

∑

t∈T
w̃(πt(Ht(π;c));c),

where Π denotes the set of feasible policies. In the remainder of the paper whenever discussing a

particular policy π, we use a superscript π to discuss vectors and quantities associated with it.

Fixing all parameters known upfront by the Leader, we define the time stability τπ(c) associated

with policy a π ∈Π and a cost vector c∈ U1 as

τπ(c) := inf{t∈ T : w̃(xt,π;c) = w̃∗(c) for all s≥ t}.

In words, the time stability of a policy is the first time period by which the Leader implements

the optimal full-information solution to (4), from there on. Following extant work, we focus our

attention in minimizing the worst-case time stability (across all instances of SBPI).

2.2. Learning New Information: Uncertainty Set Updates

As mentioned earlier, we can think of the uncertainty set U t as mapping the history of the

interaction into actionable information on c, so that policies might be characterized, partially, by

the process by which they select the vector xt, as a function of this information. In this regard,

the next sections show that policies from extant work and those proposed in this work choose xt

by solving mathematical programs that take U t as input. In this context, a policy is characterized

also by the update mechanism it uses on each period to incrementally combine current information

on c (i.e. the uncertainty set U t) with the most recent information on the interaction (i.e. the

feedback Kt) to produce new knowledge on c (i.e. the set U t+1).

Formally, we define an update mechanism U as a mapping from uncertainty sets and feedback

into a new uncertainty sets, so that

U t+1 =U(U t,Kt).

12 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Consider x∈X and y ∈Z(x;c): we say an update mechanism is valid if it does not cut off the cost

vector c, i.e. c ∈ U(U ,K(x, y;c)) whenever c ∈ U , and does not increase the uncertainty about c,

i.e. U(U ,K(x, y,c))⊆U .

Intuitively speaking, smaller uncertainty sets should translate into better decisions, so that one is

to prefer update mechanisms that produce smaller sets. At the same time, because of their potential

role in the computation of xt, one should also prefer updates that result in tractable representations

of the uncertainty sets (as such representations might be incorporated, for example, in a mathemati-

cal formulation). Next, we present three such valid update mechanisms for the case of Standard feed-

back, i.e., where the Leader observes Kt = (z(xt;c), w̃(xt;c)). The first mechanism uses the fact that

cost z(xt;c) is associated with the Follower’s rational response, and results in a polyhedral represen-

tation of the uncertainty sets; the second mechanism adds the fact that profit w̃(xt;c) is also asso-

ciated with the Follower’s rational response, and results in uncertainty sets that are not necessarily

convex; and the third one incorporates the fact that the Follower’s response follows the optimistic

approach to bilevel programming, and results in uncertainty sets that are not necessarily closed.

Cvx update. In this update, at any time t∈ T , the Leader only uses the fact that z(xt;c) is the

optimal value of the Follower’s problem. In particular,

U(U t,Kt) = U t ∩Ct, where Ct := {ĉ∈R|A| : z(xt; ĉ)≥ z(xt;c)}. (5)

One can check the update is trivially valid. Note that the uncertainty set resulting from this update

is a semi-infinite linear set (i.e., a set with infinitely many constraints), and thus can be transformed

into a lifted polyhedron by exploiting LP duality. That is,

Ct =
{
ĉ∈R|A| : ∃ qt ∈Rm+ s.t. (Lxt−f)>qt ≥ z(xt;c),−F>qt− ĉ≤ 0

}
,

where m denotes the size of f . Thus, U t is a polyhedron for all t∈ T under this update.

NCvx update. In this update, at time t∈ T the Leader uses the fact that z(xt;c) is the optimal

value of the Follower’s problem and that the Leader’s profit is w(xt;c). Formally, U(U t,Kt) =

U t ∩N t where

N t :=
{
ĉ : ∃y ∈Z(xt; ĉ) s.t. ĉ>y= z(xt;c) and b>xt +d>y= w̃(xt;c)

}
.

This update is trivially valid, and stronger than the Cvx update in the sense that N t ⊆ Ct. The

name of the update follows as N t is the set of solutions of an inverse value linear optimization

problem (Ahmed and Guan 2005) and as such, it is a non-convex set in general. It is readily checked

that N t can be viewed as the following union of polyhedra

N t =
⋃

y∈E(xt,w̃(xt;c))

{
ĉ : ĉ>y= z(xt;c), z(xt; ĉ) = z(xt;c)

}
, (6)

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 13

where E(x,w) :=
{
y ∈ Y (x) : b>x + d>y = w

}
. (To see this, note that z(xt; ĉ) = z(xt;c) = ĉ>y

implies that y ∈ Z(xt; ĉ).) Therefore, under the assumption that the Follower always chooses an

extreme point optimal solution (in case of multiple optimal solutions), Y (x) can be replaced by its

set of extreme points, thus E(xt, w̃(xt;c)) is finite and N t is a finite union of polyhedra.

Observe that this update uses more information in the feedback than the Cvx update (and thus,

one would expect that N t ⊂Ct) and hence it should lead to better decisions. However, this comes

at the price of more convoluted representation of U t.

Full update: In this update, in addition to the information used in the NCvx update, the Leader

uses the fact that yt must “favor” the Leader, in the sense of (3). Thus, a feasible ĉ must belong

to N t and be such that d>yt = v(xt; ĉ). In other words, U(U t,Kt) = U t ∩F t where

F t :=
{
ĉ : ∃y ∈Z(xt; ĉ) s.t. ĉ>y= z(xt;c), b>xt +d>y= w̃(xt;c) and d>y= v(xt; ĉ)

}
. (7)

An alternative equation for F t is given by

F t =
⋃

y∈E(xt,w̃(xt;c))

{
ĉ : ĉ>y= z(xt;c), z(xt; ĉ) = z(xt;c) and d>y= v(xt; ĉ)

}
.

We call this update “full” as it incorporates all information from Standard feedback. The update

is in general non-convex, and it might result in non-closed sets. The following example illustrates

the update mechanisms described above.

Example 1 (Asymmetric Shortest Path Interdiction.). Consider the bilevel problem

known as the asymmetric shortest path interdiction problem (ASPI) (Bayrak and Bailey 2008).

Here, the Follower’s objective is to move between two fixed nodes at a minimum cost and the

objective of the Leader is to interdict k arcs to maximize the profit of the shortest path that the

Follower uses (note that it is also assumed that b = 0). If the Follower uses arc a ∈ A then he

incurs a cost of ca and the Leader gets a profit of da; in general, ca 6= da. The Leader does not know

the cost vector c, but she knows that the cost of arc a lies in the interval ca ∈ [`a, ua], `a ≤ ua.
Figure 1 illustrates an instance of ASPI, where we assume that k = 1. Next, we illustrate the

various update mechanisms under Standard feedback by means on an example. For simplicity, we

include in U1 only those costs which the Leader does not know with certainty, thus U1 = [0,10]5.

Suppose that at time t = 1 the Leader interdicts arc (1,2); thus, the Follower’s solution is y1 =

1 − 3 − 7, which gives z(x1;c) = 3 and w̃(x1;c) = 10 (recall that under Standard feedback, the

Leader is only aware of the values of z(x1;c) and w̃(x1;c)). In this case, the set C1 induced by the

Cvx update in equation (5), corresponds to the cost vectors that make the shortest path in the

network after (1,2) is interdicted to be greater than or equal to 3. In other words, C1 reduces to

C1 = {ĉ : ĉ1j ≥ 2, j = 3, . . . ,6},

14 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming
Borrero, Prokopyev, and Sauré: Sequential Bilevel Interdiction with Learning under Asymmetric Information 11

1 4

3

2

5

6

7

[0
,1
0]
,1
,1

[0,1
0],2

,3

[0,10],3,2

[0,10],4,4
[0,10],5,6

[1,1],1,1
[1,1],1,7

[1,1],1,8

[1,1
],1,

5

[1
,1
],1
,5

Figure 1 Instance that illustrates the different updating mechanisms. We assume that k= 1. The arcs’ labels are

given by [�a, ua], ca, da.

1− 3− 7, which gives z1 = 3 and w1 = 10 (recall that under standard feedback, the Leader is only

aware of the values of z1 and w1). In this case, the convex update in equation (5) reduces to

C1 = {ĉ : ĉ1j ≥ 2, j = 3, . . . ,6},

or, in other words U1 = [0,10]× [2,10]4. On the other hand, the non-convex update (6) reduces to

N 1 = {ĉ : ĉ13 = 2, c1j ≥ 2, j = 4,5,6}∪ {ĉ : ĉ14 = 2, c1j ≥ 2, j = 3,5,6},

and thus, U1 =
(
[0,10]×{2}× [2,10]3

)
∪
(
[0,10]× [2,10]×{2}× [2,10]2

)
. Finally, the full update is

very similar to the non-convex update, with the exception that any ĉ that allows 1-6-7 to be the

shortest path must not be included, as it will allow 1-6-7 to be a shortest path with an upper-level

value larger than w1 = 10. Thus, any ĉ such that ĉ16 = 2 should be deleted and it follows that

F1 = {ĉ : ĉ13 = 2, c14 ≥ 2, c15 ≥ 2, c16 > 2}∪ {ĉ : ĉ14 = 2, c13 ≥ 2, c15 ≥ 2, c16 > 2}.

In this case, U1 becomes the non-closed and non-convex set U1 =
(
[0,10]×{2}× [2,10]2× (2,10]

)
∪

(
[0,10]× [2,10]×{2}× [2,10]× (2,10]

)
.

In addition to the updating mechanisms described above, the Leader can also implement addi-

tional updates if she has access to Value-Perfect or Response-Perfect feedback. Below, we describe

the corresponding mechanisms.

Response-Perfect update. This update assumes that the Leader observes the Follower’s

response, i.e., at time t∈ T the Leader observes yt. Thus, we have that U t+1 = U t∩M t∩Rt, where

Rt := {ĉ∈Rn : ĉ�yt = zt} (8)

Figure 1 Instance that illustrates the different update mechanisms. We assume that k = 1. The arcs’ labels are

given by [`a, ua], ca, da.

or, equivalently U2 = [0,10]× [2,10]4. On the other hand, to compute the NCvx update, consider

first the set E(x1,10). This set consists of the paths that remain after (1,2) is interdicted that have

an upper-level cost b>x1 + d>y1 is equal to 10. Because b = 0, it is readily seen that these paths

are 1-3-7 and 1-4-7, i.e., abusing the notation E(x1,10) = {1−3−7,1−4−7}. Now, for path 1-3-7,
{
ĉ : ĉ>y = z(xt;c), z(xt; ĉ) = z(xt;c)

}
is the set of cost vectors that make 1-3-7 a shortest path

of length 3 in the network that remains after (1,2) is interdicted, i.e., this set is {ĉ : ĉ13 = 2, c1j ≥
2, j = 4,5,6}. Performing a similar analysis to 1-4-7, gives that the NCvx update (6) reduces to

N 1 = {ĉ : ĉ13 = 2, c1j ≥ 2, j = 4,5,6}∪ {ĉ : ĉ14 = 2, c1j ≥ 2, j = 3,5,6},

and thus, U2 =
(
[0,10]×{2}× [2,10]3

)
∪
(
[0,10]× [2,10]×{2}× [2,10]2

)
.

Finally, the full update is very similar to the NCvx update, with the addition that for each path

y ∈E(x1,10) there should not be a c∈
{
ĉ : ĉ>y= z(xt;c), z(xt; ĉ) = z(xt;c)

}
for which there exist

a shortest path under c with an upper-level value greater than 10. For instance, for the case of

1-3-7, {ĉ : ĉ13 = 2, c1j ≥ 2, j = 4,5,6} should not include any vector with c16 = 2, as any such vector

would make 1-6-7 a shortest path with an upper-level value of 11. Repeating this analysis for 1-4-7

gives that

F1 = {ĉ : ĉ13 = 2, c14 ≥ 2, c15 ≥ 2, c16 > 2}∪ {ĉ : ĉ14 = 2, c13 ≥ 2, c15 ≥ 2, c16 > 2}.

In this case, U2 becomes the non-closed and non-convex set U2 =
(
[0,10]×{2}× [2,10]2× (2,10]

)
∪

(
[0,10]× [2,10]×{2}× [2,10]× (2,10]

)
.

In addition to the update mechanisms described above for the case of Standard feedback, the

Leader can also implement additional updates when she has access to Value-Perfect or Response-

Perfect feedback.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 15

Response-Perfect update. Suppose that the Leader has access to Response-Perfect feedback

(i.e., in addition to standard feedback, the Leader observes the Follower’s response), and consider

the update in which the Leader, in addition to potentially using the information in one of the

updates listed for the case of standard feedback (encoded in M t) uses the fact that yt is the

Follower’s rational response, i.e., U(U t,Kt) = U t ∩M t ∩Rt, where

Rt := {ĉ∈Rn : ĉ>yt = z(xt;c)}

and M t ∈ {∅,Ct,N t,F t}. Note that the set Rt is an hyper-plane.

Value-Perfect update. Suppose that the Leader has access to Value-Perfect feedback (i.e. in

addition to standard feedback, the Leader observes the some components of c), and consider the

update in which the Leader, in addition to potentially using the information in one of the updates

listed for the case of standard feedback (encoded in M t) uses the fact that some components of c

are observed, U(U t,Kt) = U t ∩M t ∩Vt, where

Vt :=
{
ĉ∈Rn : ĉa = ca ∀a∈A s.t. yta > 0

}

and M t ∈ {∅,Ct,N t,F t}. Note that the set Vt is a polyhedron. Hereafter, we assume that the

Leader implements a Value-Perfect/Response-Perfect update whenever the feedback is Value-

Perfect/Response-Perfect. Regarding the standard-feedback component of an update mechanism

(i.e., the choice of M t above), we say the mechanism is strong whenever M t 6= Ct.

Remark 3. In the above, we include the possibility of selecting M t = ∅, as in the analysis in

Borrero et al. (2019).

3. Greedy and Robust Policies

The framework developed so far builds largely on that presented by Borrero et al. (2019), which

studies sequential max-min bilevel interdiction problems. In particular, if one constrains uncertainty

in such a framework to be restricted to objective function coefficients, one recovers a variation of

the problem studied in our work, in the special case when b = 0 and d = c (the only difference

would be that both d and c would be initially unknown by the Leader).

In the max-min context, Borrero et al. (2019) introduce a family of greedy and robust policies. One

possible interpretation of the Leader’s rationale behind such policies is the following (we will exam-

ine other in the following section): suppose that in period t∈ T , the Leader chooses xt as her action;

then she anticipates that the Follower will choose his response expecting that “nature” would ulti-

mately choose a vector c from U t so as to damage him as much as possible, hence the robust moniker.

(Regarding the specification of the update mechanism, only the case of Value-Perfect or Response-

Perfect feedback is considered, with the update being that of the previous section, using M t = ∅.)

16 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Remark 4. Note that this is only a construct that the Leader uses to rationalize the policy: recall

that the Follower actually knows the value of c, thus he does not actually use a robust approach to

decision making; it is the Leader’s uncertainty with regard to c that is somewhat projected into

her perception of the Follower’s decision-making process.

Imagining this interaction between the Follower and nature, the Leader then acts greedily, and

chooses xt so as to maximize period t’s profit, hence the greedy moniker. Using this interpretation in

the context of SBPI, one can adapt this set of policies (further denoted by Λ) for our asymmetric

setting as follows. For x∈X and a set U , define

ZGR(x;U) := arg min
{

max{ĉ>y : ĉ∈ U} : y ∈ Y (x)
}
,

and zGR(x;U) := min
{

max{ĉ>y : ĉ∈ U} : y ∈ Y (x)
}

. We say λ∈Λ if and only if

xt,λ ∈ arg max
{
b>x+d>y : y ∈ZGR(x;U t), x∈X

}
. (8)

Because the Follower’s actions actually depend on the true value of c, there will be in general a

disconnect between the feedback that the Leader expects to observe (if the Follower used a robust

approach) and what it is actually observed. Consider the case of Standard feedback: when using

policy λ∈Λ, the Leader expects her profit at period t to be w̃GR(xt,λ;U t), where

w̃GR(x;U) := b>x+ max
{
d>y : y ∈ZGR(x;U)

}
,

and the Follower’s cost to be zGR(xt,λ;U t).
The next lemma shows that, like in the max-min context, whenever the Leader’s expectations

about her own profit are different from what she observes (i.e . w̃(xt,λ;c) 6= w̃GR(xt,λ;U t), then

the Follower must reveal new information to the Leader, under either Value-Perfect or Response-

Perfect. In particular, the dimension of the uncertainty set containing c must decrease.

Lemma 1. Suppose that λ ∈Λ, that Standard Feedback is Value-Perfect or Response-Perfect, and

that the Leader uses the Value-Perfect or Response-Perfect update mechanism with M t = ∅, respec-

tively. If w̃(xt,λ;c) 6= w̃GR(xt,λ;U t), then dim(U t+1)< dim(U t).

Remark 5. Note that the proof on Lemma 1 does not use the fact that the λ policies are greedy.

Hence, the lemma holds for a broader class of policies.

Although policies in Λ assure new information is learned when expectations are not met, they

do not assure that an optimal solution has been found when expectations are met. This behavior

follows from the fact that, in contrast with the max-min setting (see Theorem 1 of Borrero et al.

(2019)), in SBPI the expected profit w̃GR(xt,λ;U t) is not a valid lower or upper bound for neither

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 17

w̃(xt,λ;c) nor w̃∗(c). Indeed, as we show in the next example, it is possible to come up with

settings where w̃(xt,λ;c), w̃GR(xt,λ;U t) and w̃∗(c) are arbitrarily ordered (with the exception that

w̃∗(c)≥ w̃(xt,λ;c), which must always hold as per the optimality of the Follower’s reaction).

Example 2. Next, we give various counterexamples that show that greedy and robust policies do

not yield valid bounds for w̃∗(c) in SBPI. First, in Figure 2a we show an example of an instance

of the ASPI where w̃(xt,λ;c)> w̃GR(xt,λ;U t) and w̃∗(c)> w̃GR(xt,λ;U t) (recall that b= 0 in ASPI).

Here (and in the remaining counterexamples), the objective of the Follower is to move between

nodes 1 and 7, and we consider k = 2. Observe that if the Leader is deciding robustly, then she

assumes that the cost that the Follower incurs by traversing an arc is given by ua. Hence the

solution for any policy λ ∈ Λ is to block arcs (1,2) and (1,3) (or more generally to block the two

upper-most paths). Given this, the Leader expects that the Follower uses path 1–4–7, and hence she

expects a profit of w̃GR(xt,λ;U t) = 60. However, observe that if the Leader blocks (1,2) and (1,3),

then the path that the Follower uses is 1–6–7, which gives a profit of w̃(xt,λ;c) = 80 to the Leader.

Observe moreover, that w̃∗(c) = w̃(xt,λ;c), so this example also shows that w̃GR(xt,λ;U t)< w̃∗(c).

1 4

3

2

5

6

7

[1
,1
0]
,5
,2
0

[1,
11]

,4,
18

[1,12],3,30

[1,13],2,17[1,14],1,40

[1,10],5,20[1,11],4,18

[1,12],3,30

[1,
13]

,2,
17

[1
,1
4]
,1
,4
0

(a)

1 4

3

2

5

6

7

[1
,1
0]
,5
,2
0

[1,
11]

,4,
18

[1,12],3,30

[1,13],1,17[1,14],2,40

[1,10],5,20[1,11],4,18

[1,12],3,30

[1,
13]

,1,
17

[1
,1
4]
,2
,4
0

(b)
Figure 2 Example of instances when (a) w̃(xt,λ;c)> w̃GR(xt,λ;U t) and (b) w̃(xt,λ;c)< w̃GR(xt,λ;U t). The arcs’

labels are given by [`a, ua], ca, da.

Conversely, Figure 2b shows an example of an instance of the ASPI where w̃(xt,λ;c) <

w̃GR(xt,λ;U t). Here, the solution for any policy λ ∈ Λ is to block again arcs (1,2) and (1,3), and

as before, the Leader expects that the Follower uses path 1–4–7. This yields an expected profit of

w̃GR(xt,λ;U t) = 60. However, observe that if the Leader blocks (1,2) and (1,3) then the path that

the Follower uses is 1–5–7, which gives a profit of w̃(xt,λ;c) = 34 to the Leader.

Finally, in Appendix C we provide additional examples (i) with w̃∗(c) < w̃GR(xt,λ;U t), and

(ii) where the fact that w̃(xt,λ;c) = w̃GR(xt,λ;U t) does not imply that w̃(xt,λ;c) = w̃∗(c).

18 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Following the discussion, one can also show that the fact that the expected cost for the Follower

matches the observed cost (i.e., z(xt,λ;c) = zGR(xt,λ;U t)), does not imply that decision xt,λ is

optimal. Moreover, when z(xt,λ;c) = zGR(xt,λ;U t), the solution used by the Follower might not

reveal any new information, and thus, the Leader might not learn anything; furthermore, at time

t+ 1 the decision of time t is going to be repeated. In other words, policies in Λ might stall, i.e.,

might repeat a sub-optimal solution in all time periods indefinitely without forcing the Follower to

reveal any new information. The next example illustrates these facts.

Example 3. Figure 3 shows an example in the ASPI where the fact that z(xt,λ;c) = zGR(xt,λ;U t)
does not imply that w̃(xt,λ;c) = w̃∗(c). Observe that any policy in λ blocks at least one arc among

(1,3) and (3,7) but keeps path 1–4–7 unblocked, and hence, the Leader expects that the Follower

uses path 1–4–7 at a cost of zGR(xt,λ;U t) = 14. Given the real costs of arcs (1,4) and (4,7), then

the Follower uses the same path 1–4–7 and incurs in the same cost of z(xt,λ;c) = 14, which gives

the Leader a profit of w̃(xt,λ;c) = 6. However, it is seen that an optimal full-information solution

is to remove (1,3) and (1,4), forcing the Follower to use path 1–5–7, and giving the Leader a profit

of w̃∗(c) = 8.
16 Borrero, Prokopyev, and Sauré: Sequential Bilevel Interdiction with Learning under Asymmetric Information

1 4

3

2

5

6

7

[1
,1
0]
,9
,1

[1,4
],4,

2

[1,7],7,3

[1,20],8,4
[1,30],9,5

[1,10],9,1
[1,4],4,2

[1,7],7,3

[1,2
0],8

,4

[1
,3
0]
,9
,5

Figure 4 Example of an instance when zt,λ = zt,λG does not imply that wt,λ = w∗. The arcs’ labels are given by

[�a, ua], ca, da.

might not find the optimal solution, and might not provide a certificate of optimality in real time.

Thus, greedy and robust policies as in (10) might fail to converge to an optimal decision in SBPI.

Next, we consider an alternative interpretation of the rationale behind these policies in the

SBPI setting, and show that such an interpretation leads to a new class of policies, that do converge

to optimal decisions, and that provide optimality certificates in real time.

4. Greedy and Best–Case Policies

In the previous section, we showed how Greedy and Robust policies arise in the min-max setting

when the Leader i) acts greedily, and ii) assumes that the Follower is also unaware of the value of

c, and selects his response assuming a robust approach. In this section we consider an alternative

interpretation, emanating from the following observation: in the min-max context, a worst-case

cost realization for the Follower corresponds to a best-case realization for the Leader. Thus, we

adapt the policies from the min-max context to the SBPI context by assuming that the Leader i)

still acts greedily, but ii) assumes that the Follower is also unaware of the value of c, and selects

his response assuming that the actual realization will favor the Leader (i.e., it is the Leader who

ultimately chooses c, as opposed to nature).

The interpretation above gives rise to a class of Greedy and Best-Case policies, which we denote

by Ψ. Thus, we say ψ ∈Ψ if before attaining time-stability (we provide a formal definition below),

one has that

(xt,ψ, ·)∈ argmax
{
b�x+ v(ĉ, x), x∈X, ĉ∈ U t

}
. (11)

Figure 3 Example of an instance when z(xt,λ;c) = zGR(xt,λ;U t) does not imply that w̃(xt,λ;c) = w̃∗(c). The arcs’

labels are given by [`a, ua], ca, da.

The above examples imply that nothing can be said in general about the optimality of xt,λ

whenever the observed feedback matches that expected by the Leader (when she assumes the

Follower uses a robust approach). This behavior is very troublesome as it implies that a policy λ∈Λ

might not find the optimal solution, and might not provide a certificate of optimality in real time.

Thus, greedy and robust policies as in (8) might fail to converge to an optimal decision in SBPI.

Next, we consider an alternative interpretation of the rationale behind these policies in the

SBPI setting, and show that such an interpretation leads to a new class of policies, that do converge

to optimal decisions, and that provide optimality certificates in real time.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 19

4. Greedy and Best–Case Policies

In the previous section, we show how Greedy and Robust policies arise in the max-min setting

when the Leader i) acts greedily, and ii) assumes that the Follower is also unaware of the value of

c, and selects his response assuming a robust approach. In this section we consider an alternative

interpretation, emanating from the following observation: in the max-min context, a worst-case

cost realization for the Follower corresponds to a best-case realization for the Leader. Thus, we

adapt the policies from the max-min context to the SBPI context by assuming that the Leader i)

still acts greedily, but ii) assumes that the Follower is also unaware of the value of c, and selects

his response assuming that the actual realization will favor the Leader (i.e., it is the Leader who

ultimately chooses c, as opposed to nature).

The interpretation above gives rise to a class of Greedy and Best-Case policies, which we denote

by Ψ. Thus, we say ψ ∈Ψ if before attaining time stability (we provide a formal definition below),

one has that

(xt,ψ, ·)∈ arg max
{
b>x+ v(ĉ, x), x∈X, ĉ∈ U t

}
. (9)

(Note that nothing is said with regard to the update mechanism used.) In what follows we study

the conditions under which policies in Ψ provide certificates of optimality in real time and accept

finite upper bounds on time stability. Although the aforementioned upper-bounds are worst-case

exponential, we demonstrate in the experiments of Section 5 that the time stability of these

policies is typically much lower than the upper bounds. In addition, we show that these policies

can handle a broader class of uncertainty sets, without compromising the tractability of the

model. For this, we provide tractable mixed–integer programming formulations of (9), even when

the initial uncertainty set is non-convex. This flexibility contrasts with robust (i.e., worst-case)

approaches, where uncertainty sets are assumed to be convex (Ben-Tal et al. 2009).

4.1. Definitions

For a given set U , define the following mathematical program,

w̃E(U) = max
x,y,ĉ

b>x+d>y (10a)

s.t. x∈X (10b)

ĉ∈ U (10c)

y ∈Z(x; ĉ), (10d)

and let S(U) be the set of optimal solutions, i.e., S(U) := arg max{b>x+d>y : (10b)–(10d) hold}.
For t∈ T define w̄t as the largest profit observed up to period t, i.e.

w̄t := max{w̃(xs;c) : s≤ t}.

20 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

We define ξ ∈ T as the first time t in which the best observed profit so far w̄t coincides with the

Leader’s “expectation”, w̃E(U t). In other words,

ξ := inf{t∈ T : w̄t ≥ w̃E(U t)}.

Also, let s(ξ) ∈ arg max{w̃(xt;c) : t≤ ξ} denote a time period (prior to or equal to ξ) at which

profit w̄ξ is observed.

Definition 1. We say that ψ ∈ Ψ if and only if there exist vectors yt,E and ct,E such that

(xt,ψ, yt,E,ct,E)∈ S(U t) for all t≤ ξ, and xt,ψ = xs(ξ),ψ for all t > ξ.

Note that (xt,ψ, yt,E,ct,E) ∈ S(U t) is such that w̃E(U t) = b>xt,ψ + d>yt,E; we call yt,E the

response that the Leader expects the Follower will use at time t, and ct,E the expected cost vector

at time t. Using this, we define zt,E := (ct,E)>yt,E as the cost the Leader expects the Follower to

incur at time t.

Remark 6. Note that S(U t) is not necessarily a singleton; in such a case, a policy ψ is associated

with a particular rule used to select a solution among those in S(U t), and this includes both the

expected response and cost vector selected. Thus, any two policies ψ and ψ′ selecting the same

decision xt,ψ = xt,ψ
′
in period t but expecting, for example, different Follower’s responses are deemed

as different policies.

The greedy and “best-case” nature of the policies in Ψ is in display in formulation (10), where we

see that the Leader is greedily optimizing a single-period profit, but assumes a best-case realization

for the cost vector. In this regard, the expected response by the Follower is only constrained to be

a best-response to the Leader’s decision, assuming that the cost vector is selected by the Leader.

Note that the policies in Ψ follow such a pattern until period ξ, the point at which the Leader

knows how to produce a profit not lower than that under her rather optimistic approach, thus she

proceeds to implement the best decision tried so far until the end of the horizon.

The next result shows that, for policies in Ψ, the observed and expected profits are valid lower

and upper bounds to the optimal single-period profit, respectively.

Theorem 1. For any policy ψ ∈Ψ and under Standard Feedback, one has that w̃(xt,ψ;c)≤ w̃∗(c)≤
w̃E(U t), for t∈ T . In particular, if for some period t∈ T one has that wE(U t)≤ w̄t, then xs(ξ),ψ is

an optimal solution to the full-information problem, i.e. w̃(xs(ξ),ψ;c) = w̃∗(c).

Theorem 1 can be viewed as the analogous to Theorem 1 in the work by Borrero et al. (2019)

in the max-min setting. Importantly, it implies that by using policies in Ψ the Leader can get a

certificate of optimality in real time. To see this, note that under Standard Feedback, the Leader

observes w̄t for all t ∈ T . Hence, she can verify in real time whether ξ = t, the moment at which

Theorem 1 ensures xs(ξ),ψ is the full-information solution.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 21

Remark 7. The multistage version of the greedy and best case policies would seek to solve

max
x1,x2,...,xT∈X

(
b>x1 + max

c1∈U,y1∈Z(c1,x1)

{
d>y1 + b>x2 + max

c2∈U(x1,y1),y2∈Z(c2,x2)

{
d>y2+ (11a)

b>x3 + max
c3∈U(x[2],y[2]),y3∈Z(c3,x3)

{
d>y3 +

}}})
, (11b)

where for any t∈ T we define x[t] = (x1, . . . , xt); y[t] is defined in a similar way. Note that in order

to include learning into the optimization, the uncertainty set at stage t has to depend on x[t]

and y[t]; this dependence implies the ‘nested’ structure in (11). Clearly, such an approach would

generate upper bounds for w̃∗(c) that are at most equal to w̃E(U t), and thus better, but this would

come at the price of solving the intractable multistage bilevel problem in (11). An interesting

relationship of (11) with adaptive multistage robust optimization (Bertsimas and Georghiou 2015,

Bertsimas and Dunning 2016, Lorca et al. 2016) happens if the Leader takes a worst-case approach

to uncertainty. Such worst-case policy would result in a problem of the form

max
x1,x2,...,xT∈X

(
b>x1 + min

c1∈U
max

y1∈Z(c1,x1)

{
d>y1 + b>x2 + min

c2∈U(x1,y1)
max

y2∈Z(c2,x2)

{
d>y2

b>x3 + min
c3∈U(x[2],y[2])

max
y3∈Z(c3,x3)

{
d>y3 +

}}})
,

which would correspond to a general class of bilevel adaptive robust problems where the uncertainty

set also depends on past decisions. The single-stage version of this policy, at any time t ∈ T ,

would assume that ĉ realizes the value that results in the lowest possible value for d>yt. From

the standpoint of learning, it can be shown that the adaptive robust policy does not provide valid

upper bounds to w̃∗(c) in general in the context of Theorem 1, which implies that it cannot provide

certificates of optimality in real time.

4.2. Convergence of Policies in Ψ

Theorem 1 states a condition under which a policy ψ ∈Ψ provides an optimal solution, but does

not ensure that such a condition would be met within the time horizon. In this regard, note that

the result is independent of the update mechanism used to refine the Leader’s belief about c. Thus,

for example, if no update is ever made (U t = U1 for all t ∈ T), then (unless w̃(x1;c) = w̃∗(c)) the

optimal single-period profit w∗(c) would never be achieved and time stability would be unbounded.

Convergence guarantees for policies in Ψ (i.e., finite upper bounds to their time stability) are

likely to depend on the update mechanism used. In the max-min context, Borrero et al. (2019)

establish finite upper bounds (at most linear in the dimension of the Follower’s cost vector) for

policies in Λ, provided that the feedback is either Value-Perfect or Response-Perfect. Such a result

relies on the fact that whenever the Leader’s expectations do not match what is observed, the

Follower is forced to implement new solutions, which, in turn, reduces the polyhedral dimension of

22 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

the uncertainty set (under Value-Perfect or Response-Perfect updates). This observation provides

a bound to the number of periods until the Leader expectations are met.

In our setting, depending on the feedback available and the update mechanism used, policies in

Ψ might not guarantee that the size of the uncertainty region decreases (which implies that the

arguments in extant work do not apply). In particular, when using policies in Ψ under Standard

Feedback, we have that the polyhedral dimension of the uncertainty set might not be reduced.

Moreover, this fact, which is illustrated in the next example, continues to hold when, in addition,

feedback is either Value-Perfect or Response-Perfect (and the update mechanism include Value-

Perfect or Response-Perfect updates, respectively).

Example 4. In this example we show that even under the strongest possible update mecha-

nisms (that is, full plus Value-Perfect or Response-Perfect updates), policies in Ψ might not force

the Follower to explore a different solution each time. This observation implies that the dimension-

reduction convergence arguments cannot be used to prove the convergence of policies in Ψ.

Consider the instance of ASPI in Figure 4 with k = 2, where the Leader does not know the

costs of arcs (i, j), i= 1, j = 2, . . . ,6, with certainty, but knows the cost of all the other arcs with

certainty. Observe that in this instance the optimal solution of the problem is w̃∗(c) = 8, associated

with blocking arcs {(1,3), (1,4)}.

Borrero, Prokopyev, and Sauré: Sequential Bilevel Interdiction with Learning under Asymmetric Information 19

Follower is forced to implement new solutions, which, in turn, reduces the polyhedral dimension of

the uncertainty set (under Value-Perfect or Response-Perfect updates). This observation provides

a bound to the number of periods until the Leader expectations are met.

In our setting, depending on the feedback available and the update mechanism used, policies in

Ψ might not guarantee that the size of the uncertainty region decreases (which implies that the

arguments in extant work do not apply). Specifically, when using policies in Ψ under Standard

Feedback, we have that the polyhedral dimension of the uncertainty set might not be reduced.

Moreover, this fact, which is illustrated in the next example, continues to hold when, in addition,

feedback is either Value-Perfect or Response-Perfect (and the update mechanism include Value-

Perfect or Response-Perfect updates, respectively).

Example 4. In this remark we show that even under the strongest possible updating mecha-

nisms (that is, full plus Value-Perfect or Response-Perfect updates), policies in Ψ might not force

the Follower to explore a different solution each time. This observation implies that the dimension-

reduction convergence arguments cannot be used to prove the convergence of policies in Ψ.

Consider the instance of ASPI in Figure 5 with k = 2, where the Leader does not know the

costs of arcs (i, j), i= 1, j = 1, . . . ,6, with certainty, but knows the cost of all the other arcs with

certainty. Observe that in this instance the optimal solution of the problem is w∗ = 8, associated

with blocking I∗ = {(1,3), (1,4)}.

1 4

3

2

5

6

7

[0
,1
0]
,6
,5

[0,1
0],2

,2

[0,10],3,3

[0,10],4,4
[0,10],5,5

[1,1],1,5
[1,1],1,2

[1,1],1,3

[1,1
],1,

4

[1
,1
],1
,5

Figure 5 Instance for Remark 4. We assume that k= 2. The arcs’ labels are given by [�a, ua], ca, da.

An optimal solution at time t= 1 is to interdict I1 = {(1,2), (1,3)}, assuming that c1,E14 = c1,E15 = 10

and c1,E16 = 0. This solution expects y1,E to be the path 1-6-7 and gives w1,E = 10. The solution of

Figure 4 Instance for Example 4. We assume that k= 2. The arcs’ labels are given by [`a, ua], ca, da.

A possible action for policies in Ψ at period t = 1 is to interdict x1 = {(1,2), (1,3)}, assuming

that c1,E
14 = c1,E

15 = 10 and c1,E
16 = 10. This solution expects y1,E to be the path 1–6–7 and gives

w̃E(U1) = 10. The solution of the Follower is for y1 to be 1–4–7, which gives w̃(x1;c) = 6. Assuming

Value-Perfect feedback, the Leader updates the uncertainty set by jointly using the Value-Perfect

and the full update, thus

U2 = {ĉ∈ [0,10]5 : ĉ14 = 3, ĉ15 > 3, ĉ16 > 3}.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 23

At time t = 2 an optimal solution for the Leader is to interdict x2 = {(1,3), (1,5)}, assuming

that c2,E
12 = 0, c2,E

14 = 3, and c2,E
16 = 10. This solution expects y2,E to be the path 1–2–7 and gives

w̃E(U2) = 10. Note that the solution of the Follower is again to set y2 equal to 1–4–7, which again

gives w̃(x2;c) = 6. Hence, at time t = 2 the Follower has not revealed any new solution to the

Leader, and moreover, using the full update gives

U3 = {ĉ∈ [0,10]5 : c14 = 3, c12 > 3, c15 > 3, c16 > 3}.

Therefore, under the Value-Perfect and full update, the polyhedral dimension of U3 is the same

as the dimension of U2. Finally, note that the same exact sequence of actions would happen if

instead of Value-Perfect feedback the Leader has access to Response-Perfect feedback and uses the

Response-Perfect update mechanism.

Despite the fact that the polyhedral dimension of the uncertainty set does not decrease in the

previous example, the uncertainty itself shrinks, which might result in the Leader implementing a

different solution at the next period. One might hope that such a variability on the Leader’s actions

might lead to convergence to an optimal solution (as the Leader’s expectations are changing, so

there is a chance that such expectations are met). Unfortunately, the next example shows that if

the full update is not used, then decisions made by policies in Ψ might stall even when feedback is

Value-Perfect and Response-Perfect.

Example 5. In this example we show that policies in Ψ might stall if the full update is not used.

To this end, consider the same instance of Example 4 in Figure 4. Assume that the Leader has

access to Value-Perfect feedback and that she only uses the Value-Perfect mechanism. Here, at

time t= 2 the uncertainty set becomes

U2 = {ĉ∈ [0,10]5 : c14 = 3}.

In this case, at time t = 2 an optimal solution for the Leader is x2 = {(1,2), (1,3)}, as she can

assume that c1,E
14 = 3, c1,E

15 = 10 and c1,E
16 = 0. Thus, y2,E is the path 1–6–7 which gives w̃E(U2) = 10.

Clearly, at time t = 2 the Follower will repeat the solution used at time t = 1 (i.e., w2 = 6) and

therefore U3 = U2. Moreover, in this case the policy stalls because U3 = U2, and it will indefinitely

repeat the same suboptimal solution across all time periods. Importantly, note that the same exact

sequence of actions would happen above, if instead of Value-Perfect feedback the Leader has access

to Response-Perfect feedback and uses the Response-Perfect update mechanism.

On the other hand, suppose that the Leader has only access to Standard feedback and that she

uses the NCvx update. Under this assumption, U2 is as in the full update in Example 4, replacing

> with ≥. In this case, a solution for ψ can be given by x2 = {(1,2), (1,3)} (i.e., x2 = x1) by setting

24 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

c2,E
14 = c2,E

16 = 3 and c2,E
15 = 10, which expects y2,E =1–6–7 and w̃E(U2) = 10. Clearly, as this solution

repeats the actions implemented at t= 1, no new information will be learned by the Leader and the

policy will stall. Moreover, this will be also be the case if the Leader uses jointly the NCvx and the

Value-Perfect or Response-Perfect updates. Finally, in the Cvx update U2 = {ĉ : c1j ≥ 3, j = 4,5,6},
in which case the policy might stall at time t= 2 in a similar way as explained before.

The examples above show that convergence of policies in Ψ cannot be guaranteed in general

when the full update mechanism is not used. Fortunately, it is possible to prove general convergence

results for policies in Ψ when the full update mechanism is used. For this, consider the following

equivalence relation between the elements of the upper-level solution set X.

We say x∈X and x′ ∈X are equivalent (written x∼ x′) if and only if Y (x) = Y (x′). It is readily

seen that ∼ is an equivalence relation, and therefore it induces a partition of X into equivalence

classes. For x∈X we let [x] := {x′ ∈X : x∼ x′} denote the equivalent class to which x belongs. We

have the following result:

Lemma 2. Let ψ ∈Ψ and t ∈ T be given and assume that the Leader implements the full update

mechanism. If xt,ψ ∈⋃s<t[x
s,ψ], then w̃E(U t) = w̃(xt,ψ;c).

Remark 8. In the proof of Lemma 2, it is not sufficient to assume the NCvx update. To see

this, note that under such an update, it is possible that ct,E ∈ U t is such that there exist two

vectors y1, y2 ∈ arg min{(ct,E)>y′ : y′ ∈ Y (xs,ψ)} such that d>y1 = ws,ψ − b>xs,ψ but with d>y2 >

ws,ψ − b>xs,ψ. In such a case, the optimality of xt,ψ would imply that yt,E = y2 and hence the

conclusion of the Lemma would fail to hold.

When coupled with Theorem 1, Lemma 2 states that convergence to the full-information solution

is guaranteed when implementing a decision belonging to the equivalence class of any solution

implemented before (if xt,ψ ∈ ⋃s<t[x
s,ψ], then from Lemma 2 we have that w̃E(U t) = w̃(xt,ψ;c)

and thus, from Theorem 1, w̃(xt,ψ;c) = w̃∗(c)). The next result, which follows directly from this

observation (and therefore, we state without proof), provides a bound for the time stability of the

policies in Ψ.

Theorem 2. Let ψ ∈Ψ be given. If the Leader implements the full update mechanism, then τψ ≤
|{[x] : x∈X}|.

Theorem 2 states that the time stability is bounded by the size of the partition induced by ∼.

Said upper bound can be exponential in the worst-case. Moreover, as per Example 4, the addition

of Value-Perfect or Response-Perfect might not help. However, Theorem 2 states that in settings

where the set of equivalent interdiction solutions is finite, then the proposed policies will not stall.

In practice, as illustrated in the numerical experiments in Section 5, time stability under the full

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 25

update mechanisms exhibits a linear behavior, which is far less than suggested by the upper-

bound; furthermore, these results are significantly improved by the addition of Value-Perfect or

Response-Perfect feedback.

4.3. α-optimal Greedy and Best-Case Policies

Implementing policies in Ψ requires solving formulation (10) with an increasingly more complex

characterization of the set U t, for each update mechanism. For this reason, the amount of resources

required to compute these policies might not scale well, as the size of the instances grow. In this

section, we alleviate this scalability issue, by exploring the use of approximate optimal solutions.

Given a real number α≥ 1, we say that x∈X is an α-optimal solution to the bilevel problem (4)

if it satisfies that α w̃(x;c)≥ w̃∗(c); we assume both w̃(x;c) and w∗(c) are non-negative. We can

extend the definition of the policies in Ψ to account for α-optimal solutions. To this end, let us

denote by Sα(U) the set of α-optimal solutions of problem (10), i.e.,

Sα(U) :=
{

(x, y, ĉ) : αmax
{
b>x+d>y, y ∈Z(x; ĉ), ĉ∈ U

}
≥ w̃E(U), x∈X

}
.

Consider a policy that implements xt such that exist yt,α and ct,α so that (xt, yt,α,ct,α) ∈ Sα(U t),
for all t∈ T and define

ξα := inf{t∈ T : w̄t ≥max
{
b>xt + v(xt; ĉ), ĉ∈ U t

}
}.

Because w̃E(U t)≥ w̃∗(c), and at time ξα we have that αw̄t ≥ αw̃(xt;c)≥wE(U t), this is the first

time we are sure that xt is an α-optimal solution to (4). Let s(ξα) ≤ ξα denote the time period

attaining the maximum w̄ξα .

Definition 2. Let α≥ 1 be given. We say that ψα ∈Ψα if and only if xt,ψα ∈ Sα(U t) for all t≤ ξα,

and xt,ψα = xs(ξα),ψα for all t > ξα.

The policies in Ψα operate as those in Ψ, but solving for α-optimal solutions to problem (10).

Once an α-optimal solution has been found, it is repeated from there on. Note that, by construction,

policies in Ψα provide certificates of α-optimality in real time (t= ξα can be checked in real time).

For the same reason, it is not possible to prove finite bounds for the time stability of policies in Ψα,

even under the full update mechanism. To see this, note that said policies can stall by implementing

an α-optimal solution indefinitely. Nevertheless, it is possible to provide a finite upper bound on

the number of periods until an α-optimal solution has been found.

For any policy π define its α-time-stability, τπα (c), as the first time period by which it can be

assured that w̃(xt;c) is an α-optimal solution of (4) from there on, that is,

τπα (c) := min{t∈ T : αw̃(xs;c)≥ w̃∗(c) ∀s≥ t}.

Observe that for any ψα ∈Ψα it follows that τψαα ≤ ξα. We have the following result.

26 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Corollary 1. Let α≥ 1 and ψα ∈Ψα be given. If the Leader implements the full update mecha-

nism, then τψαα ≤ |{[x] : x∈X}|.

The proof of the result follows the same arguments in the proof of Theorem 2, and thus, it is

omitted.

As a consequence of the above discussion, the Leader can use policies in Ψα as an alternative

to the Greedy and Best-Case policies Ψ. These approximated policies inherit the most important

properties of the policies in Ψ, namely, they ensure convergence to an α-optimal solution in finite

time and provide a certificate of α-optimality in real time.

5. Computational Study

In this section we present a series of computational experiments designed to illustrate the perfor-

mance of the Greedy and Best-Case policies in a set of instances of the Asymmetric Shortest Path

Interdiction Bilevel Problem (ASPI), as described in Example 1. We begin by developing Mixed-

Integer Programming (MIP) formulations to compute the policies in Ψ. We then show how said

policies fare under the different update mechanisms, against the α-optimal policies, and against

benchmark policies. Lastly, we perform a sensitivity analysis with respect to the quality of the

initial information and the sizes of the instances.

5.1. MIP formulations of the Greedy and Best-Case Policies

This section presents MIP formulations for the policies in Ψ under all the update mechanisms. To

make things concrete, we consider settings of ASPI, i.e., where the full-information problem (4)

is an instance of ASPI. In this regard, we emphasize that the techniques used to derive these

formulations (specifically, the use of the Follower’s problem optimality conditions) can be adapted

to broader classes of Follower’s problems, such as the network flow problems or general linear

programs; see the general approaches by Audet et al. (1997) and Zare et al. (2019).

The full-information formulation of ASPI (under the optimistic approach) is

max d>y (13a)

s.t. 1>x= k (13b)

y ∈ arg min{c>y′ : My′ = e, y′ ≤ 1−x, y′ ≥ 0} (13c)

x∈ {0,1}|A|. (13d)

In this formulation, matrix M is the node-arc adjacency matrix of a directed network G= (N,A).

We assume that node 1 is the source and node m := |N | is the sink, thus e ∈ Rm is such that

e1 =−em = 1, and ei = 0 for i /∈ {1,m}. Finally, 1 is a |A|× 1 vector of ones. The Leader’s decision

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 27

variables x are binary, where xa = 1 if and only if arc a∈A is interdicted. In the sequel, following

the work by Israeli and Wood (2002), we replace the optimality condition (13c) by an equivalent

condition in the form:

y ∈ arg min{(c+Kx)>y′ : My′ = e, y′ ≥ 0}, (14)

where K is a sufficiently large positive constant (note that in optimality Kx>y= 0). For a vector

c∈R|A|+ , strong duality implies that y satisfies (14) if and only if there exists β ∈Rm+ such that

My= e, −M>β ≤ c+Kx, βm = c>y, β1 = 0. (15)

This, because βm−β1 represents the dual objective function, which can be assumed non-negative

as c ∈ R|A|+ ; also, for any dual solution β, one can form an equivalent (non-negative) solution β′

such that β′i = βi − β1, thus one can set to β1 = 0 without loss of generality. Therefore, a policy

ψ ∈Ψ at time t can be computed by solving the equivalent of (10) for the ASPI setting, given by

wE(U) = max
x,ĉ,y,β

{
d>y : 1>x= k, ĉ∈ U , (y,β) satisfies (15), x, y ∈ {0,1}|A|, β ∈R|N |+

}
. (16)

Note that (16) is a nonlinear mixed-integer problem, because of the presence of the term βm = c>y

in (15) (even when U t takes the form of a polyhedron). Because y is binary (this assumption can

be made as the Follower solves the shortest path problem), the term c>y can be linearized using

the McCormick envelopes (McCormick 1976). This gives us the following reformulation of (16):

wE(U) = max d>y (17a)

s.t. 1>x= k (17b)

ĉ∈ U (17c)

My= e (17d)

−M>β− ĉ−Kx≤ 0 (17e)

βm−1>q= 0 (17f)

− ĉa + qa ≤ 0 ∀a∈A (17g)

−uaya + qa ≤ 0 ∀a∈A (17h)

ĉa +uaya− qa ≤ ua ∀a∈A (17i)

x, y ∈ {0,1}|A|, β ∈R|N |+ , q ∈R|A|+ , (17j)

where ua is a known upper bound on the value of ca for any given a ∈ A. Thus, we have that if

U t is mixed-integer representable, then (17) is a linear mixed-integer problem. We show next that

this is indeed the case when either the Cvx or NCvx updates are used. In the sequel, we assume

that U1 = {ĉ : `a ≤ ca ≤ ua, a∈A}.

28 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Cvx update. Using the linear programming formulation of the Follower’s (shortest path) problem,

under the Cvx update we have that for t > 1

U t =
{
ĉ∈ U0 : ∃βs ∈R|N |+ s.t.−M>βs− ĉ≤Kxs,ψ, βsm ≥ z(xs,ψ;c), ∀s < t

}
,

which is mixed-integer representable (note that in the above, βs represents a dual solution to the

problem in period s, where consistent with (5) we do not impose strong duality).

NCvx update. Under the NCvx update, we can use strong duality optimality to obtain the

following representation: for t > 1

U t = {ĉ∈ U0 : ∃ys ∈ {0,1}|A|, βs ∈R|N |+ , qs ∈R|A|+ , s < t s.t. (18) holds},

with

Mys = e ∀s= 1, . . . , t (18a)

−M>βs− ĉ≤Kxs,ψ ∀s < t (18b)

βsm−1>qs = 0 ∀s < t (18c)

βsm− z(xs;c) = 0 ∀s < t (18d)

d>ys = w̃(xs,ψ;c) ∀s < t (18e)

− ĉa + qsa ≤ 0 ∀s < t, a∈A (18f)

−uaysa + qsa ≤ 0 ∀s < t, a∈A (18g)

ĉa +uay
s
a− qsa ≤ ua ∀s < t, a∈A, (18h)

which is mixed-integer representable. In the above, constraints (18a) enforce primal feasibility,

(18b) enforce dual feasibility, (18c)-(18d) and (18f)-(18h) enforce strong duality, and (18e) look to

match observed profits.

Full update and enhanced NCvx (Cvx) update. The full update requires characterizing the

set of optimal solutions of (13), or more generally of (10); recall the general definition in (7). While

there exist necessary conditions characterizing the optimal solutions of linear bilevel problems,

they involve products of continuous variables with non-complementary type of constraints. Thus,

an exact mixed-integer linear representation for these conditions is not readily available. Nonethe-

less, the full update can be approximated with the NCvx update by adding what we call the

“non-repetitive” constraints. There are two types of such constraints: the first type forces w̃E(U t)
to be equal to w̃(xs,ψ;c) if x= xs,ψ for some s < t; the second type helps by reducing the size of U t.

For any given t∈ T we can define the first type of constraint via the set N t
R, where

N t
R :=

{
(x, y)∈X ×R|A| : x= xs⇒ d>y+ b>x≤ w̃(xs;c), s < t

}
.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 29

Clearly, any (x, y) ∈N t
R has an objective value in (10) at most equal to w̃(xs;c) as long as x= xs

for some s < t. The second type of constraint is defined via the set Lt, where

Lt = {ĉ∈R|A| : ĉ>yt,E > z(xt;c)}.

While the benefit of adding N t
R to (10) is evident, the usefulness of Lt is stated next.

Lemma 3. Let t ∈ T , assume that the Leader implements a policy ψ ∈Ψ, and that w̄t < w̃E(U t).
Then: (i) c∈Lt; (ii) if zt,E ≤ z(xt;c) then ct,E 6∈ Lt; and (iii) if zt,E > z(xt;c) and the feedback is

Value-Perfect (Response-Perfect), then dim(U t+1)< dim(U t), ct,E 6∈ Vt (ct,E 6∈ Rt).

Consider that any given update mechanism is modified by adding Lt to it. Lemma 3 then implies

that this update is valid (as it does not remove c). Moreover, it also assures that for a policy ψ ∈Ψ

under Value-Perfect or Response-Perfect feedback, the previously assumed cost vector ct,E that led

to the non-converging solution at time t is not considered again.

Besides the above properties, the next result shows that, independent of the update mechanism,

the addition of the non-repetitive constraints potentially decreases the optimal value of (10) without

compromising the real-time certificate of optimality of the policies in Ψ. Its proof follows from (i)

of Lemma 3 and simple feasibility arguments. The strict inequality proof follows from Example 4.

Proposition 1. Let t∈ T be given and assume that w̄t < w̃E(U t). Let Û t+1 = U t ∩Lt and define

ŵ := max
{
d>y+ b>x : x∈X, ĉ∈ Û t+1, y ∈Z(ĉ, x), (x, y)∈N t+1

R

}
.

Then, w̃∗(c)≤ ŵ≤ w̃E(U t+1). Moreover, there exist instances, where the last inequality is strict.

For the case of ASPI, the non-repetitive constraints in N t
R can be formulated as linear inequalities

in terms of the variables of the problem. Indeed, let D be an upper bound on w̃∗(c) (e.g., D =

max{d>y : y ∈⋃x∈X Y (x)}) and, for t∈ T given, consider the constraints

D(xs)>x+d>y≤Dk+ w̃(xs;c), s < t. (19)

For s < t the constraint states that if x = xs, then D(xs)>x = Dk and therefore one must have

that d>y≤ w̃(xs;c); otherwise, the constraint is trivially satisfied. In other words, constraints (19)

imply that if solution xs is repeated at any time after s, then its best possible objective value

on problem (17) is w̃(xs;c). Consequently, Proposition 1 implies that if G= (N,A) is a network

where all interdiction solutions yield different networks for the Follower, then the full update can

be computed by adding constraints (19) to (17).

We refer to the update mechanism that uses non-repetitive constraints jointly with the

NCvx (Cvx) update as the enhanced NCvx (Cvx) update. While our aim is to improve practical

30 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

performance, we note that the addition of the non-repetitive constraints for either the NCvx or

Cvx updates, guarantees a (rather trivial) finite bound on the time stability. Indeed, by adding the

non-repetitive constraints in N t
R, policies in Ψ, will – in the worst case – exhaustively search over

all x∈X, thus time stability is finite as long as |X|<∞ (see also the work by Yang et al. (2019),

where similar in spirits non-repetitive constraints are exploited for Greedy and Robust policies in

the context of sequential shortest path interdiction with learning). In particular, this worst-case

bound is equal to the worst-case bound of the full update in settings where [x] = x for all x∈X. In

this sense, for these particular settings, the enhanced updates and the full update can be considered

equivalent.

5.2. Generation of the Instances

We assume that the Leader and the Follower are interacting in the context of smuggling. The Fol-

lower is a smuggler who uses a road network G= (N,A), with cost vector c, to smuggle goods from

node i= 1 to node i=m at minimum cost. The Leader estimates that the smuggler successfully

traverses arc a∈A with probability pa. She must decide which arcs of the network to block (thus

prohibiting its use by the smuggler), considering an interdiction budget of K blocked arcs, with

the objective of minimizing the probability that a smuggler successfully reaches its destination.

Let A′ ⊆A be a possible (unblocked) path to be used by the smuggler: the probability that he

successfully traverses the path is given by
∏
a∈A′ pa. In order to minimize this probability, the Leader

can equivalently maximize the negative of its logarithm. Hence, the full-information problem can

be framed as an ASPI with da =− log(pa), a∈A.

We assume that the road network G has a layered topology with n` layers and nk nodes per

layer. In this topology, each node has a directed arc only towards the nodes in the next layer and

there are two additional source and sink nodes before the first and last layer, respectively. The real

cost vector c is generated from the Euclidean distances between the locations of the nodes in the

plane. The locations, in turn, are drawn according to the following procedure: the x-coordinates

are drawn from an U(0,Bx) distribution and ordered accordingly so that the smallest value is the

x-coordinate of node 1, the following nk smallest values are the x-coordinates of the first layer,

and next smallest nk values are the x-coordinates of the second layer, and so on. Once these values

have been set, the y-coordinates of each node in each layer are drawn at random from a U(0,By)

distribution. Here, both Bx and By are tuning parameters.

The initial uncertainty set U1 ⊆ R|A|+ is the hypercube
∏
a∈A[`a, ua]. The bounds `a and ua are

generated as follows: for a given tuning parameter ∆ ∈ (0,1], we set `a = ca(1− (1− ra)∆) and

ua = ca(1 + ra∆), with ra ∈ [0,1] drawn at random, for each a∈A. In our experiments we use three

distributions for ra: Uniform(0,1), Beta(5,2), and Beta(1,3), which imply that the location of ca is

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 31

uniform in the interval, or its located closer to `a (left skewed) or ua (right skewed), respectively.

Note that the width of the interval [`a, ca] is given by ca∆, thus the larger the value of ∆ the

greater the uncertainty faced by the Leader.

We generate the probabilities pa by assuming that on each layer there is a ‘sensor’ whose coor-

dinates are drawn from uniform distributions, that take values in the range of the x-coordinates

and y-coordinates of the nodes of the layer. Specifically, if s` = (s`x, s
`
y) is the location of the sensor

on layer ` and a ∈A is an arc whose initial node is in layer `, then pa = 1− exp(−||s`− sa||2/U),

where sa has the coordinates of the mean point between the nodes defining arc a∈A, || · || denotes

the Euclidean distance, and U is a positive constant. Note that the farther away an arc is to the

sensor, it is more probably that a smuggler traverses the arc undetected.

5.3. Results and discussion

We perform four sets of experiments. In the first set, we assess the performance of the policies in Ψ

under the different update mechanisms, and compare them against their α-optimal counterparts.

In the second set, we compare the policies in Ψ with respect to other benchmark policies. Later,

we perform a sensitivity analysis with respect to the quality of the information known by the

interdictor. Finally, we perform a sensitivity analysis with respect to the instance size. In assessing

policy performance, in addition to time stability, we use the concept of regret, which measures the

Leader’s cumulative profit loss relative to an oracle Leader with full knowledge of the cost vector,

i.e. for a policy π we define

Total Regretπ(c) :=
∑

t

(
w̃∗(c)− w̃(xt,π;c)

)
.

5.3.1. Performance of Ψ with respect to the update mechanism. For this set of exper-

iments we set n` = nk = 4, Bx = 50, By = 30, ∆ = 1/3, U = 12, k = 3, and T = 15. We randomly

generate ten instances and solve each instance using the four update mechanisms: Cvx (Cvx),

enhanced Cvx (E-Cvx), NCvx (Ncvx), and enhanced NCvx (E-Ncvx). Note that [x] = x for all

x ∈X in this setup, so the enhanced updates are equivalent to the full update in terms of their

worst-case time stability. In addition, we solve each instance using two α-optimal policies (α= 1.5

and α= 2) under the E-Ncvx update. We take the convention that if a policy stalls in a sub-optimal

solution, then its time stability is ∞; likewise, if the policy has not attained the time stability

before T (but has not stalled until T) we set its time stability to T + 1. Tables 1 and 2 summarize

our results.

From Table 1, we observe that the E-Ncvx update yields the best results for time stability

and regret across all distributions when only Standard feedback is available. In most cases the

32 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Feedback Time-stability Total Regret Solution Time (secs)

Uniform Cvx E-Cvx Ncvx E-Ncvx Cvx E-Cvx Ncvx E-Ncvx Cvx E-Cvx Ncvx E-Ncvx

Standard ∞ (8,2) 12 (0,6) ∞ (7,0) 7.60 40.81 32.25 32.71 16.36 1.42 4.26 6.14 12.28
VP ∞ (5,0) 6.8 (0,1) ∞ (6,0) 6.70 26.82 15.06 25.75 15.59 1.56 2.96 2.52 6.61
RP ∞ (8,0) 7.1 (0,1) ∞ (7,0) 7.40 33.21 15.51 31.88 14.43 2.11 3.01 3.79 8.00

Left Sk. Cvx E-Cvx Ncvx E-Ncvx Cvx E-Cvx Ncvx E-Ncvx Cvx E-Cvx Ncvx E-Ncvx

Standard ∞ (7,0) 13.3 (0,7) ∞ (1,0) 7.80 27.53 28.77 20.77 17.25 1.66 4.91 7.52 11.00
VP ∞ (1,0) 5.20 ∞ (3,0) 5.20 10.02 9.34 12.59 11.26 2.46 2.09 5.50 4.57
RP ∞ (1,0) 8.00 ∞ (5,1) 7.50 21.78 17.94 28.32 15.91 6.01 3.28 7.03 8.22

Right Sk. Cvx E-Cvx Ncvx E-Ncvx Cvx E-Cvx Ncvx E-Ncvx Cvx E-Cvx Ncvx E-Ncvx

Standard ∞ (9,0) 16 (0,10) ∞ (8,0) 10 (0,2) 40.36 45.27 39.64 23.52 0.79 6.45 4.45 15.95
VP ∞ (8,0) 7.60 ∞ (8,0) 7.8 (0,1) 33.89 16.07 37.41 16.02 1.51 3.06 3.73 7.19
RP ∞ (9,0) 10.30 ∞ (9,0) 9.7 (0,2) 38.39 24.63 35.90 22.27 0.92 4.54 2.34 10.81

Table 1 Average time stability, total regret, and solution time across ten instances for different update

mechanisms: Cvx (Cvx), enhanced Cvx (Ecvx), NCvx (Ncvx), and enhanced NCvx (E-Ncvx), and different cost

generation schemes for ca in the test instances: Uniform in the interval, closer to either `a (Left skewed) or ua

(Right skewed). Whenever there is a parenthesis (a, b), a and b are the numbers of instances where the policy stalls

and where the policy has a time stability greater than T = 15, respectively. Boldface indicates the best result.

time stability is found before T = 15. Note that in most instances, our policies either stall or do

not guarantee an optimal solution within the first T periods, for all other update mechanisms.

Regarding total regret, the results also favor the E-Ncvx update, getting roughly half the regret of

the other update mechanisms for the uniform and right skewed distributions.

Whenever Value-Perfect or Response-Perfect feedback are available, the E-Cvx mechanism

becomes a good alternative to the E-Ncvx update. The results show that these two mechanisms have

a similar behavior for time stability and regret across arc cost distributions. For Response-Perfect

feedback this similarity is expected, as from the definition of each mechanism, the NCvx (enhanced

NCvx) update is equivalent to the Cvx (enhanced Cvx) update, see (6). In this sense, their differ-

ences are due to the way that the solver chooses alternative optimal solutions in the formulations.

For Value-Perfect feedback the updates are not necessarily equivalent. However, Value-Perfect feed-

back plus the fact that the Follower’s problem is binary, might help the MIP solver discover early

in the optimization process what the actual value of yt is. This knowledge reduces the number of

potential feasible Follower’s solutions.

Across the board it is seen that the Cvx and NCvx updates, without any enhancement, are not

good update mechanisms. They stall in a significant number of instances and attain higher regret

values relative to their enhanced counterparts. Their only advantage is that they are faster to solve

for most of the cases. This stark difference between the Cvx and NCvx updates suggests that just

the non-repetitive constraints are sufficient to attain a good performance (i.e., that updating the

uncertainty set might not be necessary). However, this is not necessarily the case, as we show in

the next section.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 33

Feedback Time-stability τψα
α Total Regret Solution Time

Uniform ψ ψ1.5 ψ2 ψ1.5 ψ2 ψ ψ1.5 ψ2 ψ ψ1.5 ψ2

Standard 7.6 ∞ (2,0) ∞ (4,0) 4.40 1.90 16.36 6.96 7.23 12.28 4.85 0.98
VP 6.70 ∞ (3,0) ∞ (4,0) 3.40 2.50 15.59 8.57 10.56 6.61 2.43 1.36
RP 7.40 ∞ (1,0) ∞ (3,0) 3.80 1.90 14.43 5.38 5.83 8.00 3.26 1.02

Left Sk. ψ ψ1.5 ψ2 ψ1.5 ψ2 ψ ψ1.5 ψ2 ψ ψ1.5 ψ2

Standard 7.8 ∞ (2,0) ∞ (3,0) 3.90 2.50 17.25 10.89 6.37 11.00 3.52 1.64
VP 5.20 ∞ (3,0) ∞ (3,0) 3.80 2.60 11.26 8.68 8.87 4.57 2.85 1.52
RP 7.50 ∞ (2,0) ∞ (4,0) 4.00 1.90 15.91 7.31 7.33 8.22 3.55 1.02

Right Sk. ψ ψ1.5 ψ2 ψ1.5 ψ2 ψ ψ1.5 ψ2 ψ ψ1.5 ψ2

Standard 10 (0,2) ∞ (2,0) ∞ (3,0) 5.60 2.30 23.52 12.13 7.76 15.95 6.43 1.39
VP 7.8 (0,1) ∞ (3,0) ∞ (2,0) 3.80 2.70 16.02 8.17 4.16 7.19 2.72 1.47
RP 9.7 (0,2) ∞ (2,0) ∞ (3,0) 5.40 2.60 22.27 9.74 4.50 10.81 5.24 1.72

Table 2 Average time stability, α-time-stability, total regret, and solution time across ten instances for the

α-optimal policies, α∈ {1.5,2}, with the E-Ncvx update. Whenever the is a parenthesis (a, b) in the time-stability

column, a and b are the number of instances where the policy stalls and where the policy has a time stability

greater than T , respectively. Boldface indicates the best result.

Table 2 shows the performance of our policies and their α-optimal counterparts under the E-

Ncvx update. These results show that the α-optimal policies are a reasonable alternative to the

policies in Ψ. Indeed, across all settings, they attain a lower regret and are solved faster. Moreover,

as seen from their α-time-stability (the column of τψαα), they can guarantee α-optimal solutions

for all instances tested and these guarantees are found significantly earlier than the time it takes

policies in Ψ to converge to the optimal solution. The only drawback of the α-optimal policies is

that, as expected, they do not converge to the full-information optimal solution for all instances.

Overall, they stall only for about 20%-30% of the instances. Nonetheless, as suggested from the

regret values, it seems that even when they stall, the sub-optimal solution they find is closer in

value to the full-information optimal than the α-guarantee suggests.

5.3.2. Performance of Ψ with respect to the benchmark policies. Next, we use the

instances of the previous section to compare policies in ψ, under the E-Ncvx update, with a set

of benchmark policies. The benchmark policies are all greedy in nature, and given by:

• Random policies (πR−Cvx and πR−Ncvx): At each t ∈ T these policies solve the bilevel prob-

lem (13), including the non-repetitive constraint N t
R (19), by selecting c at random from U t.

This random point is obtained by solving the MIP of the form: min{r>ĉ : ĉ∈ U t}, where each

entry of r is Bernoulli distributed with parameter p = 1/2. When U t is updated using the

Cvx (NCvx) update, we denote this policy by πR−Cvx (πR−Ncvx).

• Center policies (πC−Cvx and πC−Ncvx): These policies are computed as the random policies,

with the difference that c is selected to be: (i) equal to the analytical center of U t whenever

using the Cvx update (πC−Cvx); and (ii) the closest point in U t (in the `1-norm) to the

34 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

analytical center of the relaxation of U t whenever using the NCvx update (πC−Ncvx). These

policies can be rationalized by thinking that the Leader assumes that the real cost vector c is

close to the ‘center’ point of the uncertainty set at each period t∈ T .

• Greedy and Best-case non-repetitive policy (ψN ∈Ψ): these policies implement the solution to

problem (10) at each time t ∈ T while including both the non-repetitive constraints N t
R and

Lt; however, the Cvx or NCvx updates are not used, so that U t+1 = U t ∩Lt under Standard

feedback and U t+1 = U t ∩Lt ∩ Vt (U t+1 = U t ∩Lt ∩Rt) for Value-Perfect (Response-Perfect)

feedback.

• Greedy and Robust policy (λ∈Λ): At each time t∈ T these policies implement a solution to

(8). We assume that U t is updated only with Value-Perfect or Response-Perfect feedback, as

it can be readily checked that the inclusion of the Cvx update does not change the optimal

solution of (8); and that the NCvx update yields a formulation that is significantly more

challenging to solve.

Tables 3 summarizes the average time stability for the experiments. From these results, we

observe that ψ is the best policy overall, particularly under Standard feedback, while the random

policies come in second. Remarkably, πR−Ncvx has a time stability that is close to policies in Ψ;

its main drawback being that for around 20% of the cases, across all feedback and distribution

types, it cannot find a consistent optimal solution before T . On the other hand, the center and

Λ policies always have instances where they stall. The rate of stalling for the center policies is

uniform across feedback modes, update mechanisms, and distributions, while policies in Λ only

stall once or twice under Value-Perfect and Response-Perfect feedback (an explanation for this

behavior is that policies in Λ under these feedbacks always discover new information whenever

the Follower uses a solutions different from what the Leader expects, see Lemma 1). Finally, the

non-repetitive policy ψN has a worse performance than ψ across the board. The difference is more

pronounced under Standard feedback, where ψN fails to get to the time stability before T for most

instances. Consequently, we observe that both the Cvx and NCvx updates provide information

that can substantially improve the performance of the greedy and best-case policies.

Table 4 gives the average regret for the benchmark policies. Observe that the random NCvx pol-

icy, the center policies, and policies in Λ, significantly outperform policies in Ψ across all feedback

and distribution types. Therefore, although these policies do not guarantee finding an optimal

solution nor provide certificates of optimality in real time, they can find an optimal or near-optimal

solutions in most of the cases. On the other hand, observe that the non-repetitive policy fares

worse than policies in Ψ across the board, which reinforces the observation that the Cvx and

NCvx updates provide important information that should be exploited by the interdictor.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 35

Feedback Time-stability

Uniform ψ πR−Cvx πR−Ncvx πC−cvx πC−Ncvx ψN λ

Standard 7.6 14.1 (0,8) 7.9 (0,2) ∞ (3,2) ∞ (3,0) 13.8 (0,8) ∞ (5,0)
VP 6.70 7.8 (0,1) 7.6 (0,2) ∞ (2,0) ∞ (2,0) 7.80 ∞ (1,0)
RP 7.40 9.2 (0,3) 7.5 (0,3) ∞ (1,0) ∞ (1,0) 9.9 (0,3) ∞ (2,0)

Left Sk. ψ πR−Cvx πR−Ncvx πC−cvx πC−Ncvx ψN λ

Standard 7.8 14.8 (0,3) 9.2 (0,1) ∞ (3,0) ∞ (1,0) 14.7 (0,9) ∞ (4,0)
VP 5.20 8 (0,1) 7.6 (0,1) ∞ (2,0) ∞ (2,0) 6.50 ∞ (1,0)
RP 7.50 9.5 (0,1) 11.4 (0,2) ∞ (2,0) ∞ (2,0) 9.7 (0,3) ∞ (1,0)

Right Sk. ψ πR−Cvx πR−Ncvx πC−cvx πC−Ncvx ψN λ

Standard 10 (0,2) 14.6 (0,7) 8.4 (0,3) ∞ (2,0) ∞ (2,0) 16 (0,10) ∞ (4,0)
VP 7.8 (0,1) 8.2 (0,1) 11.1 (0,2) ∞ (2,0) ∞ (2,0) 10 (0,3) ∞ (1,0)
RP 9.7 (0,2) 9.6 (0,4) 8.1 (0,2) ∞ (2,0) ∞ (2,0) 11.7 (0,4) ∞ (1,0)

Table 3 Average time stability across ten instances for ψ with the E-Ncvx update and the benchmark policies.

Whenever there is a parenthesis (a, b), a and b are the number of instances where the policy stalls and where the

policy has a time stability greater than T , respectively. Boldface indicates the best result.

Interestingly, policies in Ψ have unsatisfactory regret performance. A possible explanation for

this is that, during the initial time periods, policies in Ψ consider cost vectors ct,E that allow for

shortest paths yt,E such that d>yt,E is equal (or close to) max{d>y : y ∈ Y }. In practice, however,

a Follower’s feasible solution that has a high value of d>y is not a shortest path under the real

cost vector c, as both c and d are generally unrelated. Therefore, one would expect a better regret

performance for policies in Ψ in instances where d and c are negatively correlated and a worse

performance in instances where they are positively correlated.

Feedback Total Regret

Uniform ψ πR−Cvx πR−Ncvx πC−Cvx πC−Ncvx ψN λ

Standard 16.36 21.63 8.92 11.28 5.58 33.89 22.74
VP 15.59 10.46 8.58 5.11 4.86 16.33 4.67
RP 14.43 9.85 7.48 2.28 3.18 22.11 5.68

Left Sk. ψ πR−Cvx πR−Ncvx πC−Cvx πC−Ncvx ψN λ

Standard 17.25 21.56 8.53 5.50 2.42 33.62 7.64
VP 11.26 6.85 5.55 6.40 6.49 12.65 5.26
RP 15.91 7.95 7.68 6.46 6.06 21.00 5.91

Right Sk. ψ πR−Cvx πR−Ncvx πC−Cvx πC−Ncvx ψN λ

Standard 23.52 18.01 10.47 7.74 6.46 44.17 13.47
VP 16.02 11.55 10.60 6.46 6.46 20.63 2.95
RP 22.27 6.15 10.36 6.32 6.23 29.29 1.58

Table 4 Average regret across ten instances for ψ with the E-Ncvx update and the benchmark policies. Boldface

indicates the best result.

Finally, in Appendix D.1 we consider the average solution times across the benchmark policies.

There it is shown that policies that use the NCvx update take more time to solve on average. This

behavior is expected as optimizing over non-convex sets is harder than over convex sets.

36 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

5.3.3. Sensitivity to the Information Quality. In this section we assess policy perfor-

mance when the structure of the bounds in U1 changes. For this, we assume that ua = ū and

`a = 0 for all a∈A, that is, all the lower and upper bounds are the same across all arcs, therefore

U1 = [0, ū]|A|. Observe that this type of uncertainty set gives far less information to the Leader

because, at least initially, all arcs’ costs have the same range and therefore all network paths can

be shortest paths. In addition, in contrast to the previous instances, the initial bounds and the

real cost vectors are uncorrelated.

We generate ten instances using the same parameters of Section 5.3.1, with the exception that

here T = 20, and that we only use the uniform distribution to generate the true cost vector.

For each instance we consider three types of bounds. In the low variability case, c is divided

by two and ū = max{ca/2: a ∈ A}+ 3; in the normal variability case, c remains unchanged and

ū= max{ca : a∈A}+5; and in the high variability case, c is doubled and ū= max{2 ca : a∈A}+10.

In what follows, we compare the performance of policies in Ψ under the under the E-Ncvx update

with that of: (i) their α-optimal counterparts, Ψ1.5 and Ψ2; (ii) theNCvx random policy πR; and

(iii) the greedy and robust policies in Λ. We use these benchmark policies as they performed

reasonably well in the experiments of Sections 5.3.1 and 5.3.2. Table 5 summarizes the average time

stability, α-optimal time stability, and total regret across all considered policies and instances.

Feedback Time-stability τψα
α Total Regret

Low ψ πR λ ψ1.5 ψ2 ψ1.5 ψ2 ψ πR λ ψ1.5 ψ2

Standard 11.9 (0,1) 14.4 (0,3) ∞(9,0) ∞(3,0) ∞(6,0) 4.06 2.24 28.08 37.09 56.32 21.58 25.41
VP 11.70 14 (0,3) ∞(1,0) ∞(2,0) ∞(5,0) 4.80 3.60 26.94 30.24 15.96 15.64 23.89
RP 11.00 16.5 (0,3) ∞(2,0) ∞(5,0) ∞(5,0) 5.70 4.10 24.98 42.04 21.13 19.75 24.61

Normal ψ πR λ ψ1.5 ψ2 ψ1.5 ψ2 ψ πR λ ψ1.5 ψ2

Standard 12.3 (0,1) 16.4 (0,6) ∞(9,0) ∞(2,0) ∞(5,0) 5.90 3.80 27.72 45.56 53.82 17.16 23.14
VP 11.1 13.6 (0,4) ∞(1,0) ∞(3,0) ∞(5,0) 4.60 3.50 25.69 38.04 15.37 15.97 19.26
RP 11.70 14.6 (0,2) ∞(2,0) ∞(3,0) ∞(4,0) 5.60 4.70 25.53 41.35 22.11 17.25 26.36

High ψ πR λ ψ1.5 ψ2 ψ1.5 ψ2 ψ πR λ ψ1.5 ψ2

Standard 12.3 14.5 (0,3) ∞(9,0) ∞(4,0) ∞(6,0) 6.20 3.60 28.45 35.79 66.20 22.04 28.55
VP 11.50 15.4 (0,4) ∞(1,0) ∞(2,0) ∞(3,0) 4.80 3.60 27.44 34.21 15.49 13.66 15.46
RP 11.10 15 (0,1) ∞(4,0) ∞(4,0) ∞(5,0) 6.30 4.00 24.75 35.32 21.38 21.65 25.06

Table 5 Average time stability, α-time-stability, and regret across ten instances for different cost generation

schemes for arc costs in the test instances: Low, Normal and High variability cases. Whenever there is a parenthesis

(a, b), a and b are the number of instances where the policy stalls and where the policy has a time stability greater

than T = 20, respectively. Boldface indicates the best result.

From Table 5 we observe that all policies are fairly insensitive to the interval size, indicating

that their performance is robust to the scaling of the uncertain data. We also observe that the

greedy and best-case policies (either exact or approximated) outperform other policies. Indeed,

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 37

while for the experiments in Section 5.3.2 policies πR and λ had close to the best (or the best)

performances with respect to time stability and regret, here that is no longer the case. For

instance, the average time stability of πR is roughly 35% more than that of policies in Ψ, and in

roughly 30% of the instances it fails to consistently implement the optimal solution within the

first T = 20 periods. On the other hand, policy λ has a similar time-stability performance to that

of the experiments in Section 5.3.2, but its average regret is far worse for this set of experiments.

The above considerations hint that the Greedy and Best-Case policies are more robust to the

uncertainty, because they have a similar behavior independent of the uncertainty that the Leader

faces. In contrast, the other benchmark policies are far more sensitive with respect to the uncer-

tainty, and perform better whenever U1 provides more information about the real cost vector c.

Finally, in Appendix D.2 we analyze the scalability of the policies, in terms of computation time,

with respect to the instance size. We show that running time for policies in Λ scale well with size,

but that this explained partly because they tend to stall earlier than the other policies.

5.3.4. Performance of Ψ in non-grid instances Next, we apply the proposed policies

to an instance of the smuggling interception problem described in Section 1. In particular, we

consider the “infiltration network” described by Unsal (2010). In said network, shown in Figure 5,

the nodes are the locations used by the smuggler (the Follower) and an arc between two nodes

means that the smuggler can move between the corresponding locations (the network has 38 nodes

and 109 arcs). The interceptor (an US military task force, the Leader) has positioned inspectors

of each arc, who have a positive probability of detecting the smuggler upon passage.

The objective of the interceptor is to allocate the patrol units so as to maximize the probability

that the smuggler is intercepted by the inspectors (or, equivalently, to minimize the probability that

the smuggler is successful). Assuming that detection (as a random variable) is independent across

inspectors, we write the Leader’s problem as that of maximizing the logarithm of the probability

of detection, so that we can define the upper-level vector as da =− log(1− p′a), a ∈A, where p′a is

the probability that the smuggler is detected by an inspector while moving across arc a ∈A; We

consider three sets probabilities from Unsal (2010) (one for each “type” of inspector).

In our setting, we build upon this problem and assume that, in addition to the inspectors, the

US task force has a limited number of k patrol units, which can be used to install roadblocks

along some set of arcs. We assume that roadblocks are both effective and observable, thus the

smuggler does not traverse blocked arcs. We also assume that the smuggler is oblivious to the

presence of inspectors and focuses on minimizing transportation costs, which are proportional to

the distances between the locations (computed using Google Earth (Gorelick et al. 2017)). Finally,

we assume that the interdictor does not know the precise route used by the smuggler to travel

38 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Figure 5 Infiltration network used by the smugglers in the Mexico-USA border, taken from the work by Unsal

(2010). Node s is where the smugglers start, node t is their destination. The probability of detection in

the green arcs is zero; the probability is non-zero for the black arcs.

between locations (and hence their costs), thus she estimates that the cost ca of traversing arc

a ∈A lies within a neighborhood [`a, ua] of said cost. The values of `a and ua are generated as in

Section 5.2 using ∆ = 1/3 (so the width of each interval is ca/3).

We run three instances of the problem (the difference between the instances being the value of

d), which we cast as ASPI, under various feedback modes, for various values of k, using policies

ψ, πR, and λ. Policy ψ is run with the enhanced NCvx update mechanism and πR is run with the

NCvx update mechanism. The results for one of the instances is shown in Table 6. The results for

the other two instances can be found in Tables 9 and 10 in Appendix D.3. The results for these

instances confirm our previous findings: policy ψ has the best average time-stability performance

across feedback modes. Its regret is not the best all the time and it’s second only to the randomized

policy on average. The solution times of ψ, as observed in previous experiments, is longer than

λ but comparable to that of the randomized policy. Policy πR attains good regret performance

but its time stability is consistently worse that policies in ψ. Policy λ is the fastest of the three,

however, it has a bi-modal behavior. For some cases it attains very short time-stability values with

regrets close to zero, while for some other cases it stalls and yields fairly large values of regret.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 39

Time-Stability Regret Solution time (secs.)

Feedback πR λ ψ πR λ ψ πR λ ψ

k= 2

Standard 21 ∞ 7 1.27 12.82 4.54 28.89 0.14 25.56
RP 11 2 7 3.07 0.64 3.93 28.41 0.30 17.02
VP 15 3 5 2.28 0.67 2.34 26.29 0.58 11.46

k= 3

Standard 10 ∞ 10 1.31 0.66 7.87 32.21 0.22 54.20
RP 14 2 10 4.17 0.03 7.94 33.38 1.11 44.95
VP 6 2 8 0.17 0.03 5.99 26.20 0.80 28.04

k= 4

Standard 8 ∞ 7 4.94 11.20 5.84 51.80 0.34 141.90
RP 18 ∞ 7 8.17 11.20 5.84 43.87 0.89 50.66
VP 6 ∞ 4 5.03 12.09 2.81 39.74 1.83 22.59

Table 6 Time stability, regret, and solution time for one of the smuggling instances with various feedback modes

and values of k. A time stability of ∞ means that the policy stalls.

6. Concluding Remarks

This paper addresses sequential bilevel linear programming problems where a Leader and a Fol-

lower interact repeatedly. While the Follower always responds in an optimal fashion, the Leader

is initially unaware of the Follower’s (linear) objective function, except for the fact that its cost

coefficients are within a given (initially known) uncertainty set. However, she might use feedback

from the Followers’ actions to refine her belief about the unknown objective, so as to maximize her

cumulative benefit. Depending on the feedback available (Standard, Value-Perfect or Response-

Perfect), we propose different updates mechanisms for the uncertainty set, differing on the amount

of information that is incorporated into the updated set. We show that, in general, there is a

trade-off between the reduction of the uncertainty set, and the tractability of its representation.

In particular, we show that the strongest update leads to non-convex and non-closed regions, that

are not amenable (at least, in a straightforward manner) to MIP-based solution techniques.

In the first approach discussed, we adapt the set of Greedy and Robust policies developed by

Borrero et al. (2019) in the context of the max-min sequential interdiction: under these policies

the Leader assumes that the Follower is also unaware of his own objective, and selects his response

in a robust fashion. We show that the said adaptation fails to provide real-time optimality certifi-

cates, and might stall by implementing suboptimal solutions indefinitely. We then provide a second

adaptation in the form of Greedy and Best-case policies, in which the Leader assumes that she is

able to select (from the uncertainty set) the cost vector the Follower will use, and selects her action

according to this optimistic approach. We show that these policies do provide real-time optimality

guarantees, and converge to the full information solution, under the strongest update mechanism.

With regard to policy implementation, we first discuss our policy generalizations that ensure

convergence to constant-factor α-approximate optimal solutions. Then we show that when the

Follower’s problem admits a linear programming formulation, one can compute the proposed

40 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

policies by solving a series of MIPs, under all update mechanisms except for the full update.

Nonetheless, we describe an approximation to the full update mechanism that adds a series of

“non-repetitive” constraints to the MIP formulation arising from the use of the NCvx update.

We conduct a series of numerical experiments to test the performance of the proposed policies.

Overall, we observe that the full update mechanism approximation dominates all others, at the

cost of longer solution times. In this regard, the α-optimal approximate policies seem to achieve

their objective of attaining good solutions in less time.

This work advances our understanding of sequential bilevel problems with a learning component,

but there is still space to make progress. For example, the proposed policies are shown to converge

to the full information solution, but from what we observe in our numerical experiments, the bound

on time stability is quite loose in practice. In this regard, a question that remains unsolved is

whether such a bound is tight (which seems to be the case from our counter-examples), and if

not, how can it be improved. Moreover, it is not clear whether the proposed policies are the best,

considering our performance measure. In addition, one might be tempted to claim that our setting

generalizes the max-min setting of Borrero et al. (2019), who consider uncertainty beyond the

Follower’s objective. While uncertainty on the parameters defining the Follower’s response can be

handled through the framework presented in this paper, it is not clear how to model/rationalize

uncertainty on the parameters defining the Leader’s objective, feasible region or available resources.

Finally, our work assumes that the unknown parameters are time-invariant. Extant work in

learning under parametric uncertainty has addressed the issue of time-changing environments,

usually by applying policies designed for time-homogeneous settings in epochs, coupled with

change-detection strategies. In this regard, the current work might serve as a building block for

addressing time-changing environments. These are questions that demand a well-thought answer,

driven by evidence from the interdiction applications that motivate our work. These all are

exciting directions for future research.

7. Acknowledgments

The research of J.S. Borrero and O.A. Prokopyev was supported by the National Science Founda-

tion grant CMMI-1634835. The research of J.S. Borrero was also supported in part by the grant

of the Office of Naval Research (N00014-19-1-2329). The research of O.A. Prokopyev was also sup-

ported in part by the grant from the Office of Naval Research (N00014-19-1-2330). The research

of D. Sauré was supported in part by the Complex Engineering Systems Institute, ISCI (CONI-

CYT PIA/BASAL AFB180003). The authors would like to thank the Review Team (the Associate

Editor and three anonymous referees) for their very constructive and helpful comments.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 41

References

Ahmed, S. and Guan, Y. (2005), ‘The inverse optimal value problem’, Mathematical Programming 102(1), 91–

110.

Audet, C., Hansen, P., Jaumard, B. and Savard, G. (1997), ‘Links between linear bilevel and mixed 0–1

programming problems’, Journal of Optimization Theory and Applications 93(2), 273–300.

Bayrak, H. and Bailey, M. (2008), ‘Shortest path network interdiction with asymmetric information’, Net-

works 52(3), 133–140.

Ben-Tal, A., El Ghaoui, L. and Nemirovski, A. (2009), Robust optimization, Princeton University Press.

Bertsimas, D. and Dunning, I. (2016), ‘Multistage robust mixed-integer optimization with adaptive parti-

tions’, Operations Research 64(4), 980–998.

Bertsimas, D. and Georghiou, A. (2015), ‘Design of near optimal decision rules in multistage adaptive mixed-

integer optimization’, Operations Research 63(3), 610–627.

Borrero, J. S., Prokopyev, O. A. and Sauré, D. (2016), ‘Sequential shortest path interdiction with incomplete

information’, Decision Analysis 13(1), 68–98.

Borrero, J. S., Prokopyev, O. A. and Sauré, D. (2019), ‘Sequential interdiction with incomplete information’,

Operations Research 67(1), 72–89.

Brown, G., Carlyle, M., Salmerón, J. and Wood, K. (2006), ‘Defending critical infrastructure’, Interfaces

36(6), 530–544.

Buehn, A. and Eichler, S. (2009), ‘Smuggling illegal versus legal goods across the U.S.-mexico border: A

structural equations model approach’, Southern Economic Journal 76(2), 328–350.

Cao, D. and Chen, M. (2006), ‘Capacitated plant selection in a decentralized manufacturing environment:

A bilevel optimization approach’, European Journal of Operational Research 169(1), 97–110.

Cesa-Bianchi, N. and Lugosi, G. (2006), Prediction, learning, and games, Cambridge University Press.

Cesa-Bianchi, N. and Lugosi, G. (2012), ‘Combinatorial bandits’, Journal of Computer and System Sciences

78(5), 1404–1422.

Chern, M. and Lin, K. (1995), ‘Interdicting the activities of a linear program: A parametric analysis’,

European Journal of Operational Research 86(3), 580–591.

Colson, B., Marcotte, P. and Savard, G. (2005), ‘Bilevel programming: A survey’, 4OR 3(2), 87–107.

Colson, B., Marcotte, P. and Savard, G. (2007), ‘An overview of bilevel optimization’, Annals of Operations

Research 153(1), 235–256.

Côté, J.-P., Marcotte, P. and Savard, G. (2003), ‘A bilevel modelling approach to pricing and fare optimisation

in the airline industry’, Journal of Revenue and Pricing Management 2(1), 23–36.

Dempe, S. (2002), Foundations of bilevel programming, Springer Science & Business Media.

42 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Fudenberg, D. and Levine, D. (1998), The Theory of Learning in Games, Vol. 1, 1 edn, The MIT Press.

Gathmann, C. (2008), ‘Effects of enforcement on illegal markets: Evidence from migrant smuggling along

the southwestern border’, Journal of Public Economics 92(10-11), 1926–1941.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. (2017), ‘Google earth engine:

Planetary-scale geospatial analysis for everyone’, Remote Sensing of Environment .

URL: https://doi.org/10.1016/j.rse.2017.06.031

Hemmecke, R., Schultz, R. and Woodruff, D. L. (2003), Interdicting stochastic networks with binary inter-

diction effort, in ‘Network interdiction and stochastic integer programming’, Springer, pp. 69–84.

Israeli, E. and Wood, R. (2002), ‘Shortest-path network interdiction’, Networks 40(2), 97–111.

Lim, C. and Smith, J. C. (2007), ‘Algorithms for discrete and continuous multicommodity flow network

interdiction problems’, IIE Transactions 39(1), 15–26.

Lorca, Á., Sun, X. A., Litvinov, E. and Zheng, T. (2016), ‘Multistage adaptive robust optimization for the

unit commitment problem’, Operations Research 64(1), 32–51.

Lucotte, M. and Nguyen, S. (2013), Equilibrium and advanced transportation modelling, Springer Science &

Business Media.

Magliocca, N. R., McSweeney, K., Sesnie, S. E., Tellman, E., Devine, J. A., Nielsen, E. A., Pearson, Z. and

Wrathall, D. J. (2019), ‘Modeling cocaine traffickers and counterdrug interdiction forces as a complex

adaptive system’, Proceedings of the National Academy of Sciences 116(16), 7784–7792.

McCormick, G. P. (1976), ‘Computability of global solutions to factorable nonconvex programs: Part i —

convex underestimating problems’, Mathematical Programming 10(1), 147–175.

Modaresi, S., Sauré, D. and Vielma, J. (2020), ‘Learning in combinatorial optimization: What and how to

explore’, Operations Research 68(5), 1285–16240.

Robbins, H. (1952), ‘Some aspects of the sequential design of experiments’, Bulletin of the American Math-

ematical Society 58, 527–535.

Sherali, H. D., Soyster, A. L. and Murphy, F. H. (1983), ‘Stackelberg-Nash-Cournot equilibria: Characteri-

zations and computations’, Operations Research 31(2), 253–276.

Smith, J. C. and Song, Y. (2020), ‘A survey of network interdiction models and algorithms’, European Journal

of Operational Research 283(3), 797–811.

Steinrauf, R. (1991), Network interdiction models, PhD thesis, Naval Postgraduate School.

Unsal, O. (2010), Two-person zero-sum network-interdiction game with multiple inspector types, Technical

report, Naval Postgraduate School.

Wood, R. K. (1993), ‘Deterministic network interdiction’, Mathematical and Computer Modelling 17(2), 1–

18.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 43

Yang, J., Borrero, J. S., Prokopyev, O. A. and Sauré, D. (2019), ‘Sequential shortest path interdiction with

incomplete information and limited feedback’, Tehcnical report .

Yürekli, A. and Sayginsoy, Ö. (2010), ‘Worldwide organized cigarette smuggling: an empirical analysis’,

Applied Economics 42(5), 545–561.

Zare, M. H., Borrero, J. S., Zeng, B. and Prokopyev, O. A. (2019), ‘A note on linearized reformulations for

a class of bilevel linear integer problems’, Annals of Operations Research 272(1-2), 99–117.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 1

Appendix A: Proofs of the Formal Results

Lemma 1. Suppose that λ ∈Λ, that Standard Feedback is Value-Perfect or Response-Perfect, and

that the Leader uses the Value-Perfect or Response-Perfect update mechanism with M t = ∅, respec-

tively. If w̃(xt,λ;c) 6= w̃GR(xt,λ;U t), then dim(U t+1)< dim(U t).

Proof of Lemma 1. Assume that w̃(xt,λ;c) 6= wGR(xt,λ;U t). This implies that either (i) yt,λ 6∈
ZGR(xt,λ;U t), or that (ii) yt,λ ∈ ZGR(xt,λ;U t) and that there exists y ∈ ZGR(xt,λ;U t) such that

d>y > d>yt,λ. Let us first consider the case of Value-Perfect feedback. For that, define

At,λ :=
{
a∈A : ∃s < t s.t. ys,λa > 0

}
,

the set of activities for which ca is known prior to time t (note that A1 = ∅).
Consider first the case when (i) holds. As yt,λ ∈ Y (xt,λ), then it must be the case that there exists

ỹ ∈ Y (xt,λ) such that max{ĉ>ỹ : ĉ∈ U t}<max{ĉ>yt,λ : ĉ∈ U t}. Suppose for a moment that yt,λa = 0

for all a /∈ At,λ (we will arrive at a contradiction). Then max{ĉ>yt,λ : ĉ ∈ U t} =
∑

a∈At cay
t,λ
a =

c>yt,λ, and hence

c>ỹ≤max{ĉ>ỹ : ĉ∈ U t}<max{ĉ>yt,λ : ĉ∈ U t}= c>yt,λ.

This implies that yt,λ 6∈ Z(xt,λ;c), which contradicts the optimality of the Follower’s response.

Therefore, it follows that yt,λa > 0 for some a /∈At,λ, and the result follows.

Consider now the case when (ii) holds. Then, we have that

w̃GR(xt,λ;U t) = b> xt,λ +d>y > b> xt,λ +d>yt,λ = w̃(xt,λ;c),

thus it is necessarily the case that y /∈Z(xt,λ;c). Suppose for a moment that yt,λa = 0 for all a /∈At,λ

(we will arrive at a contradiction). Then, we have that

c>ỹ≤max{ĉ>ỹ : ĉ∈ U t}= max{ĉ>yt,λ : ĉ∈ U t}= c>yt,λ,

contradicting the fact that yt,λ 6∈Z(xt,λ;c). This proves the result for the case of Value-Perfect feed-

back.

Consider now Response-Perfect feedback, and note that U t+1 ⊆ U t ∩
{
ĉ : ĉ>yt,λ = z(xt,λ;c)

}
.

Thus, if dim(U t+1) = dim(U t) then it is necessarily the case that ĉ>yt,λ = z(xt,λ;c) for all ĉ in U t.
Consider first the case when (i) holds. Fix y ∈ZGR(xt,λ;U t) and note that

c>y≤max{ĉ>yt,λ : ĉ∈ U t}<max{ĉ>yt,λ : ĉ∈ U t}= c>yt,

thus contradicting the fact that yt,λ ∈Z(xt,λ;c). We conclude that i) can not hold.

2 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Consider now the case when (ii) holds. As in the case of Value-Perfect feedback, we have that

w̃GR(xt,λ;U t) = b> xt,λ +d>y > b> xt,λ +d>yt,λ = w̃(xt,λ;c),

thus it is necessarily the case that y /∈Z(xt,λ;c). However, if the dimension of the uncertainty set

does not reduce, we have that

c>ỹ≤max{ĉ>ỹ : ĉ∈ U t}= max{ĉ>yt,λ : ĉ∈ U t}= c>yt,λ,

contradicting the fact that yt,λ 6∈ Z(xt,λ;c). This proves the result for the case of Response-

Perfect feedback.

Theorem 1. For any policy ψ ∈Ψ and under Standard Feedback, one has that w̃(xt,ψ;c)≤ w̃∗(c)≤
w̃E(U t), for t∈ T . In particular, if for some period t∈ T one has that wE(U t)≤ w̄t, then xs(ξ),ψ is

an optimal solution to the full-information problem, i.e. w̃(xs(ξ),ψ;c) = w̃∗(c).

Proof of Theorem 1. Let x∗ ∈X and y∗ ∈ arg min{c>y : y ∈ Y (x∗)} be such that b>x∗+d>y∗ =

w̃∗(c). That is, (x∗, y∗) is an optimal solution of the full-information bilevel problem. Because

c ∈ U t for all t ∈ T , then (x∗, y∗,c) ∈ S(U t), and thus, w̃∗(c)≤ wE(U t) for all t ∈ T . In addition,

because xt
′,ψ ∈X for all t′ ∈ T , then, from the definition of x∗, we have that w̃(xt

′,ψ;c) ≤ w̃∗(c)

for any given t′ ∈ T . These observations imply that for any t, t′ ∈ T we have the following chain of

inequalities

w̃(xt
′,ψ;c)≤ w̃∗(c)≤ w̃E(U t). (A-1)

Hence, since w̃E(U t) ≤ ¯̃w(xt,ψ;c), then w̃E(U t) ≤ w̃(xs,ψ;c), and Equation (A-1) implies that

w̃(xs,ψ;c) = w̃∗(c), which gives the desired result.

Lemma 2. Let ψ ∈Ψ and t ∈ T be given and assume that the Leader implements the full update

mechanism. If xt,ψ ∈⋃s<t[x
s,ψ], then w̃E(U t) = w̃(xt,ψ;c).

Proof of Lemma 2. First, observe that xt,ψ ∼ xs,ψ for some s < t implies that yt,ψ = ys,ψ. There-

fore,

w̃(xt,ψ;c) = b>xt,ψ +d>yt,ψ = b>xt,ψ +d>ys,ψ = b>xt,ψ + w̃(xs,ψ;c)− b>xs,ψ. (A-2)

On the other hand, w̃E(U t) = b>xt,ψ + d>yt,E, and by optimality in problem (10), w̃E(U t) ≥
w̃(xt,ψ;c), which, in view of equation (A-2) is equivalent to say that

d>yt,E ≥ w̃(xs,ψ;c)− b>xs,ψ.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 3

We prove that the above equation holds as an equality, i.e., d>yt,E = w̃(xs,ψ;c) − b>xs,ψ, from

which the result follows. Indeed, by the definition of the full update, for any ĉ ∈ U t there exists

y(ĉ)∈ arg min{ĉ>y′ : y′ ∈ Y (xs,ψ)} such that

w̃(xs,ψ;c)− b>xs,ψ = d>y(ĉ)≥ d>y ∀y ∈ arg min{ĉ>y′ : y′ ∈ Y (xs,ψ)}. (A-3)

Let (xt,ψ, yE,t,cE,t) be an optimal solution of problem (10). Then, because Y (xt,ψ) = Y (xs,ψ),

it follows from (A-3) and the optimality of (xt,ψ, yE,t,cE,t) that d>yt,E = w̃(xs,ψ;c)− b>xs,ψ, as

desired.

Lemma 3. Let t ∈ T , assume that the Leader implements a policy ψ ∈Ψ, and that w̄t < w̃E(U t).
Then: (i) c∈Lt; (ii) if zt,E ≤ z(xt;c) then ct,E 6∈ Lt; and (iii) if zt,E > z(xt;c) and the feedback is

Value-Perfect (Response-Perfect), then dim(U t+1)< dim(U t), ct,E 6∈ Vt (ct,E 6∈ Rt).

Proof of Lemma 3. For (i) observe that as w̃(xt,ψ;c) < w̃E(U t), then yt,E 6∈ Z(xt,ψ;c). This

follows by contradiction: If yt,E ∈Z(xt,ψ;c), then by the optimistic assumption it would follow that

w̃E(U t) = w̃(xt,ψ;c), yielding a contradiction. Hence, it can be concluded that c>yt,E > z(xt,ψ;c)

as desired. For (ii) if zt,E ≤ z(xt,ψ;c), then by definition (ct,E)>yt,E ≤ z(xt,ψ;c) and it is clear that

this implies that ct,E 6∈ Lt.
In order to prove (iii) we consider the Value-Perfect and Response-Perfect separately. For Value-

Perfect, define Ãt = {a ∈ A : ĉa = ca for all ĉ ∈ U t}. We show that if zt,E > z(xt,ψ;c) then there

exists an a 6∈ Ãt such that yta > 0; such existence implies that dim(U t+1)< dim(U t). The proof is

by contradiction. Suppose that yta = 0 for all a 6∈ Ãt. Then, for any ĉ∈ U t, ĉ>yt = c>yt = z(xt,ψ;c).

In particular ct,E ∈ U t, hence we would have that (ct,E)>yt = z(xt,ψ;c) < zt,E = (ct,E)>yt,E. This

implies that, yt,E 6∈Z(xt,ψ;ct,E), which is a contradiction. Observe that the same argument shows

that the fact that ct,E ∈ Vt yields a contradiction.

For Response-Perfect feedback, suppose that the result does not hold, thus dim(U t+1) = dim(U t).
This implies that yt is linearly dependent of y1, . . . , yt−1 and hence

{ĉ∈R|A| : (ys)>ĉ= z(xs,ψ;c), s≤ t− 1}= {ĉ∈R|A| : (ys)>ĉ= z(xs,ψ;c), s≤ t}. (A-4)

In particular, since ct,E ∈⋂s≤t−1Rs, then ct,E ∈ {ĉ ∈ R|A| : (ys)>ĉ = z(xs,ψ;c), s≤ t− 1}, and by

Equation (A-4) it follows that (ct,E)>yt = z(xt,ψ;c). Now, as we are assuming that zt,E > z(xt,ψ;c),

it follows that (ct,E)>yt,E > (ct,E)>yt, i.e., that yt,E 6∈Z(xt,ψ;ct,E), which is a contradiction. Finally,

observe that the above arguments imply that ct,E 6∈ Rt.

4 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Appendix B: Summary and Comparative Analysis of Borrero et al. (2019) (BPS19)

We describe the setting in BPS19 adopting the notation in Section 2. BPS19 considers a Leader

and Follower that interact sequentially during T periods: at period t ∈ T = {1, . . . , T} the Leader

acts first by selecting xtr, the usage level of each resource r in a set R; after observing the Leader’s

decision, the Follower selects yta, the usage level of each activity a in a set A. Like in our work, the

Follower’s response yt := (yta : a ∈ A) to the Leader decision xt := (xtr : r ∈ R) lies in the rational

reaction set

Z(xt;c) := arg min
{
c>y : y ∈ Y (xt)

}
, with Y (x) =

{
y ∈R|A|+ : F y+Lx≤ f

}
, (B-5)

where it is assumed that all parameters above are known to the Follower upfront, so that yt can

be computed upon observing the value of xt. The Leader’s decision xt is constrained to lie within

a region X :=
{
x∈R|R|−I+ ×ZI+ : Hx≤h

}
, where I ≤ |R|. Unlike in our work, BPS19 assumes that

the Leader’s profit in any period is the Follower’s loss, i.e., the Leader’s profit w(xt, yt) in period

t is given by

w(xt, yt) = c>yt, yt ∈ Y (xt), xt ∈X.

Considering the above, BPS19 defines the full-information problem as follows

w̃∗(c) = max
{
c>y : y ∈Z(x,c), x∈X

}
.

Note that BPS19 implicitly assumes the optimistic approach to bilevel programming. Defining

w̃(x;c) := max
{
c>y : y ∈ Z(x;c)

}
for x ∈ X, we have that, for a given sequence of decisions

{xt : t∈ T }, the Leader’s total cumulative profit is given by

P(
{
xt : t∈ T

}
;c) :=

∑

t∈T
w̃(xt;c).

BPS19 assumes that all parameters are known upfront by the Follower. On the Leader’s side,

a cost uncertainty model assumes that c is known to lie within an initial polyhedral uncertainty

set U1, and that only a subset of rows and columns from F and L are known upfront, with

unknown columns and rows revealed by the Follower as part of the feedback. A more general

Matrix uncertainty model allows for uncertainty on the coefficients of matrices F and L; here, we

discuss the cost uncertainty model, and consider the case where all columns and row of L and F

are initially known, so as to facilitate the comparison between the settings and results. Note that,

even under these conditions, the informational settings are not directly comparable, as even if one

is to set b= c and d= 0, our work assumes that b is known upfront by the Leader.

BPS19 measures policy performance in terms of time stability, puts emphasis in finding weakly

optimal policies, and defines the concept of standard, value-perfect and response-perfect feedback,

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 5

which we adopt in our work. Unlike in our setting, where updates might result in non-convex

uncertainty sets, BPS19 considers specific updates under value- and response-perfect feedback,

which preserve the polyhedral nature of the uncertainty set.

The authors propose a family of greedy and robust policies, which on each period implement

xt ∈ arg max
{
w̃R(x;U t) := min

{
max

{
ĉ>y : ĉ∈ U t

}
: y ∈ Y (x)

}
: x∈X

}
,

until achieving time-stability (which can be checked in real-time). Letting zt the profit observed

at time t, Theorem 1 in BPS19 shows that w̃(xt;c) ≤ w̃∗(c) ≤ w̃R(xt;U t). This result is akin to

Theorem 1, and follows from the robust nature of their policies, in the same manner our result

follows from the best-case nature of our policies.

For the case of value-perfect feedback, BPS19 shows that the dimension of the uncertainty set is

reduced every time the Leader’s expectation is not met, which implies an immediate bound on the

time-stability. In our work, refining the definition of the Leader’s expectation, Lemma 1 establishes

a similar result. However, this does not translate into an bound on time-stability, because no much

can be inferred from the feedback when the Leader’s expectation is met. This fact, illustrated in

Example 2, is key to understanding the challenges in the asymmetric case, relative to BPS19.

Constructing a worst-case instance, BPS19 shows that time-stability of the proposed policies is

of the order of the number of activities, under value-perfect feedback; in our work, no such a result

is established, as it is shown that feasible upper-bounds on time-stability are exponential in the

work case. An important distinctive feature of our work in this regard, is that partial convergence

results need to be qualified by the type of update being use. In particular, our results show that

partial convergence results (e.g., Theorem 2) do not necessarily hold when update mechanisms

other than the full update are used.

On a more practical note, BPS19 provides MIP formulations for solving for xt when their

polyhedral-preserving updates mechanisms are used (provided that standard feedback is value-

and/or response-perfect). In our work, we present such formulations for the more general case of

standard feedback, and show how the polyhedral structure might be preserved under the different

update mechanisms, in particular when an approximate full-date is used (under which, we show,

the dimension-reduction results hold).

6 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Appendix C: Additional examples for the discussion in Section 3

Next, we provide additional illustrations for the discussion in Example 2. Figure 6a shows an

example of an instance of the ASPI where w̃∗(c)< w̃GR(xt,λ;U t). Here, the solution for any policy

λ ∈ Λ is to block again arcs (1,2) and (1,3), and as before, the Leader expects that the Follower

uses path 1–4–7. This yields an expected profit of w̃GR(xt,λ;U t) = 60. The full-information optimal

solution, however, is to remove (1,3) and (1,5). This makes the Follower use path 1–2–7, and gives

a profit of w̃∗(c) = 40, hence w̃∗(c)< w̃GR(xt,λ;U t).

1 4

3

2

5

6

7

[1
,1
0]
,3
,2
0

[1,
11]

,2,
18

[1,12],4,30

[1,13],1,17[1,14],5,40

[1,10],3,20[1,11],2,18

[1,12],4,30

[1,
13]

,1,
17

[1
,1
4]
,5
,4
0

(a)

1 4

3

2

5

6

7

[1
,1
0]
,6
,2
0

[1,
11]

,5,
18

[1,12],2,30

[1,13],3,17[1,14],4,40

[1,10],6,20[1,11],5,18

[1,12],2,30

[1,
13]

,3,
17

[1
,1
4]
,4
,4
0

(b)
Figure 6 Example of instances when (a) w̃∗(c)< w̃GR(xt,λ;U t) and (b) when w̃(xt,λ;c) = w̃GR(xt,λ;U t) does not

imply that w̃(xt,λ;c) = w̃∗(c), with w̃GR(xt,λ;U t)< w̃∗(c). The arcs’ labels are given by [`a, ua], ca, da.

Finally, Figure 6b shows an example of an instance of the ASPI where the fact that w̃(xt,λ;c) =

w̃GR(xt,λ;U t) does not imply that w̃(xt,λ;c) = w̃∗(c). In this case it is readily checked that the

solution for any policy λ∈Λ is to block arcs (1,2) and (1,3). The Leader expects that the Follower

uses path 1–4–7, which yields an expected profit of w̃GR(xt,λ;U t) = 60. For this example the response

of the Follower is the same the Leader expects, that is, to use 1–4–7, and hence w̃(xt,λ;c) =

60 = w̃GR(xt,λ;U t). However, the optimal full-information solution for the Leader is to remove the

arcs (1,4) and (1,5) which forces the Follower to use path 1–6–7 and gives an optimal profit of

w̃∗(c) = 80.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 7

Appendix D: Additional tables and graphs

D.1. Average solution times for benchmark policies.

Feedback Solution Time (seconds)

Uniform ψ πR−Cvx πR−Ncvx πC−Cvx πC−Ncvx ψN λ

Standard 12.28 3.81 9.80 2.89 5.12 1.47 0.15
VP 6.61 3.31 8.38 1.31 3.28 1.35 0.50
RP 8.00 3.06 9.16 2.46 12.87 1.43 0.46

Left Sk. ψ πR−Cvx πR−Ncvx πC−Cvx πC−Ncvx ψN λ

Standard 11.00 4.07 9.57 0.79 2.69 1.80 0.15
VP 4.57 3.38 8.25 1.05 2.45 1.16 0.53
RP 8.22 3.25 9.54 1.18 7.67 1.79 0.55

Right Sk. ψ πR−Cvx πR−Ncvx πC−Cvx πC−Ncvx ψN λ

Standard 15.95 4.51 10.60 1.05 2.14 1.92 0.15
VP 7.19 3.20 8.07 0.95 2.16 1.41 0.42
RP 10.81 3.13 9.36 1.19 7.57 1.62 0.25

Table 7 Average solution time across ten instances for ψ with the E-Ncvx update and the benchmark policies.

Boldface indicates the best result.

Observe that the policies that use the NCvx update take on average more time to solve, and

particularly, policies in Ψ have the longest solution times. By contrast, ψN achieves shorter solution

times, which hints that exploiting the information of the NCvx update is the main driver of the

longer solution times of policies in Ψ. Policies in Λ attain the shortest solution times by far,

even faster than the Cvx counterparts of the random and center policies. It should be mentioned,

however, that a plausible reason for this difference is that the policies in Λ tend to stall very early,

while the random, center, or even policies in Ψ under the Cvx update (as in, e.g., Table 1) stall

later on average or optimize across all the periods in T .

D.2. Sensitivity to the Instance Size.

We use πR, policies in Λ, and the α-optimal policies, Ψ1.5 and Ψ2 under the E-Ncvx update, to

study the time it takes to solve increasingly larger instances. Networks with four different structures

(n`×nk) were considered: 5×4, 5×5, 6×5, and 6×6. Over each structure we ran five replications

across all feedback types (the remaining parameters being as in Section 5.3.1). We set T = 15 for

the instances with five layers and T = 20 for the instances with six layers, and run each instance

for at most one hour. Table 8 summarizes the average running times; the remaining performance

measures follow similar patterns as shown in the previous experiments.

From Table 8 we observe that only policies in Λ scale well with the size of the instance. As

with previous experiments, this is partly explained because these policies stall fairly quickly, thus,

the larger MIPs corresponding to larger values of t, do not need to be solved. The performance

of the other policies clearly deteriorates, particularly when only Standard feedback is available,

8 Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming

Instance size Solution Time (seconds)

5×4 (|N |=22,|A|=72) πR λ ψ1.5 ψ2

Standard 37.72 0.27 520.61 494.24
VP 16.63 1.01 23.10 24.78
RP 18.04 0.87 22.17 12.59

5×5 (|N |=27,|A|=110) πR λ ψ1.5 ψ2

Standard 133.77 0.45 763.33 722.13 (1,15.4)
VP 49.27 1.10 124.00 10.17
RP 72.90 2.08 67.68 17.99

6×5 (|N |=32,|A|=135) πR λ ψ1.5 ψ2

Standard 1267.67 (2,20) 0.51 2884.08 (4,13.4) 310.1 (1,19.4)
VP 282.69 2.62 2883.22 (4,14) 747.86
RP 270.76 1.72 480.65 66.56

6×6 (|N |=38,|A|=192) πR λ ψ1.5 ψ2

Standard 978.66 (1,19.8) 0.72 2618.45 (4,9) 2166.97 (3,14)
VP 332.52 2.41 2252.24 (3,14.2) 433.09
RP 285.91 3.87 1144.38 (1,20.2) 188.00

Table 8 Average solution times for different instance sizes. Italics denote that not all instances were solved

within the time limit. In these cases (a, b) denotes the number of instances not solved within the time limit (a), and

the average period by which the time limit was reached (b).

while for Response-Perfect feedback, the decrease in performance is less noticeable (recall that

in Response-Perfect feedback, the NCvx update is equivalent to the Cvx update and hence more

tractable computationally). These results show that for policies in Ψ, state-of-the-art MIP solvers

methods can provide solutions for small to medium scale instances. The solution of larger instances,

particularly under Standard feedback, requires additional algorithms or pre-processing techniques.

D.3. Additional tables for the Mexico-USA border smuggling instances

We show the results for two of the three smuggling instances considered in Section 5.3.4 in Tables 9

and 10.

Time-Stability Regret Solution time

Feedback πR λ ψ πR λ ψ πR λ ψ

k= 2

S 13 ∞ 8 1.53 2.62 1.32 33.00 0.25 39.15
RP 21 ∞ 8 1.67 2.62 1.32 29.95 0.29 26.42
VP 10 ∞ 5 0.95 2.62 0.81 26.51 0.42 15.12

k= 3

S 17 1 11 0.89 0.00 2.07 31.91 0.31 61.38
RP 20 1 10 0.64 0.00 1.75 35.70 0.42 47.38
VP 18 1 7 0.65 0.00 1.21 30.07 0.86 25.67

k= 4
S 15 ∞ 5 3.34 4.00 1.53 57.42 0.50 72.25
RP 17 4 5 3.31 0.88 1.53 48.62 2.20 57.19
VP 9 2 4 1.81 0.20 1.24 46.32 1.48 30.36

Table 9 Time stability, regret, and solution time for one of the smuggling instances with various feedback modes

and values of k. A time stability of ∞ means that the policy stalls.

Borrero, Prokopyev, and Sauré: Learning in Sequential Bilevel Linear Programming 9

Time-Stability Regret Solution time

Feedback πR λ ψ πR λ ψ πR λ ψ

k= 2

S 5 2 4 2.44 0.59 2.16 26.97 0.43 8.30
RP 4 ∞ 4 1.76 12.30 2.16 29.08 0.69 9.86
VP 7 ∞ 6 3.70 11.76 3.48 28.08 0.21 22.42

k= 3

S 14 5 6 1.95 2.31 4.63 27.89 2.05 18.98
RP 15 1 7 3.35 0.00 5.30 33.78 0.51 31.79
VP 16 1 7 1.05 0.00 5.30 33.32 0.22 29.61

k= 4
S 7 4 4 5.28 1.98 4.16 48.76 3.74 30.14
RP 8 ∞ 4 4.91 9.31 4.16 54.45 1.49 36.32
VP 2 ∞ 5 0.71 14.12 4.16 55.29 0.43 34.95

Table 10 Time stability, regret, and solution time for one of the smuggling instances with various feedback

modes and values of k. A time stability of ∞ means that the policy stalls.

	Introduction
	Problem Formulation
	Sequential bilevel problem with incomplete information (SBPI).
	Learning New Information: Uncertainty Set Updates

	Greedy and Robust Policies
	Greedy and Best–Case Policies
	Definitions
	Convergence of Policies in
	-optimal Greedy and Best-Case Policies
	Computational Study
	MIP formulations of the Greedy and Best-Case Policies
	Generation of the Instances
	Results and discussion
	Performance of with respect to the update mechanism.
	Performance of with respect to the benchmark policies.
	Sensitivity to the Information Quality.
	Performance of in non-grid instances

	Concluding Remarks
	Acknowledgments

	Proofs of the Formal Results
	Summary and Comparative Analysis of borrero2018interdiction (BPS19)
	 Additional examples for the discussion in Section 3
	Additional tables and graphs
	Average solution times for benchmark policies.
	Sensitivity to the Instance Size.
	Additional tables for the Mexico-USA border smuggling instances

